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Exercice 1.

Déterminer les extremums absolus (ou ”globaux”) de la fonction f: D — R définie par
1) fla,y)=a®—zy+y*—z—y, ot D={(z,y):2>0,y>0, 2+y<3}
2) flz,y) = 22> —xy +2y* — 62 — 6y, ou D= {(x,y):y >0, 2*+y> <32}

Indication : Etudier séparément D et dD. Pour les parties du bord, introduire des multipli-
cateurs de Lagrange, si nécessaire.

Solution
Ces deux fonctions étant continues sur leurs domaines de définition compacts, elles admettent
chacune des points de maximum et de minimum absolus.
1) Comme f est de classe C'! sur D (I'intérieur de D), ses points d’extremums absolus se trouvent
soit en un point stationnaire dans 'intérieur de D, soit sur le bord de D.
Points stationnaires dans l'intérieur de D :

%(m,y): 2c — y — 1=0 i
of = (z,y) = (1,1) € D.
oY= —¢ + 2 — 1=0

La matrice hessienne de f au point (1,1) est

Hy(1,1) = (_21 _21>

dont le déterminant vaut 3 et la trace vaut 4. Cette matrice symétrique admet ainsi deux
valeurs propres strictement positives. Le point (1,1) est donc un point de minimum local strict
de f. De pluson a f(1,1) = —1.

Sur le bord de D on a :

Notons d’abord que le bord de D est I'union des trois sous-ensembles suivants de R? :

{(,0): 0< 2 <3 U{(0,y): 0<y <3t U{(x,3—2):0< z<3}.

2

L’évaluation de la fonction f(z,y) = 22 — 2y + y? — 2 — y sur le bord donne

) 1\ 1
f(z,0)=2*—2x = r—3) — 71 0<z<3,
) 1\ 1
fOy) =y —y=v—5) — 7 0<y<3,
3\? 1
fl,3—2)=322-3z+2)=3|(z—=) —=]|, 0<z<3
2 4



L’idée est maintenant de chercher les extrema de ces fonctions unidimensionnelles dans
I'intervalle précisé, qui se trouvent soit aux points stationnaires (et points intérieurs) soit aux
extrémités de l'intervalle (cf. Analyse I). Utilisons d’abord la notation g(z) = f(z,0). Alors

) = B 1 L
g(m)—2(x 12) 0 <=z 5 et 9(2
local en z = 5 De plusona ¢g(0) =0 et ¢g(3) =6. On a donc

) = —i . Puisque g”(:p) =2>0, g aun minimum

max f(z,0) = f(3,0) =6 et min f(z,0) = f(%,O) = _i

0<z<3 0<z<3

De méme, on cherche les extrema des fonctions h(y) = f(0,y) et k(z) = f(x,3 —z). La
fonction h a exactement le méme comportement que g et pour k£ on a

R R

k”(x) =6 >0 (= minimum local), k(0) = k(3) =6,

si bien qu’on obtient

i = ER
max f(0,y) = f(0,3) =6, min f(0.y) = 7(0.) = 7.
i —f(33)=_3
max f(.3—2)=[(3.0)= f(0.3) =6, min f@.3-2)=/(3.5)=-1.
1l s’en suit que f admet un minimum absolu en (1,1) de valeur f(1,1) = —1 et des maxima

absolus en (3,0) et en (0,3) de valeur f(3,0) = f(0,3) = 6, voir Fig. 1.
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2) Comme f est de classe C! sur D (Pintérieur de D), ses points d’extrema absolu se trouvent
soit en un point stationnaire dans l'intérieur de D, soit sur le bord de D.

Points stationnaires dans l'intérieur de D :

{y(ac,y): e — y — 6=0 .

ox

= (x,y) =(2,2) € D.
%(z,y): - + 4y — 6=0
y



La matrice hessienne de f au point (2,2) est

H(2,2) = (_41 _41>,

dont le déterminant vaut 15 et la trace vaut 8. Cette matrice symétrique admet ainsi deux
valeurs propres strictement positives. Le point (2, 2) est donc un point de minimum local strict
de f. De plus on a f(2,2) = —12.

Sur le bord de D on a :

Le bord de D est I'union d’un segment de 'axe des x et d’'un arc de cercle. Sur la premiere
partie du bord (le segment de l'axe z), ’évaluation de la fonction f donne

2
f(x,O)=2$2—6x22<x—%> —g, V2 <2 <AV2.

. . . 3 o 43 9 .
La fonction z — f(x,0) atteint son minimum en z = 5 ou j‘(g, 0) =3 et son maximum

en x = —4v/2 ot f( —4v/2,0) = 8(8 + 3v/2). L’autre extrémité x = 4v/2 ne donne pas un
candidat pour un extremum global de f parce que f(%, 0) < f(4v2,0) < f(—4V/2,0).

