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Exercice 1.
Calculer les intégrales suivantes :

1)

∬
R2

ln(1 + 𝑥2 + 𝑦2)
(1 + 𝑥2 + 𝑦2)2 d𝑥 d𝑦, (1.1)

2)

∬
]0,+∞[2

d𝑥 d𝑦
(1 + 𝑥2)(1 + 𝑦2) . (1.2)

Solution
1) Pour tout 𝑘 ∈ N∗, notons 𝐷𝑘 ≔ B(0, 𝑘) ⊂ R2. Remarquons que : (i) 𝐷𝑘 est un compact

mesurable au sens de Jordan, (ii) 𝐷𝑘 ⊂ 𝐷̊𝑘+1, et (iii) ⋃𝑘∈N∗ 𝐷𝑘 = R2. Notons

𝐼𝑘 ≔ ∬
𝐷𝑘

ln(1 + 𝑥2 + 𝑦2)
(1 + 𝑥2 + 𝑦2)2 d𝑥 d𝑦. (1.3)

Calculons 𝐼𝑘 en coordonnées polaires :

∀(𝑥, 𝑦) ∈ 𝐷̊𝑘 ⧵ ([0, 𝑘[×{(0, 0)}), ∃!(𝑟, 𝜃) ∈ ]0, 𝑘[ × ]0, 2𝜋[, {
𝑥 = 𝑟 cos 𝜃
𝑦 = 𝑟 sin 𝜃

(1.4)

Le jacobien de cette transformation définie entre deux ouverts est (𝑟, 𝜃) ↦ 𝑟. Comme
[0, 𝑘[×{(0, 0)} et ∂𝐷𝑘 sont négligeables, l’intégrale sur 𝐷𝑘 vaut celle sur 𝐷̊𝑘⧵([0, 𝑘[×{(0, 0)}).
Donc

𝐼𝑘 = ∬
]0,𝑘[×]0,2𝜋[

ln(1 + 𝑟2)
(1 + 𝑟2)2 𝑟 d𝑟 d𝜃 = ∬

[0,𝑘]×[0,2𝜋]

ln(1 + 𝑟2)
(1 + 𝑟2)2 𝑟 d𝑟 d𝜃

= ∫
2𝜋

0
𝑑𝜃 ∫

𝑘

0

ln(1 + 𝑟2)
(1 + 𝑟2)2 𝑟 d𝑟 = 𝜋 ∫

𝑘

0

ln(1 + 𝑟2)
(1 + 𝑟2)2 2𝑟 d𝑟.

Faisons le changement de variables 𝑡 = 1 + 𝑟2, avec d𝑡 = 2𝑟 d𝑟. On a alors

𝐼𝑘 = 𝜋 ∫
1+𝑘2

1

ln 𝑡
𝑡2 d𝑡 𝑝𝑎𝑟 𝑝𝑎𝑟𝑡𝑖𝑒𝑠= 𝜋[−1

𝑡 (1 + ln 𝑡)]
𝑡=1+𝑘2

𝑡=1
= 𝜋(− 1

1 + 𝑘2 −
ln(1 + 𝑘2)

1 + 𝑘2 + 1).

(1.5)
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Il en résulte que lim𝑘→∞ 𝐼𝑘 = 𝜋. Puisque l’intégrande de (1.1) est positive ou nulle sur R2,
l’intégrale généralisée (1.1) est absolument convergente et sa valeur est 𝜋 :

∬
R2

ln(1 + 𝑥2 + 𝑦2)
(1 + 𝑥2 + 𝑦2)2 d𝑥 d𝑦 = 𝜋. (1.6)

2) Pour tout 𝑘 ∈ J2, +∞J, notons 𝑅𝑘 ≔ [𝑘−1, 𝑘]2. Remarquons que : (i) 𝑅𝑘 est un compact
mesurable au sens de Jordan, (ii) 𝑅𝑘 ⊂ 𝑅̊𝑘+1, et (iii) ⋃𝑘⩾2 𝑅𝑘 =]0, +∞[2. Notons

𝐽𝑘 ≔ ∬
𝑅𝑘

d𝑥 d𝑦
(1 + 𝑥2)(1 + 𝑦2) . = ∫

𝑘

1
𝑘

d𝑥
1 + 𝑥2 ∫

𝑘

1
𝑘

d𝑦
1 + 𝑦2 (1.7)

= ([arctan 𝑥]𝑥=𝑘
𝑥= 1

𝑘
)

2
(1.8)

= (arctan 𝑘 − arctan 1
𝑘)

2
. (1.9)

Il en résulte que lim𝑘→∞ 𝐽𝑘 = (𝜋/2)2 = 𝜋2/4. Puisque l’intégrande de (1.2) est positive sur
]0, +∞[2, l’intégrale généralisée (1.2) est absolument convergente et sa valeur est 𝜋2/4 :

