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Exercice 1.
Déterminer les extremums absolus (ou ”globaux”) de la fonction 𝑓 ∶ 𝐷 → R définie par

1) 𝑓(𝑥, 𝑦) = 𝑥2 − 𝑥𝑦 + 𝑦2 − 𝑥 − 𝑦, où 𝐷 = {(𝑥, 𝑦) ∶ 𝑥 ⩾ 0, 𝑦 ⩾ 0, 𝑥 + 𝑦 ⩽ 3}
2) 𝑓(𝑥, 𝑦) = 2𝑥2 − 𝑥𝑦 + 2𝑦2 − 6𝑥 − 6𝑦, où 𝐷 = {(𝑥, 𝑦) ∶ 𝑦 ⩾ 0, 𝑥2 + 𝑦2 ⩽ 32}

Indication : Etudier séparément 𝐷̊ et ∂𝐷. Pour les parties du bord, introduire des multipli-
cateurs de Lagrange, si nécessaire.

Solution
Ces deux fonctions étant continues sur leurs domaines de définition compacts, elles admettent

chacune des points de maximum et de minimum absolus.

1) Comme 𝑓 est de classe 𝐶1 sur 𝐷̊ (l’intérieur de 𝐷), ses points d’extremums absolus se trouvent
soit en un point stationnaire dans l’intérieur de 𝐷, soit sur le bord de 𝐷.
Points stationnaires dans l’intérieur de 𝐷 :

⎧{
⎨{⎩

∂𝑓
∂𝑥

(𝑥, 𝑦) = 2𝑥 − 𝑦 − 1 = 0
∂𝑓
∂𝑦

(𝑥, 𝑦) = −𝑥 + 2𝑦 − 1 = 0
⇒ (𝑥, 𝑦) = (1, 1) ∈ 𝐷̊.

La matrice hessienne de 𝑓 au point (1, 1) est

𝐻𝑓(1, 1) = ( 2 −1
−1 2 ),

dont le déterminant vaut 3 et la trace vaut 4. Cette matrice symétrique admet ainsi deux
valeurs propres strictement positives. Le point (1, 1) est donc un point de minimum local strict
de 𝑓. De plus on a 𝑓(1, 1) = −1.

Sur le bord de 𝐷 on a :
Notons d’abord que le bord de 𝐷 est l’union des trois sous-ensembles suivants de R2 :

{(𝑥, 0) ∶ 0 ⩽ 𝑥 ⩽ 3} ∪ {(0, 𝑦) ∶ 0 ⩽ 𝑦 ⩽ 3} ∪ {(𝑥, 3 − 𝑥) ∶ 0 ⩽ 𝑥 ⩽ 3}.

L’évaluation de la fonction 𝑓(𝑥, 𝑦) = 𝑥2 − 𝑥𝑦 + 𝑦2 − 𝑥 − 𝑦 sur le bord donne

𝑓(𝑥, 0) = 𝑥2 − 𝑥 = (𝑥 − 1
2)

2
− 1

4 , 0 ⩽ 𝑥 ⩽ 3 ,

𝑓(0, 𝑦) = 𝑦2 − 𝑦 = (𝑦 − 1
2)

2
− 1

4 , 0 ⩽ 𝑦 ⩽ 3 ,

𝑓(𝑥, 3 − 𝑥) = 3(𝑥2 − 3𝑥 + 2) = 3[(𝑥 − 3
2)

2
− 1

4], 0 ⩽ 𝑥 ⩽ 3 .
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L’idée est maintenant de chercher les extrema de ces fonctions unidimensionnelles dans
l’intervalle précisé, qui se trouvent soit aux points stationnaires (et points intérieurs) soit aux
extrémités de l’intervalle (cf. Analyse I). Utilisons d’abord la notation 𝑔(𝑥) = 𝑓(𝑥, 0) . Alors
𝑔′(𝑥) = 2(𝑥 − 1

2
) = 0 ⇔ 𝑥 = 1

2
et 𝑔( 1

2
) = − 1

4
. Puisque 𝑔″(𝑥) = 2 > 0 , 𝑔 a un minimum

local en 𝑥 = 1
2
. De plus on a 𝑔(0) = 0 et 𝑔(3) = 6 . On a donc

max
0⩽𝑥⩽3

𝑓(𝑥, 0) = 𝑓(3, 0) = 6 et min
0⩽𝑥⩽3

𝑓(𝑥, 0) = 𝑓(1
2, 0) = −1

4.

