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Exercice 1.
Considérons la fonction 𝑓 définie pour tout (𝑥, 𝑦) ∈ R2 par

𝑓(𝑥, 𝑦) = e𝑥2+𝑦2 − 8𝑥2 − 4𝑦4. (1.1)

1) Caractériser les points stationnaires de 𝑓.
2) 𝑓 a-t-elle un minimum global ?

Solution
1) Calculons les dérivées partielles des deux premiers ordres.

∂𝑓
∂𝑥 (𝑥, 𝑦) = 2𝑥e𝑥2+𝑦2 − 16𝑥, (1.2)

∂𝑓
∂𝑦 (𝑥, 𝑦) = 2𝑦e𝑥2+𝑦2 − 16𝑦3, (1.3)

∂2𝑓
∂𝑥2 (𝑥, 𝑦) = (2 + 4𝑥2)e𝑥2+𝑦2 − 16, (1.4)

∂2𝑓
∂𝑦2 (𝑥, 𝑦) = (2 + 4𝑦2)e𝑥2+𝑦2 − 48𝑦2, (1.5)

∂2𝑓
∂𝑥∂𝑦 (𝑥, 𝑦) = 4𝑥𝑦e𝑥2+𝑦2. (1.6)

Les points stationnaires sont ceux pour lesquels les deux dérivées partielles d’ordre 1 sont
nulles. D’une part 𝑥 = 0 ou e𝑥2+𝑦2 = 8, d’autre part 𝑦 = 0 ou e𝑥2+𝑦2 = 8𝑦2.

— Si 𝑥 = 0, les points stationnaires vérifient soit 𝑦 = 0 soit e𝑦2 = 8𝑦2.
— Si 𝑥 ≠ 0, alors les points stationnaires vérifient e𝑥2+𝑦2 = 8 ; donc ils vérifient soit 𝑦 = 0

et e𝑥2 = 8, soit e𝑥2+𝑦2 = 8𝑦2 = 8.
Finalement, nous pouvons répartir les points stationnaires en quatre ensembles :

a) {(0, 0)} ≕ 𝑆1 ;
b) {(0, 𝑦) ∈ R2 ∶ e𝑦2 = 8𝑦2} ≕ 𝑆2 (quatre points), le graphe de 𝑢 ↦ e𝑢 coupe le graphe

de 𝑢 ↦ 8𝑢 en deux points (𝑢1, 8𝑢1) et (𝑢2, 8𝑢2) avec 𝑢1 ∈]0, 1[ et 𝑢2 > 1 (esquisser les
deux graphes) ;

c) {(𝑥, 0) ∈ R2 ∶ e𝑥2 = 8} ≕ 𝑆3 (deux points) ;
d) {(𝑥, 𝑦) ∈ R2 ∶ e𝑥2+1 = 8 ; 𝑦2 = 1} ≕ 𝑆4 (quatre points).

Donnons maintenant la nature de ces points stationnaires. Notons 𝐻𝑓 la matrice hessienne
de 𝑓.
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Si (𝑥, 𝑦) ∈ 𝑆1,

𝐻𝑓(𝑥, 𝑦) = (−14 0
0 2) point selle. (1.7)

Si (𝑥, 𝑦) ∈ 𝑆2,

𝐻𝑓(𝑥, 𝑦) = (16(𝑦2 − 1) 0
0 32𝑦2(𝑦2 − 1)) {

minimum local strict si 𝑦2 > 1,
maximum local strict si 𝑦2 < 1.

