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Exercice 1.
1) Démontrer l’inégalité de Young :

∀𝑎, 𝑏 ∈ R+, 𝑎𝑏 ⩽ 1
𝑝𝑎𝑝 + 1

𝑞 𝑏𝑞, (1.1)

où 𝑝 ∈ ]1, +∞[ et 𝑞 est tel que 1/𝑝 + 1/𝑞 = 1.
Indication. Utiliser le fait que la fonction ln ∶ ]0, +∞[ → R est concave et appliquer ln à la
relation d’inégalité.

2) Démontrer que si 𝒙, 𝒚 ∈ R𝑛 où 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) et 𝒚 = (𝑦1, 𝑦2, … , 𝑦𝑛) et si ⟨𝒙, 𝒚⟩ est le
produit scalaire euclidien, alors on a l’inégalité de Hölder :

|⟨𝒙, 𝒚⟩| ⩽ ‖𝒙‖𝑝‖𝒚‖𝑞 (1.2)

où 𝑝 ∈ [1, +∞] et 1/𝑝 + 1/𝑞 = 1 (avec la convention 1/+ ∞ = 0).

Indication. Lorsque 𝑝, 𝑞 ∈ ]1, +∞[, poser 𝜆 = ‖𝒙‖−1/𝑞
𝑝 ‖𝒚‖

1/𝑝
𝑞 et utiliser le point 1 après avoir

écrit |⟨𝒙, 𝒚⟩| ⩽ ∑𝑛
𝑖=1 𝜆|𝑥𝑖| × 1

𝜆
|𝑦𝑖|.

3) Montrer que ‖⋅‖𝑝 est une norme pour 𝑝 ∈ [1, +∞] mais, lorsque 𝑛 ⩾ 2, pas pour 𝑝 ∈ ]0, 1[.
Indication. Pour 𝑝 ∈]1, ∞[, partir de ‖𝒙 + 𝒚‖𝑝

𝑝 ⩽ ∑𝑛
𝑖=1|𝑥𝑖||𝑥𝑖 + 𝑦𝑖|𝑝−1 + ∑𝑛

𝑖=1|𝑦𝑖||𝑥𝑖 + 𝑦𝑖|𝑝−1

et utiliser le point 2 ci-dessus.

4) Soient 𝒙 ∈ R𝑛, 𝑝 ∈ [1, +∞] et 𝑞 ∈ R tel que 1/𝑝 + 1/𝑞 = 1. Démontrer les inégalités suivantes :

‖𝒙‖1 ⩽ 𝑛1/𝑞 ‖𝒙‖𝑝 si 𝑝 ≠ 1, (1.3)

‖𝒙‖𝑝 ⩽ 𝑛1/𝑝 ‖𝒙‖∞ si 𝑝 ≠ +∞, (1.4)
‖𝒙‖∞ ⩽ ‖𝒙‖1. (1.5)

En déduire que toutes les normes {‖⋅‖𝑝 ∶ 𝑝 ∈ [1, +∞]} sont équivalentes.

Solution
1) Si 𝑎 = 0 ou 𝑏 = 0, l’inégalité est triviale. On suppose donc que 𝑎 > 0 et 𝑏 > 0. Si on pose

𝑓(𝑠) = ln 𝑠, on a 𝑓 ′(𝑠) = 𝑠−1 et 𝑓″(𝑠) = −𝑠−2 < 0 pour tout 𝑠 ∈ ]0, +∞[. Ainsi, la fonction
𝑔 ≔ − ln est convexe. Puisque 1 < 𝑝 < +∞ et 1

𝑝
+ 1

𝑞
= 1, on a

𝑔(1
𝑝𝑎𝑝 + 1

𝑞 𝑏𝑞) ⩽ 1
𝑝𝑔(𝑎𝑝) + 1

𝑞 𝑔(𝑏𝑞) (1.6)
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et par suite

ln(1
𝑝𝑎𝑝 + 1

𝑞 𝑏𝑞) ⩾ 1
𝑝 ln(𝑎𝑝) + 1

𝑞 ln(𝑏𝑞) = ln(𝑎𝑏). (1.7)

