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Série 15 du lundi 7 avril 2025

Exercice 1.

Considérons la fonction f définie pour tout (x,y) € R? par
flx,y) = et — 82 — 4yt (1.1)
1) Caractériser les points stationnaires de f.

2) f a-t-elle un minimum global ?

Solution

1) Calculons les dérivées partielles des deux premiers ordres.

%(L y) = 206”16z, (1.2)
g—‘g(n y) = 2ye® TV’ — 1643, (1.3)
%(%y) — (24 4a?)em Y 16, (1.4)
2_25 (z,y) = (2 + 4y?)e* ¥ — 482, (1.5)
B?Ung (2,y) = dayes™ V. (1.6)

Les points stationnaires sont ceux pour lesquels les deux dérivées partielles d’ordre 1 sont
nulles. D’une part x = 0 ou e” Y’ = 8, d’autre part y = 0 ou e” Y’ = 8y2.
— Si z = 0, les points stationnaires vérifient soit y = 0 soit eV’ = 8y2.
— Six #£ 0, alors les points stationnaires vérifient e”’ ¥’ = 8 donc ils vérifient soit y=0
et e = 8, soit e TV’ = gy? = 8.
Finalement, nous pouvons répartir les points stationnaires en quatre ensembles :
a) {(0,0)} =: Sy
2
b) {(0,y) € R? : e¥" = 8y?} =: S, (quatre points), le graphe de u i e coupe le graphe
de u  8u en deux points (uq, 8u;) et (uq, 8usy) avec u; €]0, 1] et uy > 1 (esquisser les
deux graphes) ;
¢) {(x,0) e R?: ¢** = 8} =: S5 (deux points) ;
d) {(z,y) e RZ:e®*t1 =8 y2 =1} == S, (quatre points).
Donnons maintenant la nature de ces points stationnaires. Notons H ¥ la matrice hessienne

de f.



—14 0 .
Hy(z,y) = ( 0 2) point selle. (1.7)
Si ((E,y) € 527
16(y% — 1) 0 ) minimum local strict si y? > 1,
H(z,y) = 1.8
s&9) < 0 32y*(y* — 1) maximum local strict si y? < 1. (18)
Si ((E,y) € 537
3222 0 i, :
Hy(x,y) = ( 0 16) minimum local strict. (1.9)
Si (x7y) € ‘5’47
_(322% 32zy :
Hy(z,y) = (32363/ 0 ) point selle. ~ (1.10)

Il existe un minimum global. En effet, pour 22 + 32 > 1 nous avons

~

flz,y) = et Y’ 82 4yt > oY 8(x% +y?)w? — 4yt > ey 8(x% +y?)%. (1.11)

Puisque lim,_,, (e — 8s?) = +o0, il existe r > 1 tel que, V(z,y) € B(O,r)c, flz,y) >
£(0,0) = 1. De plus, f est continue sur E(O, r). Elle y atteint son minimum (inférieur ou
égal & £(0,0)), qui est aussi le minimum de f sur R2. Puisque tout point de minimum doit
étre a l'interieur de la boule E(O, r), tout point de minimum doit étre un point stationnaire
donc parmi les points de minimum local déja obtenus.

La figure 1a représente les lignes de niveau de la fonction f; les valeurs croissent du bleu au
vert. La figure 1b représente le graphe de la fonction f.

fix,y)=e+y" — 8x2 — 4yt
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FI1GURE 1 — Visualisations de f

Exercice 2.



Considérons la matrice A € R™*" (n > 2) dont les coefficients (A;;);';_; sont définis par

Osili—j|>2
2 sii= .

Soit b € R™; définissons f : R™ — R pour tout & € R” par :
1
flx) = §wTA:c —b'x. (2.2)

Démontrer que A est symétrique définie positive (donc inversible) et que f atteint son minimum
en a:= A"'b.

Solution

Commengons par montrer que A, symétrique, est définie positive. Explicitons la matrice A :

2 -1 0 - 0
1 e
A=|0 -~ - -~ 0. (2.3)
P~
0 « 0 —1 2

On a, pour tout € R (vu comme un vecteur colonne, de méme b) :

n—1
x' Az = x1(22) — 25) + in(_xifl + 22 — Ti) + T (—Tp 1 + 22,,) (2.4)
i=2
n n—1
= 2Zx3 — QinziH (2.5)
= xl + xn + Z H—l >0, (26)
avec égalité si et seulement si x; = - = x,, = 0. Ceci prouve que A est définie positive, et donc
inversible.
Puisque A est symétrique, V f(:c) = Ax — b. En effet
df Tg) = O(byry)
ox; (@) = Z P ax B oz, 27)
p,q=1 p=1
n 1 n
= §AP (§qup + 5wxq Z 6ipbp (28)
P,q=1 p=1
1 1
= Z Apit, + 5 Z Aigrg —bi = 3(ATa); + 5 (Az); — b, (2.9)

On en tire alors que le seul point stationnaire de f est donné par a := A~'b.

Remarque. On aurait pu écrire simplement :
f@+h) = sa" Az + hTAh+ @ Ah—b'z —b'h, (2.10)

et identifier la partie linéaire par rapport & h : b+ (2" A —b")h, et donc V f(as)T =x'A-b".



La matrice hessienne de f en tout point est A. En effet :

0%f B i 82(xpa:q)
283648% (@) = Z Apg 0x,;0x; (2.11)
‘ pg=1 J
. 9 0(z,) 0(xp)
=> Apgg, (x,, APIRET v ) (2.12)
p,q=1 ¢ J J
& 0
= Z qu% (fp(;jq + xqéjp) (2.13)
p,q=1 ‘
= Z qu(dipajq + 6iq5jp) (2.14)
p,q=1
Par la formule de Taylor, on a
1 1
f@)=fla)+V f(a) (x—a) + 5(z —a) Al —a) = f(a) + 5(z —a) A(x—a), (216)

avec un reste nul car f est un polynéme de degré 2 en x. Par conséquent, V& € R™ \ {a},
f(x) > f(a). Ainsi f admet un minimum global strict en a.