∬
]0,+∞[2

d𝑥 d𝑦
(1 + 𝑥2)(1 + 𝑦2) = 𝜋2

4 . (1.10)

Exercice 2.
1) Pour 𝛼 ∈ R, nous définissons la fonction 𝐼 par

𝐼(𝛼) = ∫
R2

1
(1 + √𝑥2 + 𝑦2)𝛼

d𝑥 d𝑦. (2.1)

Donner le domaine de définition de 𝐼.
2) Pour 𝛼 ∈ R, nous définissons la fonction 𝐽 par

𝐽(𝛼) = ∫
R3

1
(1 + √𝑥2 + 𝑦2 + 𝑧2)𝛼

d𝑥 d𝑦 d𝑧. (2.2)

Donner le domaine de définition de 𝐽.

Solution
1) Soit 𝑅 ∈ ]0, +∞[ ; notons

𝐼𝑅(𝛼) ≔ ∫
B(0,𝑅)

1
(1 + √𝑥2 + 𝑦2)

𝛼 d𝑥 d𝑦. (2.3)
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Soit 𝛼 ∈ R ⧵ {1, 2}. Calculons en passant en coordonnées polaires :

𝐼𝑅(𝛼) = ∫
𝑅

0
d𝑟 ∫

2𝜋

0

𝑟
(1 + 𝑟)𝛼 d𝜃 (2.4)

= 2𝜋 ∫
𝑅

0
𝑟(1 + 𝑟)−𝛼 d𝑟 (2.5)

= [ 2𝜋
1 − 𝛼𝑟(1 + 𝑟)1−𝛼]

𝑅

𝑟=0
− 2𝜋

1 − 𝛼 ∫
𝑅

0
(1 + 𝑟)1−𝛼 d𝑟 (2.6)

= 2𝜋
1 − 𝛼𝑅(1 + 𝑅)1−𝛼 − [ 2𝜋

(1 − 𝛼)(2 − 𝛼)(1 + 𝑟)2−𝛼]
𝑅

𝑟=0
(2.7)

= 2𝜋
1 − 𝛼𝑅(1 + 𝑅)1−𝛼 − 2𝜋

(1 − 𝛼)(2 − 𝛼)((1 + 𝑅)2−𝛼 − 1). (2.8)

De plus

𝐼𝑅(1) = 2𝜋 ∫
𝑅

0

𝑟
1 + 𝑟 d𝑟 = 2𝜋 ∫

𝑅

0
(1 − 1

1 + 𝑟) d𝑟 = 2𝜋[𝑟 − ln(1 + 𝑟)]𝑅𝑟=0 (2.9)

= 2𝜋(𝑅 − ln(1 + 𝑅)), (2.10)

𝐼𝑅(2) = 2𝜋 ∫
𝑅

0

𝑟
(1 + 𝑟)2 d𝑟 = −2𝜋[ 𝑟

1 + 𝑟]
𝑅

𝑟=0
+ 2𝜋 ∫

𝑅

0

1
1 + 𝑟 d𝑟 (2.11)

= −2𝜋 𝑅
1 + 𝑅 + 2𝜋 ln(1 + 𝑅). (2.12)

D’après (2.8), (2.10) and (2.12), lim𝑛→+∞ 𝐼𝑛(𝛼) existe si et seulement si 𝛼 > 2. Puisque la
fonction (𝑥, 𝑦) ↦ (1 + √𝑥2 + 𝑦2)−𝛼 est positive, elle est absolument intégrable sur R2 si et
seulement si 𝛼 > 2.

2) Soit 𝑅 ∈ ]0, +∞[ ; notons

𝐽𝑅(𝛼) ≔ ∫
B(0,𝑅)

1
(1 + √𝑥2 + 𝑦2 + 𝑧2)

𝛼 d𝑥 d𝑦 d𝑧. (2.13)
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Soit 𝛼 ∈ R ⧵ {1, 2, 3}. Calculons en passant en coordonnées sphériques :

𝐽𝑅(𝛼) = ∫
2𝜋

0
d𝜃 ∫

𝑅

0
(∫

𝜋

0

𝑟2 sin 𝜑
(1 + 𝑟)𝛼 d𝜑) d𝑟 (2.14)

= (∫
2𝜋

0
d𝜃)(∫

𝜋

0
sin 𝜑 d𝜑)(∫

𝑅

0

𝑟2

(1 + 𝑟)𝛼 d𝑟) (2.15)

= 4𝜋 ∫
𝑅

0
𝑟2(1 + 𝑟)−𝛼 d𝑟 (2.16)

