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Exercice 1.

Considérons la fonction f définie pour tout = € R? par

flx) = /22 + 23 + 22 (1.1)

et 'ensemble
Si={x e R3:zy + 225 +25=1}. (1.2)

1) Montrer que f atteint un minimum global sur S.

2) Calculer ce minimum par une méthode géométrique.

Solution

1) f prend des valeurs supérieures ou égales & 1 sur B(0, 1)C, et donc a fortiori sur D := 5N
B(0, l)c. D’autre part le point (0,0.5,0) € B(0,1) appartient au plan S et f(0,0.5,0) = 0.5.
La restriction de la fonction continue f au compact non vide S N B(0,1) y atteint son
minimum, qui est ainsi aussi le minimum de f sur tout S.

2) Tout ensemble de niveau de f intersecté avec S est U'intersection d’une sphére centrée en 0
et de S. C’est donc soit : (1) Pensemble vide, (11) un singleton, ou (111) un cercle. L’ensemble
de niveau constitué d’un seul point correspondra a la valeur de f minimale. En faisant varier
depuis 0 le rayon R de la sphere, on remarque que

— pour R petit, la sphere ne touche pas le plan;

— pour R grand, la sphére intersecte ce plan en un cercle.
La solution cherchée sera pour la valeur de R telle que la sphére touche le plan en un seul
point. Elle est alors tangente au plan S et a ce point, les deux normales sont colinéaires.
Un vecteur normal (non-unitaire) au plan est (1,2,1); un vecteur normal (non-unitaire)
a la sphere au point (z,y,2) est (z,y,2). On recherche donc (z,y, z) € S tel que Ja € R,
(z,y,2) = (o, 2a, @) 5 le minimum de f sera alors atteint en ce point. Autrement dit, il s’agit
de trouver (a,2a, @), a € R, tel que o + 4+ o« = 1, soit « = 1/6. Le point (1/6,1/3,1/6)
est le point du plan S a distance minimale de l'origine. Le minimum de f sur S est donc

V1/36 +1/9+1/36 = 1/V/6.

Remarque. On remarque donc que le point qui réalise le minimum de la fonction sous contrainte du
plan S correspond & un point ou le gradient de f et le gradient de la contrainte « z+2y+2z—1 =0 »
sont colinéaires.

Exercice 2.



Parmi tous les triangles rectangles ayant la méme aire, déterminer celui qui a la plus petite
hypoténuse.

Solution

Soit A € |0, +o0[ I'aire donnée. Un triangle rectangle dont les cathetes ont pour longueurs
x et y a pour aire zy/2, et son hypothénuse est de longueur y/x2 + y2. Définissons alors deux
fonctions f, g : |0, —}—oo[2 — R par

flay)=a*+y* et glz,y) =2y —24. (2.1)

Notons E := {(x,y) € ]0,+oo[* : g(x,y) = 0}. Le probléme posé revient ainsi & trouver I'infimum
de fsur E, et en particulier & montrer que cet infimum est atteint.

Remarque. f donne en fait le carré de la longueur de ’hypoténuse. Comme s — s2 est strictement
croissante sur [0, +oo[, résoudre le probléme pour le carré de la longueur de ’hypoténuse est
possible (avec 1’économie d’une racine carrée). Notez que f est la distance a l'origine élevée au
carré, et qu'un raisonnement géométrique est possible. Voir plus bas.

Pour commencer, montrons qu'un tel minimum existe. Comme E n’est pas borné, introduisons
D :=1[0,2A+1] x [0,2A + 1]. Puisque f est continue sur le compact EN D, il existe (a,b) € END
pour lequel on a

f(a,b) = min f. (2.2)

END

Montrons que f(a,b) est aussi le minimum de f sur E. Pour tout (z,y) € E'\ D,
flz,y) > (2A+1)2>4A2+1 = f(24,1) > f(a,b). (2.3)
La derniére inégalité de (2.3) découle de (2.2) car (24,1) € EN D. On en conclut
fla,b) = rnEin f (2.4)

Calculons a présent ce minimum. Nous proposons deux méthodes alternatives.

Géométrie. Pour tous (z,y) € ]0, +oo[2, la contrainte zy = 2A décrit une hyperbole symétrique
par rapport & la premiére bissectrice (plus précisément, la branche de 'hyperbole dans le
premier quadrant, celle dans le troisiéme quadrant n’intervenant pas dans la discussion). De
la méme maniere, si on prend un cercle centré a ’origine et de rayon R croissant partant
de 0, le cercle commence par ne pas rencontrer ’hyperbole et finit par la couper en deux
points. La solution du probléme correspond au rayon pour lequel le cercle est tangent a
I’hyperbole. Ici, des considérations de symétrie donnent x =y, d’out z =y = V2A.