De même, on cherche les extrema des fonctions ℎ(𝑦) = 𝑓(0, 𝑦) et 𝑘(𝑥) = 𝑓(𝑥, 3 − 𝑥). La
fonction ℎ a exactement le même comportement que 𝑔 et pour 𝑘 on a

𝑘′(𝑥) = 6(𝑥 − 3
2
) = 0 ⇔ 𝑥 = 3

2
, 𝑘( 3

2
) = − 3

4
,

𝑘″(𝑥) = 6 > 0 (⇒ minimum local), 𝑘(0) = 𝑘(3) = 6,

si bien qu’on obtient

max
0⩽𝑦⩽3

𝑓(0, 𝑦) = 𝑓(0, 3) = 6 , min
0⩽𝑦⩽3

𝑓(0, 𝑦) = 𝑓(0, 1
2
) = − 1

4
,

max
0⩽𝑥⩽3

𝑓(𝑥, 3 − 𝑥) = 𝑓(3, 0) = 𝑓(0, 3) = 6 , min
0⩽𝑥⩽3

𝑓(𝑥, 3 − 𝑥) = 𝑓( 3
2
, 3

2
) = − 3

4
.

Il s’en suit que 𝑓 admet un minimum absolu en (1, 1) de valeur 𝑓(1, 1) = −1 et des maxima
absolus en (3, 0) et en (0, 3) de valeur 𝑓(3, 0) = 𝑓(0, 3) = 6, voir Fig. 1.
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Figure 1

2) Comme 𝑓 est de classe 𝐶1 sur 𝐷̊ (l’intérieur de 𝐷), ses points d’extrema absolu se trouvent
soit en un point stationnaire dans l’intérieur de 𝐷, soit sur le bord de 𝐷.
Points stationnaires dans l’intérieur de 𝐷 :

⎧{
⎨{⎩

∂𝑓
∂𝑥

(𝑥, 𝑦) = 4𝑥 − 𝑦 − 6 = 0
∂𝑓
∂𝑦

(𝑥, 𝑦) = −𝑥 + 4𝑦 − 6 = 0
⇒ (𝑥, 𝑦) = (2, 2) ∈ 𝐷̊.
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La matrice hessienne de 𝑓 au point (2, 2) est

𝐻𝑓(2, 2) = ( 4 −1
−1 4 ),

dont le déterminant vaut 15 et la trace vaut 8. Cette matrice symétrique admet ainsi deux
valeurs propres strictement positives. Le point (2, 2) est donc un point de minimum local strict
de 𝑓. De plus on a 𝑓(2, 2) = −12.

Sur le bord de 𝐷 on a :
Le bord de 𝐷 est l’union d’un segment de l’axe des 𝑥 et d’un arc de cercle. Sur la première
partie du bord (le segment de l’axe 𝑥), l’évaluation de la fonction 𝑓 donne

𝑓(𝑥, 0) = 2𝑥2 − 6𝑥 = 2(𝑥 − 3
2)

2
− 9

2 , −4
√

2 ⩽ 𝑥 ⩽ 4
√

2 .

La fonction 𝑥 → 𝑓(𝑥, 0) atteint son minimum en 𝑥 = 3
2

où 𝑓( 3
2
, 0) = − 9

2
et son maximum

en 𝑥 = −4
√

2 où 𝑓( − 4
√

2, 0) = 8(8 + 3
√

2). L’autre extrémité 𝑥 = 4
√

2 ne donne pas un
candidat pour un extremum global de 𝑓 parce que 𝑓( 3

2
, 0) < 𝑓(4

√
2, 0) < 𝑓(−4

√
2, 0).