= 4𝜋
1 − 𝛼𝑅2(1 + 𝑅)1−𝛼 − 4𝜋

1 − 𝛼 ∫
𝑅

0
2𝑟(1 + 𝑟)1−𝛼 d𝑟 (2.17)

= 4𝜋
1 − 𝛼𝑅2(1 + 𝑅)1−𝛼 − 8𝜋

(1 − 𝛼)(2 − 𝛼)𝑅(1 + 𝑅)2−𝛼

+ 8𝜋
(1 − 𝛼)(2 − 𝛼) ∫

𝑅

0
(1 + 𝑟)2−𝛼 d𝑟

(2.18)

= 4𝜋
1 − 𝛼𝑅2(1 + 𝑅)1−𝛼 − 8𝜋

(1 − 𝛼)(2 − 𝛼)𝑅(1 + 𝑅)2−𝛼

+ 8𝜋
(1 − 𝛼)(2 − 𝛼)(3 − 𝛼)((1 + 𝑅)3−𝛼 − 1).

(2.19)

De plus

𝐽𝑅(1) = 4𝜋 ∫
𝑅

0

𝑟2

1 + 𝑟 d𝑟 = 4𝜋 ∫
𝑅

0

(1 + 𝑟)2 − 2(1 + 𝑟) + 1
1 + 𝑟 d𝑟 (2.20)

= 4𝜋(𝑅 + 𝑅2

2 − 2𝑅 + ln(1 + 𝑅)), (2.21)

𝐽𝑅(2) = −4𝜋 𝑅2

1 + 𝑅 + 8𝜋 ∫
𝑅

0

𝑟 d𝑟
1 + 𝑟

= −4𝜋 𝑅2

1 + 𝑅 + 8𝜋 ∫
𝑅

0
(1 − 1

1 + 𝑟) d𝑟 = −4𝜋 𝑅2

1 + 𝑅 + 8𝜋(𝑅 − ln(1 + 𝑅)), (2.22)

(2.23)

𝐽𝑅(3) = −2𝜋 𝑅2

(1 + 𝑅)2 − 4𝜋 𝑅
1 + 𝑅 + 4𝜋 ∫

𝑅

0

d𝑟
1 + 𝑟 (2.24)

= −2𝜋 𝑅2

(1 + 𝑅)2 − 4𝜋 𝑅
1 + 𝑅 + 4𝜋 ln(1 + 𝑅). (2.25)

D’après (2.19), (2.21), (2.22), et (2.25), lim𝑛→+∞ 𝐽𝑛(𝛼) existe si et seulement si 𝛼 > 3.
Puisque la fonction (𝑥, 𝑦, 𝑧) ↦ (1 + √𝑥2 + 𝑦2 + 𝑧2)−𝛼 est positive, elle est absolument
intégrable sur R3 si et seulement si 𝛼 > 3.

Exercice 3.
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1) Pour 𝑗 ∈ N∗, notons 𝐾𝑗 ≔ [−𝑗, 𝑗]2. Prouver l’existence de

lim
𝑗→+∞

∫
𝐾𝑗

sin 𝑥
𝑥

sin 𝑦
𝑦 d𝑥 d𝑦,

où la fonction 𝑠 ↦ sin 𝑠
𝑠

est étendue par continuité en 0 en lui assignant la valeur 1 en 0.

2) A-t-on

sup{∫
𝐾

∣ sin 𝑥 sin 𝑦
𝑥𝑦 ∣ d𝑥 d𝑦 ∶ 𝐾 ⊂ R2 compact Jordan-mesurable non vide} < +∞ ?

Solution
1) Soit 𝑗 ∈ N∗ :

∫
𝐾𝑗

sin 𝑥 sin 𝑦
𝑥𝑦 d𝑥 d𝑦 = ∫

𝑗

−𝑗

sin 𝑥
𝑥 d𝑥 ∫

𝑗

−𝑗

sin 𝑦
𝑦 d𝑦 = 4 ∫

𝑗

0

sin 𝑥
𝑥 d𝑥 ∫

𝑗

0

sin 𝑦
𝑦 d𝑦.

Considérons ∫𝑗
0

sin 𝑥
𝑥

d𝑥 (qui vaut ∫𝑗
0

sin 𝑦
𝑦

d𝑦). Si 𝑗 > 1, l’intégrale sur [0, 1] ne pose pas de

difficulté car l’intégrande est continue sur [0, 1] (après extension) : ∫1
0

sin 𝑥
𝑥

d𝑥 est un réel

indépendant de 𝑗. Ensuite on intègre sur [1, 𝑗] par partie pour faire apparaître un 1
𝑥2

:

∫
𝑗

1

sin 𝑥
𝑥 d𝑥 = [− cos 𝑥

𝑥 ]
𝑗

1
− ∫

𝑗

1

cos 𝑥
𝑥2 d𝑥

et on obtient que toutes les limites lorsque 𝑗 → +∞ existent.
2) La réponse est « non » ; prouvons-le.