On remarque encore que le point qui réalise le minimum de la fonction sous contrainte
correspond & un point ou le gradient de f et le gradient de la contrainte « xy — 24 = 0 »
sont colinéaires.

Multiplicateurs de Lagrange. Puisque V g(a,b) # (0,0), on sait, d’apres le théoreme de Lagrange,
qu’il existe une proportion A € R de sorte que V f(a,b) = AV g(a,b). D’otu :

2a = \b

b Aa} — 2(a+b)=\Na+b), (2.5)

ce qui entraine, puisque a,b > 0, que A = 2 et a = b. On vérifie trivialement que a = b et
A = 2 est solution du systéme ci-dessus. Par conséquent, comme ab — 24 = 0, le triangle



rectangle cherché n’est autre que le triangle rectangle isocele dont la longueur de chaque
cathete est V2A. La longueur de I’hypoténuse correspondante est

v/ fla,b) = \/(\/ﬂy + (V24)2 = 2VA. (2.6)

Exercice 3.

On note |-| la norme euclidienne.

1) Calculer
min{|z|*: x € R*, 2y — x5 + 223 = 2, 21 + 25 + 25 = 1} (3.1)
par la méthode des multiplicateurs de Lagrange.
2) Vérifier le résultat en exprimant z; et z, comme des fonctions de x5 qui satisfont les deux
contraintes.
Solution
1) Assurons-nous d’abord qu’il existe un point qui réalise le minimum. Notons
Si={xeR: oy —zy+223—2=2,+35+25—1=0} (3.2)
Le point @, == (3/2,—1/2,0,0) satisfait les deux contraintes et |xo| = \/5/2 < 2. D’autre

part, |z|| > 2 pour tout € S\ B(0,2). Comme la norme est une fonction continue, sa
restriction au compact non vide S N B(0,2) atteint son minimum. II en résulte que

min |- = min]-|. (3.3)
SNB(0,2) N

Puisque S N B(0,2) 3 &y, ce minimum est inférieur ou égal & |zo| = 1/5/2. 1l en résulte
que ming]|-|? est bien atteint et que ce minimum est inférieur ou égal & 5/2. On construit la
lagrangienne

L(Ai, Mg, @y, Tg, T3, Tg) = 27 4+ @3 4+ 23 + 25 — M (21 + 20 + 23 — 1)
— )\2(1‘1 — X9 + 2$3 — 2) (34)

ol \; et Ay sont les deux multiplicateurs de Lagrange correspondant aux deux contraintes.
Cherchons les points stationnaires de la lagrangienne. On a

oL
a_)\l(/\ly/\%xlvm%x.?nxél) =—2;—2y—x3+1=0, (3~5)
oL
a_)\Z()\l,)\27$1,$2,$3,$4) :—$1+$2—2$3+2:07 (36)
oL
a_xl()\la&vffhxz»x&m) =211 — A — Ay =0, (3'7)
oL
8_x2()\17>‘27x1ax27z37x4) :2.%27)\14’)\2:0, (38)
oL
8_35:))()\17)\27951@2,%373?4) =2w3— A\ —2)\ =0, (3~9)
oL
8_%()\17>\27931’$273337$4) =2z, =0. (3-10)



Des équations (3.7)—(3.10) on obtient

AA AA A
x1=?1+72, 1:2271—72, x3:71+)\2, x4 = 0. (3.11)

Puis, en remplagant les valeurs de (3.11) dans (3.5)—(3.6),

3\ _ A\ =
{ g th=Ll

)\1+3)\2:2, )\2:

)

(3.12)

LIS [ ]

Ainsi le point (3/7, —1/7,5/7, 0, 2/7, 4/7) est le seul point stationnaire de la lagrangienne.
Or on a prouvé que le minimum (3.1) existe, et on sait qu’il correspond & un point stationnaire
de la lagrangienne. Par conséquent,

3 15 \F_5
: 2, (2 22 _2
min{|| .sceS}—H<7, 7,7,0) 3 (3.13)
2) Partons des contraintes :
- 3— 35(:3
1+ xy+23=1 1=
trheT s VN 2 (3.14)
x1—$2+2$3:2 x_ﬂfg*l
2 — 2 .
Définissons alors h : R? — R par
3—3a)\? a—1\* o 5, 1., 9
h(a,b):z( 5 ) +( 5 ) +a“+b :5(7a —10a + 2b* +5). (3.15)
Pour tout @ := (71,24, 73,74) € S on a donc |z|? = h(xg,1,), et
\Y% h(l‘3, $4) = (7373 — 57 2.’174)T ; (316)
en particulier,
w(%,o) 0. (3.17)

Le point (5/7,0) est le seul point stationnaire de h. En tout point de R?, la matrice hessienne
de hoest (79) : elle est constante, symétrique, et définie positive. Comme V(z3,z,) € R?