La fonction exponentielle étant strictement croissante, on a bien

𝑎𝑏 ⩽ 1
𝑝𝑎𝑝 + 1

𝑞 𝑏𝑞. (1.8)

2) Distinguons trois cas.
Cas 𝑝 = +∞. Alors 𝑞 = 1 et, pour tout 𝒙, 𝒚 ∈ R𝑛 :

|⟨𝒙, 𝒚⟩| = ∣
𝑛

∑
𝑖=1

𝑥𝑖𝑦𝑖∣ ⩽
𝑛

∑
𝑖=1

|𝑥𝑖||𝑦𝑖| ⩽ max
1⩽𝑖⩽𝑛

|𝑥𝑖|
𝑛

∑
𝑖=1

|𝑦𝑖| = ‖𝒙‖∞‖𝒚‖1. (1.9)

Cas 𝑝 = 1. Alors 𝑞 = +∞. On inverse les rôles de 𝒙 et 𝒚 pour obtenir

|⟨𝒙, 𝒚⟩| = |⟨𝒚, 𝒙⟩| ⩽ ‖𝒚‖∞‖𝒙‖1. (1.10)

Cas 𝑝 ∈ ]1, +∞[. Alors 𝑞 = 𝑝/(𝑝 − 1). Si 𝒙 = 𝟎 ou 𝒚 = 𝟎, l’inégalité est triviale. On suppose
donc (𝒙, 𝒚) ≠ (𝟎, 𝟎). On a, pour 𝜆 ∈ R∗

+ et en utilisant l’inégalité de Young :

|⟨𝒙, 𝒚⟩| ⩽
𝑛

∑
𝑖=1

|𝑥𝑖||𝑦𝑖| =
𝑛

∑
𝑖=1

𝜆|𝑥𝑖|
1
𝜆 |𝑦𝑖| (1.11)

⩽
𝑛

∑
𝑖=1

𝜆𝑝

𝑝 |𝑥𝑖|
𝑝 +

𝑛

∑
𝑖=1

1
𝑞𝜆𝑞 |𝑦𝑖|

𝑞 = 𝜆𝑝

𝑝 ‖𝒙‖𝑝
𝑝 + 1

𝑞𝜆𝑞 ‖𝒚‖𝑞
𝑞. (1.12)

Si on pose 𝜆 = ‖𝒙‖−1/𝑞

𝑝 ‖𝒚‖1/𝑝

𝑞 , puisque 𝑝 − 𝑝/𝑞 = 𝑞 − 𝑞/𝑝 = 1, on obtient :

𝜆𝑝‖𝒙‖𝑝
𝑝 = ‖𝒙‖𝑝−𝑝/𝑞

𝑝 ‖𝒚‖𝑞 = ‖𝒙‖𝑝‖𝒚‖𝑞 (1.13)
et

𝜆−𝑞‖𝒚‖𝑞
𝑞 = ‖𝒙‖𝑝‖𝒚‖𝑞−𝑞/𝑝

𝑞 = ‖𝒙‖𝑝‖𝒚‖𝑞. (1.14)
Ainsi,

|⟨𝒙, 𝒚⟩| ⩽ 1
𝑝‖𝒙‖𝑝‖𝒚‖𝑞 + 1

𝑞 ‖𝒙‖𝑝‖𝒚‖𝑞 = ‖𝒙‖𝑝‖𝒚‖𝑞. (1.15)

3) Distinguons à nouveau trois cas.
Cas 𝑝 = +∞. Montrons l’inégalité triangulaire. Soient 𝒙, 𝒚 ∈ R𝑛.