Pour la deuxiéme partie (le demi-cercle), appliquons la méthode des multiplicateurs de
Lagrange a la contrainte g(z,y) = 22 + y*> — 32 = 0 avec = €] — 4v/2, 4\/5[ et y > 0; ceci est
permis car Vg ne s’annule pas sur cette contrainte. Il s’agit donc de trouver x €] — 4V/2, 4\/5[,
y>0et AeR tels que

of g

5 W) =de —y—6= X\ 5= (z,y) = A2,
0f

0
oy (F¥) =~ Ay — 6=\ 5 (r,y) = A2y,

Oy
22 +9y?—32=0.
En multipliant les deux membres de la premiére équation par y et ceux de la deuxiéme par x,
on obtient 4zy —y? — 6y = —? +4xy — 6, et donc 0 = 22 — y? + 62— 6y = (v —y)(x +y+6).
Si z = y, on déduit de 22 + 32 — 32 = 0 que © = y = 4 et il existe aussi une valeur de A
correspondante. De plus la relation x + y = —6 avec y > 0 est impossible :

—6 £ v62—38
f<0.

0=(=6-y)’+y*—32=2"+12y +4=2(3> + 6y +2) => y =
Le seul point & considérer sur cette partie de la contrainte est donc (4,4), ou f(4,4) =0. Il
faut encore considérer les deux points aux extrémités de 'arc de cercle : (—4v/2,0) et (4v/2,0),
mais le point (4v/2,0) a déja été éliminé.
Ainsi le minimum global de f est atteint en (2,2) et vaut f(2,2) = —12 et le maximum global
est atteint en (—4v/2,0) et vaut f(—4v/2,0) = 8(8 + 3v/2).

Exercice 2.



Notons Q ’ensemble des nombres rationnels. Définissons fi, fa, f5 : [0,1]2 — R pour tout

(z,y

€ [0,1]? par

1 i 7 6 27 g l?

fl(m,y)—{ S (ny) €Qorsg (2.1)
0 sinon,
1 i 9 € 27 = l7

folz,y) = { S (ny) €Qor=3 (2.2)
0 sinon,
1 si 2z =

filz,y) = { st (z,y) € Qw =y, (2.3)
0 sinon,

Dire si les fonctions f;, f, et f; sont intégrables au sens de Riemann sur [0, 1]2.

Solution

1)

La fonction f; n’est pas intégrable au sens de Riemann sur [0, 1]2. En effet tout pavé de
« volume » (« aire » serait plus naturel ici) strictement positif et inclus dans [0, %] x [0, 1]

rencontre & la fois [0, é} x [0,1] \ Q2 et Q?, et donc la borne inférieure (respectivement
supérieure) de f; sur un tel pavé vaut 0 (respectivement 1). Par conséquent, les intégrales
de Riemann inférieure et supérieure de f; sur [0, é] x [0,1] valent respectivement 0 et 1,
deux valeurs distinctes : f; n’est pas intégrable au sens de Riemann.

La fonction f, est intégrable au sens de Riemann sur [0, 1]2. Nous voulons utiliser le Lemme

8.10 de le Polycopie. En effet, pour tout € > 0 nous pouvons construire une partition 7. de
[0,1]? comme indiqué ci-dessous :

L (| N ) PO N 0 (1) B
—{[0, 5] x [0,1],[%,1] « 0,1}, e>1

Ony a S(fo, P.) — S(fs, P.) < € et donc f, est Riemann-intégrable.

La fonction f; est intégrable au sens de Riemann sur [0, 1]2. Nous utilisons de nouveau le
Lemme 8.10 de la polycopie pour faire la démonstration En effet, pour tout € > 0, posons

N, = P-‘ + 1, un entier strictement supérieur a —. On peut alors construire une partition

P. de [0,1]? comme suit :

1 1 1 2 1 N.—1 1
‘(pa '*{[0’ _5] X [ ’E]v [V F] X [Oa E]v ] [ Ns ’1} X [O’ E]a
1 1 2 1 2 1 2 N, -1 1 2
[O’F] [F ﬁ] [Evﬁa] X [E’ E]’ | N 1] x [E’ELM
1, N.—1 1 2, N.-—1 N.—1 N.—1
’[Ovﬁs] [ Ns 71]7 [Ea E] X [ Ns 31]7 ) [ NE 71] X [ Ns a”}a

Onya S(fs, P.) —S(fs,P.) < NE; Ni < ¢ et donc f5 est Riemann-intégrable.

