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Exercice 1.
Considérons la fonction 𝑓 définie pour tout 𝒙 ∈ R3 par

𝑓(𝒙) = √𝑥2
1 + 𝑥2

2 + 𝑥2
3 (1.1)

et l’ensemble

𝑆 ≔ {𝒙 ∈ R3 ∶ 𝑥1 + 2𝑥2 + 𝑥3 = 1}. (1.2)

1) Montrer que 𝑓 atteint un minimum global sur 𝑆.
2) Calculer ce minimum par une méthode géométrique.

Solution
1) 𝑓 prend des valeurs supérieures ou égales à 1 sur B(𝟎, 1)∁, et donc a fortiori sur 𝐷 ≔ 𝑆 ∩

B(𝟎, 1)∁. D’autre part le point (0, 0.5, 0) ∈ B(𝟎, 1) appartient au plan 𝑆 et 𝑓(0, 0.5, 0) = 0.5.
La restriction de la fonction continue 𝑓 au compact non vide 𝑆 ∩ B(𝟎, 1) y atteint son
minimum, qui est ainsi aussi le minimum de 𝑓 sur tout 𝑆.

2) Tout ensemble de niveau de 𝑓 intersecté avec 𝑆 est l’intersection d’une sphère centrée en 𝟎
et de 𝑆. C’est donc soit : (i) l’ensemble vide, (ii) un singleton, ou (iii) un cercle. L’ensemble
de niveau constitué d’un seul point correspondra à la valeur de 𝑓 minimale. En faisant varier
depuis 0 le rayon 𝑅 de la sphère, on remarque que

— pour 𝑅 petit, la sphère ne touche pas le plan ;
— pour 𝑅 grand, la sphère intersecte ce plan en un cercle.

La solution cherchée sera pour la valeur de 𝑅 telle que la sphère touche le plan en un seul
point. Elle est alors tangente au plan 𝑆 et à ce point, les deux normales sont colinéaires.
Un vecteur normal (non-unitaire) au plan est (1, 2, 1) ; un vecteur normal (non-unitaire)
à la sphère au point (𝑥, 𝑦, 𝑧) est (𝑥, 𝑦, 𝑧). On recherche donc (𝑥, 𝑦, 𝑧) ∈ 𝑆 tel que ∃𝛼 ∈ R,
(𝑥, 𝑦, 𝑧) = (𝛼, 2𝛼, 𝛼) ; le minimum de 𝑓 sera alors atteint en ce point. Autrement dit, il s’agit
de trouver (𝛼, 2𝛼, 𝛼), 𝛼 ∈ R, tel que 𝛼 + 4𝛼 + 𝛼 = 1, soit 𝛼 = 1/6. Le point (1/6, 1/3, 1/6)
est le point du plan 𝑆 à distance minimale de l’origine. Le minimum de 𝑓 sur 𝑆 est donc
√1/36 + 1/9 + 1/36 = 1/

√
6.

Remarque. On remarque donc que le point qui réalise le minimum de la fonction sous contrainte du
plan 𝑆 correspond à un point où le gradient de 𝑓 et le gradient de la contrainte « 𝑥+2𝑦+𝑧−1 = 0 »
sont colinéaires.

Exercice 2.
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Parmi tous les triangles rectangles ayant la même aire, déterminer celui qui a la plus petite
hypoténuse.

Solution
Soit 𝐴 ∈ ]0, +∞[ l’aire donnée. Un triangle rectangle dont les cathètes ont pour longueurs

𝑥 et 𝑦 a pour aire 𝑥𝑦/2, et son hypothénuse est de longueur √𝑥2 + 𝑦2. Définissons alors deux
fonctions 𝑓, 𝑔 ∶ ]0, +∞[2 → R par

𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 et 𝑔(𝑥, 𝑦) = 𝑥𝑦 − 2𝐴. (2.1)

Notons 𝐸 ≔ {(𝑥, 𝑦) ∈ ]0, +∞[2 ∶ 𝑔(𝑥, 𝑦) = 0}. Le problème posé revient ainsi à trouver l’infimum
de 𝑓 sur 𝐸, et en particulier à montrer que cet infimum est atteint.
Remarque. 𝑓 donne en fait le carré de la longueur de l’hypoténuse. Comme 𝑠 → 𝑠2 est strictement
croissante sur [0, +∞[, résoudre le problème pour le carré de la longueur de l’hypoténuse est
possible (avec l’économie d’une racine carrée). Notez que 𝑓 est la distance à l’origine élevée au
carré, et qu’un raisonnement géométrique est possible. Voir plus bas.