Pour la deuxième partie (le demi-cercle), appliquons la méthode des multiplicateurs de
Lagrange à la contrainte 𝑔(𝑥, 𝑦) ∶= 𝑥2 + 𝑦2 − 32 = 0 avec 𝑥 ∈] − 4

√
2, 4

√
2[ et 𝑦 > 0 ; ceci est

permis car 𝛻𝑔 ne s’annule pas sur cette contrainte. Il s’agit donc de trouver 𝑥 ∈] − 4
√

2, 4
√

2[,
𝑦 > 0 et 𝜆 ∈ R tels que

∂𝑓
∂𝑥(𝑥, 𝑦) = 4𝑥 − 𝑦 − 6 = 𝜆 ⋅ ∂𝑔

∂𝑥(𝑥, 𝑦) = 𝜆2𝑥,

∂𝑓
∂𝑦(𝑥, 𝑦) = −𝑥 + 4𝑦 − 6 = 𝜆 ⋅ ∂𝑔

∂𝑦(𝑥, 𝑦) = 𝜆2𝑦,

𝑥2 + 𝑦2 − 32 = 0.

En multipliant les deux membres de la première équation par 𝑦 et ceux de la deuxième par 𝑥,
on obtient 4𝑥𝑦 − 𝑦2 − 6𝑦 = −𝑥2 + 4𝑥𝑦 − 6𝑥, et donc 0 = 𝑥2 − 𝑦2 + 6𝑥 − 6𝑦 = (𝑥 − 𝑦)(𝑥 + 𝑦 + 6).
Si 𝑥 = 𝑦, on déduit de 𝑥2 + 𝑦2 − 32 = 0 que 𝑥 = 𝑦 = 4 et il existe aussi une valeur de 𝜆
correspondante. De plus la relation 𝑥 + 𝑦 = −6 avec 𝑦 > 0 est impossible :

0 = (−6 − 𝑦)2 + 𝑦2 − 32 = 2𝑦2 + 12𝑦 + 4 = 2(𝑦2 + 6𝑦 + 2) ⇒ 𝑦 = −6 ±
√

62 − 8
2 < 0.

Le seul point à considérer sur cette partie de la contrainte est donc (4, 4), où 𝑓(4, 4) = 0. Il
faut encore considérer les deux points aux extrémités de l’arc de cercle : (−4

√
2, 0) et (4

√
2, 0),

mais le point (4
√

2, 0) a déjà été éliminé.
Ainsi le minimum global de 𝑓 est atteint en (2, 2) et vaut 𝑓(2, 2) = −12 et le maximum global
est atteint en (−4

√
2, 0) et vaut 𝑓(−4

√
2, 0) = 8(8 + 3

√
2).

Exercice 2.
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Notons Q l’ensemble des nombres rationnels. Définissons 𝑓1, 𝑓2, 𝑓3 ∶ [0, 1]2 → R pour tout
(𝑥, 𝑦) ∈ [0, 1]2 par

𝑓1(𝑥, 𝑦) = {
1 si (𝑥, 𝑦) ∈ Q2, 𝑥 ⩽ 1

2
,

0 sinon,
(2.1)

𝑓2(𝑥, 𝑦) = {
1 si (𝑥, 𝑦) ∈ Q2, 𝑥 = 1

2
,

0 sinon,
(2.2)

𝑓1(𝑥, 𝑦) = {1 si (𝑥, 𝑦) ∈ Q2, 𝑥 = 𝑦,
0 sinon,

(2.3)

Dire si les fonctions 𝑓1, 𝑓2 et 𝑓3 sont intégrables au sens de Riemann sur [0, 1]2.