‖𝒙 + 𝒚‖∞ = max
1⩽𝑖⩽𝑛

|𝑥𝑖 + 𝑦𝑖| ⩽ max
1⩽𝑖⩽𝑛

(|𝑥𝑖| + |𝑦𝑖|) (1.16)

⩽ max
1⩽𝑖⩽𝑛

|𝑥𝑖| + max
1⩽𝑗⩽𝑛

|𝑦𝑗| = ‖𝒙‖∞ + ‖𝒚‖∞. (1.17)

Les autres propriétés d’une norme sont vérifiées trivialement.
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Cas 𝑝 ∈ [1, +∞[. Montrons l’inégalité triangulaire. Soient 𝒙, 𝒚 ∈ R𝑛. On a :

‖𝒙 + 𝒚‖𝑝
𝑝 =

𝑛

∑
𝑖=1

|𝑥𝑖 + 𝑦𝑖|
𝑝 (1.18)

=
𝑛

∑
𝑖=1

|𝑥𝑖 + 𝑦𝑖| |𝑥𝑖 + 𝑦𝑖|
𝑝−1 (1.19)

⩽
𝑛

∑
𝑖=1

|𝑥𝑖| |𝑥𝑖 + 𝑦𝑖|
𝑝−1 +

𝑛

∑
𝑖=1

|𝑦𝑖| |𝑥𝑖 + 𝑦𝑖|
𝑝−1. (1.20)

Si 𝑝 = 1, on en déduit immédiatement l’inégalité triangulaire. Si 𝑝 ∈ ]1, +∞[, on utilise
l’inégalité de Hölder :

|⟨𝒂, 𝒃⟩| ⩽ ‖𝒂‖𝑝‖𝒃‖𝑞 (1.21)
avec

𝒂 = (|𝑥1|, |𝑥2|, … , |𝑥𝑛|) et 𝒃 = (|𝑥1 + 𝑦1|𝑝−1, |𝑥2 + 𝑦2|𝑝−1, … , |𝑥𝑛 + 𝑦𝑛|𝑝−1). (1.22)

Puisque 1/𝑝 + 1/𝑞 = 1, on a (𝑝 − 1)𝑞 = 𝑝 ainsi que 𝑝/𝑞 = 𝑝 − 1, et on obtient :
𝑛

∑
𝑖=1

|𝑥𝑖| |𝑥𝑖 + 𝑦𝑖|
𝑝−1 = |⟨𝒂, 𝒃⟩| ⩽ ‖𝒂‖𝑝‖𝒃‖𝑞 (1.23)

= (
𝑛

∑
𝑖=1

|𝑥𝑖|
𝑝)

1/𝑝

(
𝑛

∑
𝑖=1

|𝑥𝑖 + 𝑦𝑖|
(𝑝−1)𝑞)

1/𝑞

(1.24)

= (
𝑛

∑
𝑖=1

|𝑥𝑖|
𝑝)

1/𝑝

(
𝑛

∑
𝑖=1

|𝑥𝑖 + 𝑦𝑖|
𝑝)

1/𝑞

(1.25)

= ‖𝒙‖𝑝‖𝒙 + 𝒚‖𝑝−1
𝑝 (1.26)

On obtient de même
𝑛

∑
𝑖=1

|𝑦𝑖| |𝑥𝑖 + 𝑦𝑖|
𝑝−1 ⩽ ‖𝒚‖𝑝‖𝒙 + 𝒚‖𝑝−1

𝑝 (1.27)

et on a donc
‖𝒙 + 𝒚‖𝑝

𝑝 ⩽ (‖𝒙‖𝑝 + ‖𝒚‖𝑝)‖𝒙 + 𝒚‖𝑝−1
𝑝 . (1.28)

Si ‖𝒙 + 𝒚‖𝑝 ≠ 0 on a l’inégalité triangulaire en divisant de part et d’autre par ‖𝒙 + 𝒚‖𝑝−1
𝑝 .

Si ‖𝒙 + 𝒚‖𝑝 = 0, on l’a aussi trivialement. Les autres propriétés d’une norme sont
vérifiées trivialement.