(1.8)

Si (𝑥, 𝑦) ∈ 𝑆3,

𝐻𝑓(𝑥, 𝑦) = (32𝑥2 0
0 16) minimum local strict. (1.9)

Si (𝑥, 𝑦) ∈ 𝑆4,

𝐻𝑓(𝑥, 𝑦) = (32𝑥2 32𝑥𝑦
32𝑥𝑦 0 ) point selle. (1.10)

2) Il existe un minimum global. En effet, pour 𝑥2 + 𝑦2 > 1 nous avons

𝑓(𝑥, 𝑦) = e𝑥2+𝑦2 − 8𝑥2 − 4𝑦4 ⩾ e𝑥2+𝑦2 − 8(𝑥2 + 𝑦2)𝑥2 − 4𝑦4 ⩾ e𝑥2+𝑦2 − 8(𝑥2 + 𝑦2)2. (1.11)

Puisque lim𝑠→+∞(e𝑠 − 8𝑠2) = +∞, il existe 𝑟 > 1 tel que, ∀(𝑥, 𝑦) ∈ B(0, 𝑟)∁, 𝑓(𝑥, 𝑦) >
𝑓(0, 0) = 1. De plus, 𝑓 est continue sur B(0, 𝑟). Elle y atteint son minimum (inférieur ou
égal à 𝑓(0, 0)), qui est aussi le minimum de 𝑓 sur R2. Puisque tout point de minimum doit
être à l’interieur de la boule B(0, 𝑟), tout point de minimum doit être un point stationnaire
donc parmi les points de minimum local déjà obtenus.
La figure 1a représente les lignes de niveau de la fonction 𝑓 ; les valeurs croissent du bleu au
vert. La figure 1b représente le graphe de la fonction 𝑓.
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(a) Lignes de niveau de 𝑓
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(b) Graphe de 𝑓

Figure 1 – Visualisations de 𝑓

Exercice 2.

2



Considérons la matrice 𝐴 ∈ R𝑛×𝑛 (𝑛 ⩾ 2) dont les coefficients (𝐴𝑖𝑗)𝑛
𝑖,𝑗=1 sont définis par

𝐴𝑖𝑗 =
⎧{
⎨{⎩

0 si |𝑖 − 𝑗| ⩾ 2,
−1 si |𝑖 − 𝑗| = 1,

2 si 𝑖 = 𝑗.
(2.1)

Soit 𝒃 ∈ R𝑛 ; définissons 𝑓 ∶ R𝑛 → R pour tout 𝒙 ∈ R𝑛 par :

𝑓(𝒙) = 1
2𝒙⊤𝐴𝒙 − 𝒃⊤𝒙. (2.2)

Démontrer que 𝐴 est symétrique définie positive (donc inversible) et que 𝑓 atteint son minimum
en 𝒂 ≔ 𝐴−1𝒃.

Solution
Commençons par montrer que 𝐴, symétrique, est définie positive. Explicitons la matrice 𝐴 :

𝐴 =
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

2 −1 0 ⋯ 0
−1 ⋱ ⋱ ⋱ ⋮
0 ⋱ ⋱ ⋱ 0
⋮ ⋱ ⋱ ⋱ −1
0 ⋯ 0 −1 2

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

. (2.3)

On a, pour tout 𝒙 ∈ R𝑛 (vu comme un vecteur colonne, de même 𝒃) :

𝒙⊤𝐴𝒙 = 𝑥1(2𝑥1 − 𝑥2) +
𝑛−1

∑
𝑖=2

𝑥𝑖(−𝑥𝑖−1 + 2𝑥𝑖 − 𝑥𝑖+1) + 𝑥𝑛(−𝑥𝑛−1 + 2𝑥𝑛) (2.4)

= 2
𝑛

∑
𝑖=1

𝑥2
𝑖 − 2

𝑛−1

∑
𝑖=1

𝑥𝑖𝑥𝑖+1 (2.5)

= 𝑥2
1 + 𝑥2

𝑛 +
𝑛−1

∑
𝑖=1

(𝑥𝑖 − 𝑥𝑖+1)2 ⩾ 0, (2.6)

avec égalité si et seulement si 𝑥1 = ⋯ = 𝑥𝑛 = 0. Ceci prouve que 𝐴 est définie positive, et donc
inversible.