Solution
1) La fonction 𝑓1 n’est pas intégrable au sens de Riemann sur [0, 1]2. En effet tout pavé de

« volume » (« aire » serait plus naturel ici) strictement positif et inclus dans [0, 1
2
] × [0, 1]

rencontre à la fois [0, 1
2
] × [0, 1] ∖ Q2 et Q2, et donc la borne inférieure (respectivement

supérieure) de 𝑓1 sur un tel pavé vaut 0 (respectivement 1). Par conséquent, les intégrales
de Riemann inférieure et supérieure de 𝑓1 sur [0, 1

2
] × [0, 1] valent respectivement 0 et 1,

deux valeurs distinctes : 𝑓1 n’est pas intégrable au sens de Riemann.
2) La fonction 𝑓2 est intégrable au sens de Riemann sur [0, 1]2. Nous voulons utiliser le Lemme

8.10 de le Polycopie. En effet, pour tout 𝜖 > 0 nous pouvons construire une partition 𝒫𝜀 de
[0, 1]2 comme indiqué ci-dessous :

𝒫𝜀 ∶={[0, 1
2 − 𝜀

3 ] × [0, 1], [ 12 − 𝜀
3 , 1

2 + 𝜀
3] × [0, 1], [ 12 + 𝜀

3 , 1] × [0, 1]}, 𝜀 < 1

∶={[0, 1
2 ] × [0, 1], [ 12 , 1] × [0, 1]}, 𝜀 ⩾ 1

On y a 𝑆(𝑓2, 𝒫𝜀) − 𝑆(𝑓2, 𝒫𝜀) < 𝜀 et donc 𝑓2 est Riemann-intégrable.
3) La fonction 𝑓3 est intégrable au sens de Riemann sur [0, 1]2. Nous utilisons de nouveau le

Lemme 8.10 de la polycopie pour faire la démonstration. En effet, pour tout 𝜖 > 0, posons
𝑁𝜀 = ⌈ 1

𝜀
⌉ + 1, un entier strictement supérieur à 1

𝜀
. On peut alors construire une partition

𝒫𝜀 de [0, 1]2 comme suit :

𝒫𝜀 ∶={[0, 1
𝑁𝜀

] × [0, 1
𝑁𝜀

], [ 1
𝑁𝜀

, 2
𝑁𝜀

] × [0, 1
𝑁𝜀

], … , [𝑁𝜀 − 1
𝑁𝜀

, 1] × [0, 1
𝑁𝜀

],

[0, 1
𝑁𝜀

] × [ 1
𝑁𝜀

, 2
𝑁𝜀

], [ 1
𝑁𝜀

, 2
𝑁𝜀

] × [ 1
𝑁𝜀

, 2
𝑁𝜀

], … , [𝑁𝜀 − 1
𝑁𝜀

, 1] × [ 1
𝑁𝜀

, 2
𝑁𝜀

], …

… , [0, 1
𝑁𝜀

] × [𝑁𝜀 − 1
𝑁𝜀

, 1], [ 1
𝑁𝜀

, 2
𝑁𝜀

] × [𝑁𝜀 − 1
𝑁𝜀

, 1], … , [𝑁𝜀 − 1
𝑁𝜀

, 1] × [𝑁𝜀 − 1
𝑁𝜀

, 1]}, 𝜀 < 1.

On y a 𝑆(𝑓3, 𝒫𝜀) − 𝑆(𝑓3, 𝒫𝜀) ⩽ 𝑁𝜀
1

𝑁2𝜀
= 1

𝑁𝜀
< 𝜀 et donc 𝑓3 est Riemann-intégrable.
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Exercice 3.
Notons Q l’ensemble des nombres rationnels. Définissons 𝑓 ∶ [0, 1]2 → R pour tout (𝑥, 𝑦) ∈

[0, 1]2 par

𝑓(𝑥, 𝑦) = {1 si 𝑥 ∈ {𝑖−1 ∶ 𝑖 ∈ N∗} et 𝑦 ∈ Q,
0 sinon.

(3.1)

1) 𝑓 est-elle intégrable au sens de Riemann ?
2) Si oui, calculer ∫[0,1]2 𝑓.

Solution
𝑓 est effectivement intégrable au sens de Riemann et son intégrale est nulle. Comme 𝑓 est

positive sur [0, 1]2, les intégrales de Riemann inférieure et supérieure sont positives. Il suffit alors
de prouver que l’intégrale de Riemann supérieure est nulle.