Exercice 3.

Déterminer les extrema — en précisant leur type (min/max, local/global, strict/non strict) —
de la fonction f définie pour tout (z,y) € R? par

flo,y) = e™ + 2% + 2% (3.1)

Solution

Calculons les dérivées des deux premiers ordres.

g—i(ac, y) = ye™¥ 4 2z, (3.2)
g—g{(x, y) = ze®V + 4y, (3.3)
%(w, y) = y?e™ + 2, (3.4)
g—zg(ac, y) = 2% + 4, (3.5)
8?026fy (x,y) = e*¥(1 + zy). (3.6)

Les points stationnaires sont (0,0) ainsi que les (x, y) tels que zy < 0 et €*¥ = —2z/y = —4y/x.
Pour ces derniers, on a 22 = 2y2 et 2y < 0 ce qui donne y = —2/v/2. On a donc e~"/V2 = 2,/2
ce qui est impossible.

Pour 'unique point stationnaire (0,0) la matrice hessienne s’écrit :

H(0,0) = (f i) (3.7)



dont les valeurs propres sont 3++/2 et donc > 0. La matrice est donc symétrique et définie positive ;
ainsi le point (0,0) est un point de minimum local strict. En fait ¢’est 'unique point de minimum
global. En effet f(z,y) > 4 si 224y > 4. D’autre part la restriction de fa B((0,0),2) est continue,
et ﬁ((O, 0),2) est compact. Elle y atteint donc son minimum. Ce minimum doit forcement &étre
a l'interieur de B((0,0),2) car flag((0,0),2) = 4 > f(0,0) et donc il est necessairement un point
stationaire. Il s’ensuit que 1 est le minimum global de f, atteint en (0, 0). Par contre, f n’a pas
de maximum local/global (car I'unique point stationnaire correspond & un minimum local strict).
Au final, f : R? — R a un minimum global et, puisque f est de classe C! et (0,0) est 'unique
point stationnaire, le point de minimum est nécessairement (0, 0).

Exercice 4.

QCM 1. Vrai ou faux ? Soit une fonction f : E C R® — R de classe C? sur l'ouvert £ C R"
et € E tel que V f(x) = 0. Sin > 2 est pair et det(H(x)) <0, alors « est un point selle de f.

B vrAl [ ] FAUX

Solution

Comme A = Hy(x) € R™ " est une matrice symétrique (car f est C?), il existe une base
orthonormée {vy, ..., v, } de R™ constituée de vecteurs propres de A. Notons par A\; € R, 1 <i < n,
les valeurs propres correspondantes. L’algebre linéaire nous assure que det(A) = []"_, A;. En
effet, notons encore par V' € R™*" la matrice inversible dont les colonnes sont constituées par les
vecteurs propres vy, ..., v, :

V=(vi] . |v,).
On a
A 0 .0
AV = (N o [A\w,) =V 0 /\2 ()
0 0 .. A
et donc

det(A) det(V) = det(V)(J ] M-
i=1
Ainsi det(A) =[], A\; comme voulu (car det(V) # 0).
Si n est pair et det(A) < 0, les valeurs propres ne peuvent pas étre toutes > 0 ou toutes < 0.
Il existe donc 4,5 € {1,...,n} tels que \; <0 et A\; > 0. D'ou (Av;,v;) = (\v;,v;) = \; <0 et de
méme (Avj,v;) > 0. Ainsi A est symétrique indéfinie et donc, d’aprés un théoréme du cours, x
est un point selle de f.

QCM 2. Vrai ou faux ? Soit une fonction f: E C R? — R de classe C2 sur 'ouvert E C R?
et x € E tel que V f(x) = 0 et det(Hs(x)) > 0.

— Si la trace de Hg(z) (la somme des deux coefficients sur la diagonale) est strictement
positive :

0% f 0% f

07 ™t 523

alors « est un point de minimum local strict de f;

(x) >0,



— et si 02 52
b @+ 5
1 2

alors « est un point de maximum local strict de f.

(x) <0,

B vrAl [ ] FAUX

Solution

Comme A = H(x) € R**? est une matrice symétrique (car f est C?), il existe une base
orthonormée {v;,v,} de R? constituée de deux vecteurs propres de A. Notons par A, Ay € R
les valeurs propres correspondantes, et I la matrice identité 2 x 2. Elles sont solutions de
det(A — A) = 0, autrement dit, si A = (a, ;) avec a; 5 = ay 1, elles sont solutions de

O = ()\ — a171>()\ — a272) — (127104172 = )\2 — (aLl + (1272))\ =+ det(A) = )\2 — traCe(A)A =+ det(A)
Or
trace(A)? —4det(A) = (ay 1 + ag9)? —4(ay 1029 — afy) = (ay; — ag9)? +4af 5 > 0.

Cette équation admet donc deux solutions réelles :

trace(A) + /trace(A)2 — 4 det(A)
5 :

Comme on suppose que det(A) >0, on a 0 < /trace(A4)2 — 4 det(A) < |trace(A)| dans R. Ainsi
trace(A) > 0 implique A, Ay > 0, et trace(A) < 0 implique A, Ay < 0. D’ou trace(4) > 0
implique que H¢(x) est définie positive, et trace(A) < 0 implique que H(x) est définie négative.
Ceci permet de conclure, grace a un théoréeme du cours.
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