Cas 𝑝 ∈ ]0, 1[. Supposons 𝑛 ⩾ 2 et montrons que ‖⋅‖ n’est pas une norme. Soit 𝒙 =
(1, 0, 0, … , 0) ∈ R𝑛 et 𝒚 = (0, 0, 0, … , 0, 1) ∈ R𝑛. Puisque ‖𝒙‖𝑝 = ‖𝒚‖𝑝 = 1 et
‖𝒙 + 𝒚‖𝑝 = 21/𝑝 > 2, l’inégalité triangulaire n’est pas vérifiée. Par conséquent, ‖⋅‖𝑝 n’est
pas une norme.

4) Si 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ R𝑛, on pose |𝒙| = (|𝑥1|, |𝑥2|, … , |𝑥𝑛|). Montrons les inégalités
suivantes :
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— En choisissant 𝒚 = (1, 1, 1, … , 1) ∈ R𝑛 dans le point 2, on obtient :

‖𝒙‖1 =
𝑛

∑
𝑖=1

|𝑥𝑖| = ⟨|𝒙|, 𝒚⟩ ⩽ ‖𝒙‖𝑝‖𝒚‖𝑞 = 𝑛1/𝑞‖𝒙‖𝑝 (1.29)

où 𝑝 ∈ ]1, +∞], and 1/𝑝 + 1/𝑞 = 1.
— Pour 𝑝 ∈ [1, +∞[, on a

‖𝒙‖𝑝 = (
𝑛

∑
𝑖=1

|𝑥𝑖|
𝑝)

1/𝑝

⩽ (𝑛( max
1⩽𝑖⩽𝑛

|𝑥𝑖|)
𝑝
)

1/𝑝

= 𝑛1/𝑝‖𝒙‖∞. (1.30)

— On a également

‖𝒙‖∞ = max
1⩽𝑖⩽𝑛

|𝑥𝑖| ⩽
𝑛

∑
𝑖=1

|𝑥𝑖| = ‖𝒙‖1. (1.31)

Montrons maintenant que toutes les normes {‖⋅‖𝛼 ∶ 𝛼 ∈ [1, +∞]}, sont équivalentes. Soit
donc 𝑝 ∈ [1, +∞[ et 𝑟 ∈]1, +∞]. On a, pour 𝒙 ∈ R𝑛 :

‖𝒙‖∞ ⩽ ‖𝒙‖1 ⩽ 𝑛1/𝑠‖𝒙‖𝑟 (1.32)
et

‖𝒙‖𝑝 ⩽ 𝑛1/𝑝‖𝒙‖∞ ⩽ 𝑛1/𝑝‖𝒙‖1 ⩽ 𝑛1/𝑝𝑛1/𝑠‖𝒙‖𝑟 = 𝑛
1
𝑝

+ 1
𝑠 ‖𝒙‖𝑟 (1.33)

avec 1/𝑟+1/𝑠 = 1. Ces inégalités montrent que n’importe quelle norme ‖⋅‖𝛼 peut être majorée
par n’importe quelle autre norme ‖⋅‖𝛽 multipliée par une constante 𝐶𝛼,𝛽 > 0 indépendante
de 𝒙 ∈ R𝑛, avec 𝛼, 𝛽 ∈ [1, +∞].

Exercice 2.
Soient 𝑓, 𝑔 ∈ 𝐶0([0, 1]) (autrement dit, deux fonctions continues sur [0, 1]). On définit

𝜙(𝑓, 𝑔) = ∫
1

0
𝑓𝑔 (2.1)

1) Montrer que 𝜙 définit un produit scalaire sur 𝐶0([0, 1]).

2) Montrer que |𝜙(𝑓, 𝑔)| ⩽ 𝜙(𝑓, 𝑓)1/2𝜙(𝑔, 𝑔)1/2 en suivant la démonstration de l’inégalité de
Cauchy–Schwarz donnée au cours.