Soit 𝜖 ∈ ]0, 1[. Montrons qu’il existe un entier 𝐾 ⩾ 1 et des pavés (𝑅𝑖)𝐾
𝑖=1 dont l’union vaut

[0, 1]2, dont les intérieurs sont deux à deux disjoints, et tels que ∑𝐾
𝑗=1(sup𝑅𝑗

𝑓) Vol 𝑅𝑗 ⩽ 𝜖. Ceci
prouvera que l’intégrale de Riemann supérieure est nulle, ce qui terminera la solution.

Choisissons un entier 𝐾 tel que 𝐾 ⩾ 1+8𝜖−2. Posons 𝑅𝐾 ≔ [0, 𝜖/2]×[0, 1] et, ∀𝑗 ∈ J1, 𝐾−1K =
[1, 𝐾 − 1] ∩ Z,

𝑅𝑗 ≔ [ 𝜖
2 +

(1 − 𝜖
2
)(𝑗 − 1)

𝐾 − 1 , 𝜖
2 +

(1 − 𝜖
2
)𝑗

𝐾 − 1 ] × [0, 1]. (3.2)

Alors Vol 𝑅𝐾 = 𝜖/2 et, ∀𝑗 ∈ J1, 𝐾 − 1K, Vol 𝑅𝑗 = 1−𝜖/2

𝐾−1
. Le nombre d’entiers 𝑖 ⩾ 1 qui satisfont

𝑖−1 ∈ [𝜖/2, 1] (i.e. 𝑖 ⩽ 2/𝜖) est un nombre inférieur à 2/𝜖. De plus, pour tout entier 𝑖 ⩾ 1, 𝑖−1

appartient à au plus deux éléments de {𝑅𝑗 ∶ 𝑗 ∈ J1, 𝐾 − 1K}. Ainsi le nombre d’éléments de
{𝑅𝑗 ∶ 𝑗 ∈ J1, 𝐾 − 1K} contenant un élément de {𝑖−1 ∈ [𝜖/2, 1] ∶ 𝑖 ∈ N∗} est inférieur à 4/𝜖. D’où

𝐾

∑
𝑗=1

(sup
𝑅𝑗

𝑓) Vol 𝑅𝑗 = 𝜖
2 +

1 − 𝜖
2

𝐾 − 1

𝐾−1

∑
𝑗=1

(sup
𝑅𝑗

𝑓) ⩽ 𝜖
2 +

1 − 𝜖
2

𝐾 − 1
4
𝜖 ⩽ 𝜖

2 + 1
𝐾 − 1

4
𝜖 ⩽ 𝜖 (3.3)

car 𝐾 ⩾ 1 + 8𝜖−2. Ceci conclut la preuve.

Exercice 4.
Soit 𝑅 un pavé de R𝑛. Notons ℛ(𝑅) l’ensemble des fonctions R𝑛 → R qui sont intégrables au

sens de Riemann sur 𝑅.
1) Soient 𝑓, 𝑔 ∈ ℛ(𝑅) telles que, ∀𝑥 ∈ 𝑅, 𝑓(𝑥) ⩽ 𝑔(𝑥). Montrer que ∫𝑅 𝑓 ⩽ ∫𝑅 𝑔.
2) Montrer que ℛ(𝑅) est un espace vectoriel et que

∀(𝑓, 𝑔, 𝜆) ∈ ℛ(𝑅) × ℛ(𝑅) × R, ∫
𝑅

(𝜆𝑓 + 𝑔) = 𝜆 ∫
𝑅

𝑓 + ∫
𝑅

𝑔. (4.1)

Solution
Nous utilisons les notations 𝑆 et 𝑆 pour les sommes de Darboux supérieure et inférieure.
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1) Immédiatement :

∫
𝑅

𝑓 = inf{𝑆(𝑓, 𝒫) ∶ 𝒫 partition de 𝑅} ⩽ inf{𝑆(𝑔, 𝒫) ∶ 𝒫 partition de 𝑅} = ∫
𝑅

𝑔. (4.2)