Puisque 𝐴 est symétrique, ∇ 𝑓(𝒙) = 𝐴𝒙 − 𝒃. En effet

∂𝑓
∂𝑥𝑖

(𝒙) =
𝑛

∑
𝑝,𝑞=1

1
2𝐴𝑝𝑞

∂(𝑥𝑝𝑥𝑞)
∂𝑥𝑖

−
𝑛

∑
𝑝=1

∂(𝑏𝑝𝑥𝑝)
∂𝑥𝑖

(2.7)

=
𝑛

∑
𝑝,𝑞=1

1
2𝐴𝑝𝑞(𝛿𝑖𝑞𝑥𝑝 + 𝛿𝑖𝑝𝑥𝑞) −

𝑛

∑
𝑝=1

𝛿𝑖𝑝𝑏𝑝 (2.8)

= 1
2

𝑛

∑
𝑝=1

𝐴𝑝𝑖𝑥𝑝 + 1
2

𝑛

∑
𝑞=1

𝐴𝑖𝑞𝑥𝑞 − 𝑏𝑖 = 1
2(𝐴⊤𝒙)𝑖 + 1

2(𝐴𝒙)𝑖 − 𝑏𝑖. (2.9)

On en tire alors que le seul point stationnaire de 𝑓 est donné par 𝒂 ≔ 𝐴−1𝒃.
Remarque. On aurait pu écrire simplement :

𝑓(𝒙 + 𝒉) = 1
2𝒙⊤𝐴𝒙 + 1

2𝒉⊤𝐴𝒉 + 𝒙⊤𝐴𝒉 − 𝒃⊤𝒙 − 𝒃⊤𝒉, (2.10)

et identifier la partie linéaire par rapport à 𝒉 : 𝒉 ↦ (𝒙⊤𝐴 − 𝒃⊤)𝒉, et donc ∇ 𝑓(𝒙)⊤ = 𝒙⊤𝐴 − 𝒃⊤.
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La matrice hessienne de 𝑓 en tout point est 𝐴. En effet :

2 ∂2𝑓
∂𝑥𝑖∂𝑥𝑗

(𝒙) =
𝑛

∑
𝑝,𝑞=1

𝐴𝑝𝑞
∂2(𝑥𝑝𝑥𝑞)
∂𝑥𝑖∂𝑥𝑗

(2.11)

=
𝑛

∑
𝑝,𝑞=1

𝐴𝑝𝑞
∂

∂𝑥𝑖
(𝑥𝑝

∂(𝑥𝑞)
∂𝑥𝑗

+ 𝑥𝑞
∂(𝑥𝑝)
∂𝑥𝑗

) (2.12)

=
𝑛

∑
𝑝,𝑞=1

𝐴𝑝𝑞
∂

∂𝑥𝑖
(𝑥𝑝𝛿𝑗𝑞 + 𝑥𝑞𝛿𝑗𝑝) (2.13)

=
𝑛

∑
𝑝,𝑞=1

𝐴𝑝𝑞(𝛿𝑖𝑝𝛿𝑗𝑞 + 𝛿𝑖𝑞𝛿𝑗𝑝) (2.14)

= 𝐴𝑖𝑗 + 𝐴𝑗𝑖 = 2𝐴𝑖𝑗. (2.15)

Par la formule de Taylor, on a

𝑓(𝒙) = 𝑓(𝒂) + ∇ 𝑓(𝒂)⊤(𝒙 − 𝒂) + 1
2(𝒙 − 𝒂)⊤𝐴(𝒙 − 𝒂) = 𝑓(𝒂) + 1

2(𝒙 − 𝒂)⊤𝐴(𝒙 − 𝒂), (2.16)

avec un reste nul car 𝑓 est un polynôme de degré 2 en 𝒙. Par conséquent, ∀𝒙 ∈ R𝑛 ∖ {𝒂},
𝑓(𝒙) > 𝑓(𝒂). Ainsi 𝑓 admet un minimum global strict en 𝒂.

Exercice 3.
Déterminer les extrema – en précisant leur type (min/max, local/global, strict/non strict) –

de la fonction 𝑓 définie pour tout (𝑥, 𝑦) ∈ R2 par

𝑓(𝑥, 𝑦) = e𝑥𝑦 + 𝑥2 + 2𝑦2. (3.1)

Solution
Calculons les dérivées des deux premiers ordres.