Pour commencer, montrons qu’un tel minimum existe. Comme 𝐸 n’est pas borné, introduisons
𝐷 ≔ [0, 2𝐴 + 1] × [0, 2𝐴 + 1]. Puisque 𝑓 est continue sur le compact 𝐸 ∩ 𝐷, il existe (𝑎, 𝑏) ∈ 𝐸 ∩ 𝐷
pour lequel on a

𝑓(𝑎, 𝑏) = min
𝐸∩𝐷

𝑓. (2.2)

Montrons que 𝑓(𝑎, 𝑏) est aussi le minimum de 𝑓 sur 𝐸. Pour tout (𝑥, 𝑦) ∈ 𝐸 ∖ 𝐷,

𝑓(𝑥, 𝑦) > (2𝐴 + 1)2 > 4𝐴2 + 1 = 𝑓(2𝐴, 1) ⩾ 𝑓(𝑎, 𝑏). (2.3)

La dernière inégalité de (2.3) découle de (2.2) car (2𝐴, 1) ∈ 𝐸 ∩ 𝐷. On en conclut

𝑓(𝑎, 𝑏) = min
𝐸

𝑓. (2.4)

Calculons à présent ce minimum. Nous proposons deux méthodes alternatives.
Géométrie. Pour tous (𝑥, 𝑦) ∈ ]0, +∞[2, la contrainte 𝑥𝑦 = 2𝐴 décrit une hyperbole symétrique

par rapport à la première bissectrice (plus précisément, la branche de l’hyperbole dans le
premier quadrant, celle dans le troisième quadrant n’intervenant pas dans la discussion). De
la même manière, si on prend un cercle centré à l’origine et de rayon 𝑅 croissant partant
de 0, le cercle commence par ne pas rencontrer l’hyperbole et finit par la couper en deux
points. La solution du problème correspond au rayon pour lequel le cercle est tangent à
l’hyperbole. Ici, des considérations de symétrie donnent 𝑥 = 𝑦, d’où 𝑥 = 𝑦 =

√
2𝐴.

On remarque encore que le point qui réalise le minimum de la fonction sous contrainte
correspond à un point où le gradient de 𝑓 et le gradient de la contrainte « 𝑥𝑦 − 2𝐴 = 0 »
sont colinéaires.

Multiplicateurs de Lagrange. Puisque ∇ 𝑔(𝑎, 𝑏) ≠ (0, 0), on sait, d’après le théorème de Lagrange,
qu’il existe une proportion 𝜆 ∈ R de sorte que ∇ 𝑓(𝑎, 𝑏) = 𝜆∇ 𝑔(𝑎, 𝑏). D’où :

2𝑎 = 𝜆𝑏
2𝑏 = 𝜆𝑎

} ⟹ 2(𝑎 + 𝑏) = 𝜆(𝑎 + 𝑏), (2.5)

ce qui entraîne, puisque 𝑎, 𝑏 > 0, que 𝜆 = 2 et 𝑎 = 𝑏. On vérifie trivialement que 𝑎 = 𝑏 et
𝜆 = 2 est solution du système ci-dessus. Par conséquent, comme 𝑎𝑏 − 2𝐴 = 0, le triangle
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rectangle cherché n’est autre que le triangle rectangle isocèle dont la longueur de chaque
cathète est

√
2𝐴. La longueur de l’hypoténuse correspondante est

√𝑓(𝑎, 𝑏) = √(
√

2𝐴)2 + (
√

2𝐴)2 = 2
√

𝐴. (2.6)

Exercice 3.
On note ‖⋅‖ la norme euclidienne.

1) Calculer

min{‖𝒙‖2 ∶ 𝒙 ∈ R4 , 𝑥1 − 𝑥2 + 2𝑥3 = 2, 𝑥1 + 𝑥2 + 𝑥3 = 1} (3.1)

par la méthode des multiplicateurs de Lagrange.
2) Vérifier le résultat en exprimant 𝑥1 et 𝑥2 comme des fonctions de 𝑥3 qui satisfont les deux

contraintes.