2) Soit 𝜖 ∈ R∗
+. Puisque 𝑓, 𝑔 ∈ ℛ(𝑅), il existe une partition 𝒫 de 𝑅 telle que

𝑆(𝑓, 𝒫) − 𝑆(𝑓, 𝒫) < 𝜖 et 𝑆(𝑔, 𝒫) − 𝑆(𝑔, 𝒫) < 𝜖. (4.3)

Si 𝜆 ⩾ 0,

𝜆𝑆(𝑓, 𝒫) + 𝑆(𝑔, 𝒫) ⩽ 𝑆(𝜆𝑓 + 𝑔, 𝒫) ⩽ 𝑆(𝜆𝑓 + 𝑔, 𝒫) ⩽ 𝜆𝑆(𝑓, 𝒫) + 𝑆(𝑔, 𝒫) (4.4)
et donc

𝑆(𝜆𝑓 + 𝑔, 𝒫) − 𝑆(𝜆𝑓 + 𝑔, 𝒫) < 𝜆𝜖 + 𝜖 (4.5)

Si 𝜆 ⩽ 0,

𝜆𝑆(𝑓, 𝒫) + 𝑆(𝑔, 𝒫) = −𝜆𝑆(−𝑓, 𝒫) + 𝑆(𝑔, 𝒫) ⩽ 𝑆(−𝜆(−𝑓) + 𝑔, 𝒫) (4.6)
= 𝑆(𝜆𝑓 + 𝑔, 𝒫) (4.7)

⩽ 𝑆(𝜆𝑓 + 𝑔, 𝒫) (4.8)

= 𝑆(−𝜆(−𝑓) + 𝑔, 𝒫) (4.9)

⩽ −𝜆𝑆(−𝑓, 𝒫) + 𝑆(𝑔, 𝒫) (4.10)

= 𝜆𝑆(𝑓, 𝒫) + 𝑆(𝑔, 𝒫) (4.11)

et donc

𝑆(𝜆𝑓 + 𝑔, 𝒫) − 𝑆(𝜆𝑓 + 𝑔, 𝒫) < |𝜆|𝜖 + 𝜖. (4.12)

Pour 𝜆 ∈ R, l’arbitrarité de 𝜖 ∈ R∗
+ donne que 𝜆𝑓 + 𝑔 est intégrable au sens de Riemann sur

le pavé 𝑅.
Revenons à 𝜖 > 0 comme ci-dessus. Pour 𝜆 ⩾ 0, on en déduit que ∫𝑅(𝜆𝑓 + 𝑔) et 𝜆 ∫𝑅 𝑓 + ∫𝑅 𝑔
sont dans l’intervalle [𝜆𝑆(𝑓, 𝒫) + 𝑆(𝑔, 𝒫), 𝜆𝑆(𝑓, 𝒫) + 𝑆(𝑔, 𝒫)] ; la longueur de cet intervalle
est strictement inférieure à 𝜆𝜖 + 𝜖. Ainsi

∣∫
𝑅

(𝜆𝑓 + 𝑔) − 𝜆 ∫
𝑅

𝑓 − ∫
𝑅

𝑔∣ < 𝜆𝜖 + 𝜖. (4.13)

Pour 𝜆 ⩽ 0, on obtient de même que ∫𝑅(𝜆𝑓 + 𝑔) et 𝜆 ∫𝑅 𝑓 + ∫𝑅 𝑔 sont dans l’intervalle
[𝜆𝑆(𝑓, 𝒫) + 𝑆(𝑔, 𝒫), 𝜆𝑆(𝑓, 𝒫) + 𝑆(𝑔, 𝒫)] ; la longueur de cet intervalle est strictement infé-
rieure à |𝜆|𝜖 + 𝜖. Ainsi

∣∫
𝑅

(𝜆𝑓 + 𝑔) − 𝜆 ∫
𝑅

𝑓 − ∫
𝑅

𝑔∣ < |𝜆|𝜖 + 𝜖 (4.14)

L’arbitrarité de 𝜖 ∈ R∗
+ donne ∫𝑅(𝜆𝑓 + 𝑔) = 𝜆 ∫𝑅 𝑓 + ∫𝑅 𝑔.
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