∂𝑓
∂𝑥 (𝑥, 𝑦) = 𝑦e𝑥𝑦 + 2𝑥, (3.2)

∂𝑓
∂𝑦 (𝑥, 𝑦) = 𝑥e𝑥𝑦 + 4𝑦, (3.3)

∂2𝑓
∂𝑥2 (𝑥, 𝑦) = 𝑦2e𝑥𝑦 + 2, (3.4)

∂2𝑓
∂𝑦2 (𝑥, 𝑦) = 𝑥2e𝑥𝑦 + 4, (3.5)

∂2𝑓
∂𝑥∂𝑦 (𝑥, 𝑦) = e𝑥𝑦(1 + 𝑥𝑦). (3.6)

Les points stationnaires sont (0, 0) ainsi que les (𝑥, 𝑦) tels que 𝑥𝑦 < 0 et e𝑥𝑦 = −2𝑥/𝑦 = −4𝑦/𝑥.
Pour ces derniers, on a 𝑥2 = 2𝑦2 et 𝑥𝑦 < 0 ce qui donne 𝑦 = −𝑥/

√
2. On a donc e−𝑥2/

√
2 = 2

√
2

ce qui est impossible.
Pour l’unique point stationnaire (0, 0) la matrice hessienne s’écrit :

𝐻(0, 0) = (2 1
1 4), (3.7)
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dont les valeurs propres sont 3±
√

2 et donc > 0. La matrice est donc symétrique et définie positive ;
ainsi le point (0, 0) est un point de minimum local strict. En fait c’est l’unique point de minimum
global. En effet 𝑓(𝑥, 𝑦) ⩾ 4 si 𝑥2+𝑦2 ⩾ 4. D’autre part la restriction de 𝑓 à B((0, 0), 2) est continue,
et B((0, 0), 2) est compact. Elle y atteint donc son minimum. Ce minimum doit forcement être
à l’interieur de B((0, 0), 2) car 𝑓|∂B((0,0),2) ⩾ 4 > 𝑓(0, 0) et donc il est necessairement un point
stationaire. Il s’ensuit que 1 est le minimum global de 𝑓, atteint en (0, 0). Par contre, 𝑓 n’a pas
de maximum local/global (car l’unique point stationnaire correspond à un minimum local strict).
Au final, 𝑓 ∶ R2 → R a un minimum global et, puisque 𝑓 est de classe C1 et (0, 0) est l’unique
point stationnaire, le point de minimum est nécessairement (0, 0).

Exercice 4.
QCM 1. Vrai ou faux ? Soit une fonction 𝑓 ∶ 𝐸 ⊂ R𝑛 → R de classe 𝐶2 sur l’ouvert 𝐸 ⊂ R𝑛

et 𝒙 ∈ 𝐸 tel que 𝛻𝑓(𝒙) = 𝟎. Si 𝑛 ⩾ 2 est pair et det(𝐻𝑓(𝒙)) < 0, alors 𝒙 est un point selle de 𝑓.

VRAI FAUX

Solution
Comme 𝐴 = 𝐻𝑓(𝒙) ∈ R𝑛×𝑛 est une matrice symétrique (car 𝑓 est 𝐶2), il existe une base

orthonormée {𝒗1, … , 𝒗𝑛} de R𝑛 constituée de vecteurs propres de 𝐴. Notons par 𝜆𝑖 ∈ R, 1 ⩽ 𝑖 ⩽ 𝑛,
les valeurs propres correspondantes. L’algèbre linéaire nous assure que det(𝐴) = ∏𝑛

𝑖=1 𝜆𝑖 . En
effet, notons encore par 𝑉 ∈ R𝑛×𝑛 la matrice inversible dont les colonnes sont constituées par les
vecteurs propres 𝒗1, … , 𝒗𝑛 :

𝑉 = (𝒗1| … |𝒗𝑛).

On a

𝐴𝑉 = (𝜆1𝒗1| … |𝜆𝑛𝒗𝑛) = 𝑉
⎛⎜⎜⎜⎜
⎝

𝜆1 0 … 0
0 𝜆2 … 0
⋮ ⋮ ⋮ ⋮
0 0 … 𝜆𝑛

⎞⎟⎟⎟⎟
⎠

et donc
det(𝐴) det(𝑉 ) = det(𝑉 )(

𝑛

∏
𝑖=1

𝜆𝑖).