Solution
1) Assurons-nous d’abord qu’il existe un point qui réalise le minimum. Notons

𝑆 ≔ {𝒙 ∈ R4 ∶ 𝑥1 − 𝑥2 + 2𝑥3 − 2 = 𝑥1 + 𝑥2 + 𝑥3 − 1 = 0}. (3.2)

Le point 𝒙0 ≔ (3/2, −1/2, 0, 0) satisfait les deux contraintes et ‖𝒙0‖ = √5/2 < 2. D’autre
part, ‖𝒙‖ ⩾ 2 pour tout 𝒙 ∈ 𝑆 ∖ B(𝟎, 2). Comme la norme est une fonction continue, sa
restriction au compact non vide 𝑆 ∩ B(𝟎, 2) atteint son minimum. Il en résulte que

min
𝑆∩B(𝟎,2)

‖⋅‖ = min
𝑆

‖⋅‖. (3.3)

Puisque 𝑆 ∩ B(𝟎, 2) ∋ 𝒙0, ce minimum est inférieur ou égal à ‖𝒙0‖ = √5/2. Il en résulte
que min𝑆‖⋅‖2 est bien atteint et que ce minimum est inférieur ou égal à 5/2. On construit la
lagrangienne

𝐿(𝜆1, 𝜆2, 𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝑥2
1 + 𝑥2

2 + 𝑥2
3 + 𝑥2

4 − 𝜆1(𝑥1 + 𝑥2 + 𝑥3 − 1)
− 𝜆2(𝑥1 − 𝑥2 + 2𝑥3 − 2) (3.4)

où 𝜆1 et 𝜆2 sont les deux multiplicateurs de Lagrange correspondant aux deux contraintes.
Cherchons les points stationnaires de la lagrangienne. On a

∂𝐿
∂𝜆1

(𝜆1, 𝜆2, 𝑥1, 𝑥2, 𝑥3, 𝑥4) = −𝑥1 − 𝑥2 − 𝑥3 + 1 = 0, (3.5)

∂𝐿
∂𝜆2

(𝜆1, 𝜆2, 𝑥1, 𝑥2, 𝑥3, 𝑥4) = −𝑥1 + 𝑥2 − 2𝑥3 + 2 = 0, (3.6)

∂𝐿
∂𝑥1

(𝜆1, 𝜆2, 𝑥1, 𝑥2, 𝑥3, 𝑥4) = 2𝑥1 − 𝜆1 − 𝜆2 = 0, (3.7)

∂𝐿
∂𝑥2

(𝜆1, 𝜆2, 𝑥1, 𝑥2, 𝑥3, 𝑥4) = 2𝑥2 − 𝜆1 + 𝜆2 = 0, (3.8)

∂𝐿
∂𝑥3

(𝜆1, 𝜆2, 𝑥1, 𝑥2, 𝑥3, 𝑥4) = 2𝑥3 − 𝜆1 − 2𝜆2 = 0, (3.9)

∂𝐿
∂𝑥4

(𝜆1, 𝜆2, 𝑥1, 𝑥2, 𝑥3, 𝑥4) = 2𝑥4 = 0. (3.10)
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Des équations (3.7)–(3.10) on obtient

𝑥1 = 𝜆1
2 + 𝜆2

2 , 𝑥2 = 𝜆1
2 − 𝜆2

2 , 𝑥3 = 𝜆1
2 + 𝜆2, 𝑥4 = 0. (3.11)

Puis, en remplaçant les valeurs de (3.11) dans (3.5)–(3.6),

⎧{
⎨{⎩

3𝜆1
2 + 𝜆2 = 1,

𝜆1 + 3𝜆2 = 2,
⟺

⎧{
⎨{⎩

𝜆1 = 2
7,

𝜆2 = 4
7.

(3.12)

Ainsi le point (3/7, −1/7, 5/7, 0, 2/7, 4/7) est le seul point stationnaire de la lagrangienne.
Or on a prouvé que le minimum (3.1) existe, et on sait qu’il correspond à un point stationnaire
de la lagrangienne. Par conséquent,

min{‖𝒙‖2 ∶ 𝒙 ∈ 𝑆} = ∥(3
7, −1

7, 5
7 , 0)∥

2
= 5

7. (3.13)

2) Partons des contraintes :

𝑥1 + 𝑥2 + 𝑥3 = 1
𝑥1 − 𝑥2 + 2𝑥3 = 2

} ⟺
⎧{
⎨{⎩

𝑥1 = 3 − 3𝑥3
2

𝑥2 = 𝑥3 − 1
2 .