Solution
1) Pour 𝑓, 𝑔 ∈ 𝐶0([0, 1]), nous avons

𝜙(𝑓, 𝑓) ⩾ 0; (2.2)
𝜙(𝑓, ⋅) et 𝜙(⋅, 𝑔) sont linéaires ; (2.3)

𝜙(𝑓, 𝑔) = 𝜙(𝑔, 𝑓). (2.4)

Soit 𝑓 ∈ 𝐶0([0, 1]) telle que 𝜙(𝑓, 𝑓) = 0. Il reste à prouver que 𝑓 = 0 ; procédons par
contradiction. Supposons ∃𝑎 ∈ [0, 1], 𝑓(𝑎) ≠ 0. Puisque 𝑓2 ∈ 𝐶0[0, 1], il existe 𝛿 ∈ R∗

+ tel
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que 𝑓2 est strictement positive sur 𝑉 (𝑎, 𝛿) avec 𝑉 (𝑎, 𝛿) = [𝑎−𝛿, 𝑎+𝛿]∩[0, 1]. Par conséquent,
comme 𝑓2 ⩾ 0 sur [0, 1], on a ∫𝑉 (𝑎,𝛿) 𝑓2 > 0 et ∫[0,1]∖𝑉 (𝑎,𝛿) 𝑓2 ⩾ 0. Nous obtenons,

𝜙(𝑓, 𝑓) = ∫
1

0
𝑓2 = ∫

[0,1]∖𝑉 (𝑎,𝛿)
𝑓2 + ∫

𝑉 (𝑎,𝛿)
𝑓2 > 0, (2.5)

ce qui est une contradiction.
2) Pour tout 𝛼 ∈ R

𝜙(𝛼𝑓 + 𝑔, 𝛼𝑓 + 𝑔) = 𝛼2𝜙(𝑓, 𝑓) + 2𝛼𝜙(𝑓, 𝑔) + 𝜙(𝑔, 𝑔) ⩾ 0. (2.6)

Nous avons donc un polynôme de degré au plus 2 ayant au maximum une racine. Cela
signifie que son discriminant est négatif, i.e.

𝜙(𝑓, 𝑔)2 − 𝜙(𝑓, 𝑓)𝜙(𝑔, 𝑔) ⩽ 0, (2.7)

d’où l’inégalité de Cauchy–Schwarz.
Remarque. Cette preuve nécessite uniquement les points (2.2), (2.3) et (2.4). La propriété
« 𝜙(𝑓, 𝑓) = 0 ⟹ 𝑓 = 0 » n’est pas utilisée.

Exercice 3.
1) Soit un espace métrique (𝑀, 𝑑) et une fonction continue ℎ ∶ R+ → R+. On suppose que :

(i) ℎ(0) = 0 ; (ii) ℎ est dérivable sur ]0, +∞[ ; (iii) ℎ′ > 0 sur ]0, +∞[ ; et (iv) ℎ′ est
décroissante sur ]0, +∞[. Prouver que ̃𝑑 = ℎ ∘ 𝑑 est aussi une distance sur 𝑀.

2) Si 𝑉 ≠ {0} est un espace vectoriel équipé d’une norme 𝑁, 𝑑 est la distance induite par 𝑁
et ℎ(𝑥) = 𝑥/(1 + 𝑥) pour 𝑥 ⩾ 0, prouver que ̃𝑑 = ℎ ∘ 𝑑 est une distance, mais qu’elle n’est
induite par aucune norme.

Solution
1) Soit (𝑎, 𝑏, 𝑐) ∈ 𝑀3.

Symétrie : ̃𝑑(𝑎, 𝑏) = ̃𝑑(𝑏, 𝑎) car 𝑑 est symétrique.
Positivité : ̃𝑑(𝑎, 𝑏) ⩾ 0 avec égalité si et seulement si 𝑎 = 𝑏. En effet, ceci découle de la

positivité de 𝑑 et du fait que ℎ(𝑥) ⩾ 0 avec égalité si et seulement si 𝑥 = 0.
Inégalité triangulaire : on montre d’abord que ∀𝑥, 𝑦 ∈ R+, ℎ(𝑥 + 𝑦) ⩽ ℎ(𝑥) + ℎ(𝑦).