€ e



Exercice 3.

Notons Q I'ensemble des nombres rationnels. Définissons f : [0,1]> — R pour tout (z,y) €
0,1]? pa

0 sinon.

f(x,y):{l size{it:ieNY}etyeqQ, 3.1)

1) f est-elle intégrable au sens de Riemann ?

2) Si oui, calculer f[o o -

Solution

f est effectivement intégrable au sens de Riemann et son intégrale est nulle. Comme f est
positive sur [0, 1]?, les intégrales de Riemann inférieure et supérieure sont positives. Il suffit alors
de prouver que l'intégrale de Riemann supérieure est nulle.

Soit € € ]0, 1[. Montrons qu'il existe un entier K > 1 et des pavés (R;)X; dont I'union vaut

[0,1]2, dont les intérieurs sont deux & deux disjoints, et tels que zj; (supRj f> Vol R; < e. Ceci

prouvera que l'intégrale de Riemann supérieure est nulle, ce qui terminera la solution.
Choisissons un entier K tel que K > 1+8¢ 2. Posons Ry := [0,¢/2] x[0,1] et, Vj € [1, K—1] =
[1,K—-1]NnZ,

=3t T x1 et w0l (3:2)
Alors Vol R = €/2 et, Vj € [1,K — 1], Vol R; = 11;/12 Le nombre d’entiers i > 1 qui satisfont

i~! € [e/2,1] (i.e. i < 2/€) est un nombre inférieur & 2/e. De plus, pour tout entier i > 1, i1
appartient & au plus deux éléments de {R; : j € [1, K — 1]}. Ainsi le nombre d’éléments de
{R;:je[1,K —1]} contenant un élément de {i~* € [¢/2,1] : i € N*} est inférieur & 4/e. D’ott

i f VlR-—5+1_§KZ:1 f <5+1_§é<5+Lé< (3.3)
SR YO T T R T PSS T R T1eS2 TR —1e € '

j=1 i

car K > 14 8¢ 2. Ceci conclut la preuve.

Exercice 4.

Soit R un pavé de R™. Notons R(R) l’ensemble des fonctions R™ — R qui sont intégrables au
sens de Riemann sur R.

1) Soient f,g € R(R) telles que, Vz € R, f(z) < g(x). Montrer que fR f < fR g.

2) Montrer que R(R) est un espace vectoriel et que

¥(f,9.0) € R(R) x R(R) x R, /(/\f+g)=>\/f+/g. (4.1)
R R R

Solution

Nous utilisons les notations S et S pour les sommes de Darboux supérieure et inférieure.



1) Immédiatement :
/f = inf{S(f,P) : P partition de R} < inf{S(g,P) : P partition de R} = /g. (4.2)
R R

2) Soit € € R%.. Puisque f,g € R(R), il existe une partition P de R telle que

S(f,P)=S(f,P)<e et  Sg,P)-SgP) <e (4.3)

Si A >0,
AS(f,P)+ 8(g,P) < S(Af +9.P) < SAf+9.P) <AS(f,P)+ S(g.P)  (4.4)

et donc
SOf+9,P)—SOAf+9,P) < Ae+e (4.5)

SiA<0,
AS(f, )+ S(g,P) = =AS(—f,P) + S(g,P) < S(=\(—f) + 9. P) (4.6)
=S(\f+9,P) (4.7)
<SOAf+9.7) (4.8)
= S(=\—f)+9,P) (4.9)
< =AS(—f,P) + S(g,P) (4.10)
= \S(f,P) + S(g,P) (4.11)

et donc
SOf+9,P)—SOf+9,P) < |Ne+e (4.12)

Pour A € R, larbitrarité de e € R} donne que Af + g est intégrable au sens de Riemann sur
le pavé R.
Revenons & € > 0 comme ci-dessus. Pour A > 0, on en déduit que fR(Af +g) et A fR f+ ng

sont dans l'intervalle [)\é’(f, P) + S(g,P),AS(f,P) + S(g, 5’)] ; la longueur de cet intervalle
est strictement inférieure a Ae 4 €. Ainsi

/R(Af+g)—>\/Rf—/Rg

Pour A < 0, on obtient de méme que fR()\f +g) et )\fRf + ng sont dans l'intervalle
[Ag(f, P) + S(g, P),\S(f,P) + S(g, ?)] ; la longueur de cet intervalle est strictement infé-

rieure & |A|e + €. Ainsi
Josva-af1-[q
R R R

L’arbitrarité de e € R* donne fR()\f +g9) =2\ fR f+ fR g.

< Xe+e. (4.13)

<|Ae+e (4.14)
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