(3.14)

Définissons alors ℎ ∶ R2 → R par

ℎ(𝑎, 𝑏) ≔ (3 − 3𝑎
2 )

2
+ (𝑎 − 1

2 )
2

+ 𝑎2 + 𝑏2 = 1
2(7𝑎2 − 10𝑎 + 2𝑏2 + 5). (3.15)

Pour tout 𝒙 ≔ (𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ 𝑆 on a donc ‖𝒙‖2 = ℎ(𝑥3, 𝑥4), et

∇ ℎ(𝑥3, 𝑥4) = (7𝑥3 − 5, 2𝑥4)⊤ ; (3.16)
en particulier,

∇ ℎ(5
7, 0) = 𝟎. (3.17)

Le point (5/7, 0) est le seul point stationnaire de ℎ. En tout point de R2, la matrice hessienne
de ℎ est ( 7 0

0 2 ) : elle est constante, symétrique, et définie positive. Comme ∀(𝑥3, 𝑥4) ∈ R2,

ℎ(𝑥3, 𝑥4) ⩾ 𝑥2
3 − 5𝑥3 + 𝑥2

4 + 5
2 ⩾ ‖(𝑥3, 𝑥4)‖2 − 5‖(𝑥3, 𝑥4)‖ + 5

2 , (3.18)

on peut prouver que ℎ atteint son minimum sur R2 de la même façon que dans la première
partie. Il est donc nécessairement atteint en son seul point stationnaire : (5/7, 0). Le point
(3/7, −1/7, 5/7, 0) réalise donc le minimum : on a à nouveau prouvé (3.13).

Exercice 4.
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1) Soient 𝑞 ∈ R∗
+ et 𝒙 ∈ ]0, +∞[𝑛. Montrer que

𝑛

∏
𝑖=1

𝑥𝑖 = 𝑞𝑛 ⟹
𝑛

∏
𝑖=1

(1 + 𝑥𝑖) ⩾ (1 + 𝑞)𝑛. (4.1)

Sous quelles conditions a-t-on égalité, i.e. ∏𝑛
𝑖=1(1 + 𝑥𝑖) = (1 + 𝑞)𝑛 ?

2) Soient 𝑥0, 𝑥𝑛+1 ∈ R∗
+ tels que 𝑥0 < 𝑥𝑛+1. Trouver, s’ils existent, les points 𝒙 ≔ (𝑥1, … , 𝑥𝑛) ∈

R𝑛 en lesquels

sup{
∏𝑛

𝑖=1 𝑥𝑖

∏𝑛
𝑖=0(𝑥𝑖 + 𝑥𝑖+1)

∶ 𝒙 ∈ R𝑛 ; ∀𝑖 ∈ {0, … , 𝑛}, 𝑥𝑖 < 𝑥𝑖+1} (4.2)

est atteint.
Indication. Utiliser le résultat du point 1.

Solution
1) On peut réécrire le problème comme un problème de minimisation sous contrainte min{𝑓(𝒙) ∶

𝒙 ∈]0, +∞[𝑛, 𝑔(𝒙) = 0} avec

𝑓(𝒙) =
𝑛

∏
𝑖=1

(1 + 𝑥𝑖) = (1 + 𝑥1)(1 + 𝑥2) … (1 + 𝑥𝑛) (4.3)

et 𝑔(𝒙) = ∏𝑛
𝑖=1 𝑥𝑖 − 𝑞𝑛. On cherche alors à trouver

min{𝑓(𝒙) ∶ 𝒙 ∈]0, +∞[𝑛 , 𝑔(𝒙) = 0} ≕ 𝑀, (4.4)

en vérifiant en particulier que le minimun est bien atteint, et on veut montrer que 𝑀 ⩾
(1 + 𝑞)𝑛. Soit 𝑅 ∈ ]0, +∞[. Notons 𝐾 ≔ [0, 𝑅]𝑛 et 𝑆 ≔ {𝒙 ∈ ]0, +∞[𝑛 ∶ ∏𝑛

𝑖=1 𝑥𝑖 = 𝑞𝑛}.
D’une part,

𝒙 ∈ [0, +∞[𝑛 ∖ 𝐾 ⟹ |𝑓(𝒙)| > 1 + 𝑅. (4.5)

D’autre part, 𝑓(𝑞, … , 𝑞) = (1 + 𝑞)𝑛. Choisissons 𝑅 tel que 1 + 𝑅 > (1 + 𝑞)𝑛. La restriction
de la fonction continue 𝑓 au compact non vide 𝐾 ∩ 𝑆 y atteint son minimum ; ce minimum
est inférieur ou égal à (1 + 𝑞)𝑛. De plus ce minimum est aussi le minimum de 𝑓 sur tout 𝑆 :
𝑓 atteint son minimum sur 𝑆. Notons