5 5
h(xs,x4) > 23 — 5wy + 2 + 5 > (23, 2|1 — 5] (23, 24)] + 5, (3.18)

on peut prouver que h atteint son minimum sur R? de la méme facon que dans la premiére
partie. Il est donc nécessairement atteint en son seul point stationnaire : (5/7,0). Le point
(3/7, —1/7, 5/7, 0) réalise donc le minimum : on a & nouveau prouvé (3.13).

Exercice 4.



1) Soient g € R* et x € ]0, +00[". Montrer que
Hxi =q¢" = H(l +x;) = 1+ (4.1)
i=1 i=1

Sous quelles conditions a-t-on égalité, i.e. [T (14 ;) = (1+¢)"?

2) Soient zg,x,41 € RE tels que xg < x,,,;. Trouver, s’ils existent, les points « := (x4, ...,x,) €
R™ en lesquels

H?:l i . n. ;
supk =——————:x € R"; Vi € {0,...,n}, x; < ;1 (4.2)
[T o(zi + i)

est atteint.

Indication. Utiliser le résultat du point 1.

Solution

1) On peut réécrire le probléme comme un probléme de minimisation sous contrainte min{ f(x) :
x €]0, +o0[", g(x) = 0} avec

n

f@) = [ +2) = A+ a1 +a5) . (1+,) (4.3)

i=1
et g(x) = H?zl x; — ¢". On cherche alors a trouver
min{f(z) : 2 €]0, +oo[" , g() = 0} = M, (4.4)

en vérifiant en particulier que le minimun est bien atteint, et on veut montrer que M >
. n n

(14 @)™ Soit R € ]0,+oc[. Notons K := [0, R]" et S := {x € ]0,+oo[" : [[._, z; = ¢"}.

D’une part,

x €[0,+o["\ K = |f(z)|>1+R. (4.5)

D’autre part, f(q,...,q) = (1 + g)". Choisissons R tel que 1 + R > (1 + ¢)™. La restriction
de la fonction continue f au compact non vide K NSy atteint son minimum ; ce minimum
est inférieur ou égal & (1 + ¢)™. De plus ce minimum est aussi le minimum de f sur tout S :
f atteint son minimum sur S. Notons

L(Ty ey Ty A) H(l—kzi)—/\(Hxi—q") ; (4.6)

i=1 i=1
vie{l,..,n},
— _ f=@)
riw= T a+e) =15 (4.7
et
gi(w) = r = 2T (48)



Si V£ =0, alors,

0L
%(:Elv“-al'na)o :f—z(w)_)‘g—i(w) :Oa (49)
0L
N = —g(x) =0. (4.10)
Donc
f—l(w> f—n(w) xlf(w) xnf(w)
A = = = = = sss — —, 4.11
@ T a@  Otede  Otedr #10)
d’ou
Ty o T2 _Tn
14+x, 14+x9 1+, (4.12)
et finalement z; =29y =-- =2, =q.

La méthode des multiplicateurs de Lagrange donne un seul point stationnaire de la lagran-
gienne, et on sait que le probleme de minimum sous contrainte admet un minimum. Donc
(¢,4, .-, q) est bien le point de minimum de f sous la contrainte g = 0, et il est unique.

Le quotient de I’énoncé peut s’écrire

(a:og<1+ %)) . (4.13)

Il s’agit donc d’étudier, s’ils existent, les points & € R™ en lesquels I'infimum

n

x.

inf{H(l+;—+_) : Vi€ {0,...,n},x; <xi+1} (4.14)
=0 v

est atteint (ici € R™, xy et z,,; étant fixés). Pour tout ¢ € {0, ..., n}, notons y; := x; .1 /x;;

H?:o Y; = T,11 /2. Notons également q := (2,,.1/70)"/ ™Y > 1 et étudions, s'ils existent,

les points en lesquels I'infimum

inf{H(l + yz) : (y07 7yn) € ]17+Oo[n+17 Hyz = qn+1} (415)

=0 =0

est atteint (ici (yg, ..., ¥,) € R™"! mais il y a une contrainte). Par la premiére partie,

n

[Ta+v)=>a+om (4.16)
i=0

avec égalité si et seulement si, Vi € {0,...,n}, y; = ¢ > 1; autrement dit, si et seulement si
Zip1/x; = ¢ > 1. Ainsi le supremum de I’énoncé est atteint en un unique point (zy, ..., z,) =
(‘TO(L quQa teey 'Ian) € R™.
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