Pour tout entier 𝑘 ⩾ 2, soit 𝐵𝑘 = [𝜋, 𝑘𝜋]2. Alors

∫
𝐵𝑘

∣ sin 𝑥 sin 𝑦
𝑥𝑦 ∣ d𝑥 d𝑦 = ∫

𝑘𝜋

𝜋

| sin 𝑥|
𝑥 d𝑥 ∫

𝑘𝜋

𝜋

| sin 𝑦|
𝑦 d𝑦 = (∫

𝑘𝜋

𝜋

| sin 𝑥|
𝑥 d𝑥)

2

.

D’après un résultat d’analyse 1, lim𝑘→+∞ ∫𝑘𝜋
𝜋

| sin 𝑥|
𝑥

d𝑥 = +∞ et donc

lim
𝑘→+∞

∫
𝐵𝑘

∣ sin 𝑥 sin 𝑦
𝑥𝑦 ∣ d𝑥 d𝑦 = +∞.

Exercice 4.
Notons 𝐷 ≔ 𝐵(𝟎, 1) et 𝑓 la fonction définie pour tout (𝑥, 𝑦) ∈ R2 par

𝑓(𝑥, 𝑦) = 𝑦
(𝑥2 + 𝑦2)2

Nous voulons vérifier si l’intégrale ∫𝐷 𝑓 existe.
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1) Soit 𝜖 ∈ R+∗ ; notons 𝐶𝜖 ≔ 𝐵(𝟎, 1) ⧵ 𝐵(𝟎, 𝜖). 𝑓 est-elle intégrable sur 𝐶𝜖 ? Si oui, donner
lim𝜖→0 ∫𝐶𝜖

𝑓.

2) Soient 𝜖 ∈ R+∗ et 𝛼 ∈ R+ ; notons 𝐴(𝜖, 𝛼) = 𝐴+(𝜖) ∪ 𝐴−(𝜖, 𝛼) avec

𝐴+(𝜖) = {(𝑥, 𝑦) ∈ R × R+ ∶ 𝜖2 ⩽ 𝑥2 + 𝑦2 ⩽ 1}
et 𝐴−(𝜖, 𝛼) = {(𝑥, 𝑦) ∈ R × R−∗ ∶ 𝛼2𝜖2 ⩽ 𝑥2 + 𝑦2 ⩽ 1}.

Donner les valeurs de 𝛼 pour lesquelles lim𝜖→0 ∫𝐴(𝜖,𝛼) 𝑓 existe.

3) Conclure quant à l’existence de ∫𝐷 𝑓.

Solution
1. la solution est 0. C’est facile de vérifier apres le changement de variables en coordenées

polaaires, puisque sin(𝜃) es une fonction impaire. Donc, oui, 𝑓 est integrable sur 𝐶𝜖.
2. Prenons maintenant la suite de domaines

𝐷𝜖 = 𝐷+
𝜖 ∪ 𝐷−

𝜖 où {𝐷+
𝜖 = {𝜖2 ⩽ 𝑥2 + 𝑦2 ⩽ 1, 𝑦 ⩾ 0},

𝐷−
𝜖 = {𝛼2𝜖2 ⩽ 𝑥2 + 𝑦2 ⩽ 1, 𝑦 < 0}.

Alors,

∬
𝐷𝜖

𝑓(𝑥, 𝑦) d𝑥 d𝑦 = ∬
𝐷+

𝜖

𝑓(𝑥, 𝑦) d𝑥 d𝑦 + ∬
𝐷−𝜖

𝑓(𝑥, 𝑦) d𝑥 d𝑦

= ∫
𝜋

0
∫

1

𝜖

sin 𝜃
𝑟2 d𝑟 d𝜃 + ∫

2𝜋

𝜋
∫

1

𝛼𝜖

sin 𝜃
𝑟2 d𝑟 d𝜃

= 2(1
𝜖 − 1) − 2( 1

𝛼𝜖 − 1) = 2
𝜖

𝛼 − 1
𝛼

3. Donc,

lim
𝜖→0

∬
𝐷𝜖

𝑓(𝑥, 𝑦) d𝑥 d𝑦 =
⎧{
⎨{⎩

+∞, 𝛼 > 1,
0, 𝛼 = 1,
−∞, 0 < 𝛼 < 1.

La limite lim𝜖→0 ∬𝐷𝜖
|𝑓(𝑥, 𝑦)| d𝑥 d𝑦 dépend de la suite des domaines 𝐷𝜖 choisis. Donc, la

fonction n’est pas intégrable.
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