ℒ(𝑥1, … , 𝑥𝑛, 𝜆) ≔
𝑛

∏
𝑖=1

(1 + 𝑥𝑖) − 𝜆(
𝑛

∏
𝑖=1

𝑥𝑖 − 𝑞𝑛) ; (4.6)

∀𝑖 ∈ {1, … , 𝑛},

𝑓−𝑖(𝒙) ≔ ∏
𝑘∈{1,…,𝑛}∖{𝑖}

(1 + 𝑥𝑘) =
𝑓(𝒙)

1 + 𝑥𝑖
, (4.7)

et

𝑔−𝑖(𝒙) ≔ ∏
𝑘∈{1,…,𝑛}∖{𝑖}

𝑥𝑘 =
𝑔(𝒙) + 𝑞𝑛

𝑥𝑖
. (4.8)
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Si ∇ ℒ = 0, alors,

∂ℒ
∂𝑥𝑖

(𝑥1, … , 𝑥𝑛, 𝜆) = 𝑓−𝑖(𝒙) − 𝜆𝑔−𝑖(𝒙) = 0, (4.9)

∂ℒ
∂𝜆 = −𝑔(𝒙) = 0. (4.10)

Donc

𝜆 =
𝑓−1(𝒙)
𝑔−1(𝒙) = ⋯ =

𝑓−𝑛(𝒙)
𝑔−𝑛(𝒙) =

𝑥1𝑓(𝒙)
(1 + 𝑥1)𝑞𝑛 = ⋯ =

𝑥𝑛𝑓(𝒙)
(1 + 𝑥𝑛)𝑞𝑛 , (4.11)

d’où
𝑥1

1 + 𝑥1
= 𝑥2

1 + 𝑥2
= ⋯ = 𝑥𝑛

1 + 𝑥𝑛
(4.12)

et finalement 𝑥1 = 𝑥2 = ⋯ = 𝑥𝑛 = 𝑞.
La méthode des multiplicateurs de Lagrange donne un seul point stationnaire de la lagran-
gienne, et on sait que le problème de minimum sous contrainte admet un minimum. Donc
(𝑞, 𝑞, … , 𝑞) est bien le point de minimum de 𝑓 sous la contrainte 𝑔 = 0, et il est unique.

2) Le quotient de l’énoncé peut s’écrire

(𝑥0

𝑛

∏
𝑖=0

(1 +
𝑥𝑖+1
𝑥𝑖

))
−1

. (4.13)

Il s’agit donc d’étudier, s’ils existent, les points 𝒙 ∈ R𝑛 en lesquels l’infimum

inf{
𝑛

∏
𝑖=0

(1 +
𝑥𝑖+1
𝑥𝑖

) ∶ ∀𝑖 ∈ {0, … , 𝑛}, 𝑥𝑖 < 𝑥𝑖+1} (4.14)

est atteint (ici 𝒙 ∈ R𝑛, 𝑥0 et 𝑥𝑛+1 étant fixés). Pour tout 𝑖 ∈ {0, … , 𝑛}, notons 𝑦𝑖 ≔ 𝑥𝑖+1/𝑥𝑖 ;
∏𝑛

𝑖=0 𝑦𝑖 = 𝑥𝑛+1/𝑥0. Notons également 𝑞 ≔ (𝑥𝑛+1/𝑥0)1/(𝑛+1) > 1 et étudions, s’ils existent,
les points en lesquels l’infimum

inf{
𝑛

∏
𝑖=0

(1 + 𝑦𝑖) ∶ (𝑦0, … , 𝑦𝑛) ∈ ]1, +∞[𝑛+1,
𝑛

∏
𝑖=0

𝑦𝑖 = 𝑞𝑛+1} (4.15)

est atteint (ici (𝑦0, … , 𝑦𝑛) ∈ R𝑛+1, mais il y a une contrainte). Par la première partie,
𝑛

∏
𝑖=0

(1 + 𝑦𝑖) ⩾ (1 + 𝑞)𝑛+1 (4.16)

avec égalité si et seulement si, ∀𝑖 ∈ {0, … , 𝑛}, 𝑦𝑖 = 𝑞 > 1 ; autrement dit, si et seulement si
𝑥𝑖+1/𝑥𝑖 = 𝑞 > 1. Ainsi le supremum de l’énoncé est atteint en un unique point (𝑥1, … , 𝑥𝑛) =
(𝑥0𝑞, 𝑥0𝑞2, … , 𝑥0𝑞𝑛) ∈ R𝑛.
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