Ainsi det(𝐴) = ∏𝑛
𝑖=1 𝜆𝑖 comme voulu (car det(𝑉 ) ≠ 0).

Si 𝑛 est pair et det(𝐴) < 0, les valeurs propres ne peuvent pas être toutes ⩾ 0 ou toutes ⩽ 0.
Il existe donc 𝑖, 𝑗 ∈ {1, … , 𝑛} tels que 𝜆𝑖 < 0 et 𝜆𝑗 > 0. D’où (𝐴𝒗𝑖, 𝒗𝑖) = (𝜆𝑖𝒗𝑖, 𝒗𝑖) = 𝜆𝑖 < 0 et de
même (𝐴𝒗𝑗, 𝒗𝑗) > 0. Ainsi 𝐴 est symétrique indéfinie et donc, d’après un théorème du cours, 𝒙
est un point selle de 𝑓.

QCM 2. Vrai ou faux ? Soit une fonction 𝑓 ∶ 𝐸 ⊂ R2 → R de classe 𝐶2 sur l’ouvert 𝐸 ⊂ R2

et 𝒙 ∈ 𝐸 tel que 𝛻𝑓(𝒙) = 𝟎 et det(𝐻𝑓(𝒙)) > 0.
— Si la trace de 𝐻𝑓(𝒙) (la somme des deux coefficients sur la diagonale) est strictement

positive :
∂2𝑓
∂𝑥2

1
(𝒙) + ∂2𝑓

∂𝑥2
2
(𝒙) > 0,

alors 𝒙 est un point de minimum local strict de 𝑓 ;
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— et si
∂2𝑓
∂𝑥2

1
(𝒙) + ∂2𝑓

∂𝑥2
2
(𝒙) < 0,

alors 𝒙 est un point de maximum local strict de 𝑓.

VRAI FAUX

Solution
Comme 𝐴 = 𝐻𝑓(𝒙) ∈ R2×2 est une matrice symétrique (car 𝑓 est 𝐶2), il existe une base

orthonormée {𝒗1, 𝒗2} de R2 constituée de deux vecteurs propres de 𝐴. Notons par 𝜆1, 𝜆2 ∈ R
les valeurs propres correspondantes, et 𝐼 la matrice identité 2 × 2. Elles sont solutions de
det(𝜆𝐼 − 𝐴) = 0, autrement dit, si 𝐴 = (𝑎𝑖,𝑗) avec 𝑎1,2 = 𝑎2,1, elles sont solutions de

0 = (𝜆 − 𝑎1,1)(𝜆 − 𝑎2,2) − 𝑎2,1𝑎1,2 = 𝜆2 − (𝑎1,1 + 𝑎2,2)𝜆 + det(𝐴) = 𝜆2 − trace(𝐴)𝜆 + det(𝐴).

Or

trace(𝐴)2 − 4 det(𝐴) = (𝑎1,1 + 𝑎2,2)2 − 4(𝑎1,1𝑎2,2 − 𝑎2
1,2) = (𝑎1,1 − 𝑎2,2)2 + 4𝑎2

1,2 ⩾ 0.

Cette équation admet donc deux solutions réelles :

trace(𝐴) ± √trace(𝐴)2 − 4 det(𝐴)
2 .

Comme on suppose que det(𝐴) > 0, on a 0 ⩽ √trace(𝐴)2 − 4 det(𝐴) < | trace(𝐴)| dans R. Ainsi
trace(𝐴) > 0 implique 𝜆1, 𝜆2 > 0, et trace(𝐴) < 0 implique 𝜆1, 𝜆2 < 0. D’où trace(𝐴) > 0
implique que 𝐻𝑓(𝒙) est définie positive, et trace(𝐴) < 0 implique que 𝐻𝑓(𝒙) est définie négative.
Ceci permet de conclure, grâce à un théorème du cours.
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