Si 𝑥 = 0 ou 𝑦 = 0, elle est évidente. Supposons donc 𝑥 > 0, 𝑦 > 0 et (sans perte
de généralité) 𝑦 ⩽ 𝑥. Par le théorème des accroissements finis, il existe 𝑢 ∈ ]0, 𝑦[ et
𝑣 ∈ ]𝑥, 𝑥 + 𝑦[ tels que

ℎ(𝑦)
𝑦 =

ℎ(𝑦) − ℎ(0)
𝑦 = ℎ′(𝑢),

ℎ(𝑥 + 𝑦) − ℎ(𝑥)
𝑦 = ℎ′(𝑣). (3.1)

Comme 𝑢 < 𝑣, et ℎ′ est décroissante,

ℎ(𝑥 + 𝑦) = ℎ(𝑥) + ℎ′(𝑣)𝑦 ⩽ ℎ(𝑥) + ℎ′(𝑢)𝑦 = ℎ(𝑥) + ℎ(𝑦). (3.2)
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Autre manière de montrer cette inégalité : comme ℎ est concave sur ]0, ∞[ et donc
sur [0, ∞[ (car continue en 0), on a pour tout 𝑧 ⩾ 0 et tout 𝑡 ∈ [0, 1], ℎ(𝑡𝑧) =
ℎ((1 − 𝑡)0 + 𝑡𝑧) ⩾ (1 − 𝑡)ℎ(0) + 𝑡ℎ(𝑧) = 𝑡ℎ(𝑧). En particulier, si 𝑥 + 𝑦 > 0,

ℎ( 𝑥
𝑥 + 𝑦(𝑥 + 𝑦)) ⩾ 𝑥

𝑥 + 𝑦ℎ(𝑥 + 𝑦) et ℎ( 𝑦
𝑥 + 𝑦(𝑥 + 𝑦)) ⩾ 𝑦

𝑥 + 𝑦ℎ(𝑥 + 𝑦).

En sommant, on a bien ℎ(𝑥) + ℎ(𝑦) ⩾ ℎ(𝑥 + 𝑦). Le résultat final découle de l’inégalité
triangulaire pour 𝑑 :

̃𝑑(𝑎, 𝑏) = ℎ(𝑑(𝑎, 𝑏)) ⩽ ℎ(𝑑(𝑎, 𝑐) + 𝑑(𝑐, 𝑏)) (3.3)

⩽ ℎ(𝑑(𝑎, 𝑐)) + ℎ(𝑑(𝑐, 𝑏)) = ̃𝑑(𝑎, 𝑐) + ̃𝑑(𝑐, 𝑏). (3.4)

2) La fonction ℎ, définie par ℎ(𝑥) ≔ 𝑥/(1 + 𝑥) pour 𝑥 ⩾ 0, est bien continue sur [0, +∞[.
De plus, ℎ(0) = 0, ℎ′(𝑥) = 1/(1 + 𝑥)2 > 0 sur ]0, +∞[, et ℎ′ est décroissante sur ]0, +∞[.
D’après le point 1, ̃𝑑 = ℎ ∘ 𝑑 est une distance sur 𝑉. Supposons qu’elle soit induite par une
norme ̃𝑁. Alors, pour tout 𝑧 ∈ 𝑉 tel que 𝑁(𝑧) = 1 et tout 𝜆 > 0,

𝜆 ̃𝑁(𝑧) = ̃𝑁(𝜆𝑧) = ̃𝑑(𝜆𝑧, 0) = ℎ(𝑑(𝜆𝑧, 0)) = ℎ(𝑁(𝜆𝑧)) = ℎ(𝜆𝑁(𝑧)) = 𝜆
1 + 𝜆. (3.5)

Ce résultat est absurde, puisque le membre de gauche est linéaire en 𝜆 mais pas celui de
droite. On en conclut que ̃𝑑 n’est induite par aucune norme.
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