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Exercice 1.
Considérons le système d’équations

{
𝑥 − 𝑦3 + 𝑧 + 8 = 0,

𝑥3 + 𝑦4 − 𝑧5 − 16 = 0.
(1.1)

1) Montrer que (1.1) définit, au voisinage du point 𝑥 = 0, deux fonctions implicites 𝑦 = 𝜙1(𝑥)
et 𝑧 = 𝜙2(𝑥), telles que (𝜙1(0), 𝜙2(0)) = (2, 0).

2) Donner l’équation de la tangente au point d’abscisse 0 de chacune des deux courbes 𝑦 = 𝜙1(𝑥)
et 𝑧 = 𝜙2(𝑥).

3) Quelle autre paire de fonctions implicites (1.1) définit-il :
a) 𝑥 = 𝜙1(𝑦) et 𝑧 = 𝜙2(𝑦) au voisinage de 2, avec (𝜙1(2), 𝜙2(2)) = (0, 0), ou bien
b) 𝑥 = 𝜙1(𝑧) et 𝑦 = 𝜙2(𝑧) au voisinage de 0, avec (𝜙1(0), 𝜙2(0)) = (0, 2) ?

Solution
1) Notons 𝑓1(𝑥, 𝑦, 𝑧) = 𝑥 − 𝑦3 + 𝑧 + 8 et 𝑓2(𝑥, 𝑦, 𝑧) = 𝑥3 + 𝑦4 − 𝑧5 − 16. Nous avons

𝑓1(0, 2, 0) = 0 et 𝑓2(0, 2, 0) = 0. (1.2)

Le but est d’exprimer 𝑦 et 𝑧 comme fonctions de 𝑥 – respectivement 𝜙1 et 𝜙2 – pour avoir
dans un voisinage de 0 :

𝑓1(𝑥, 𝜙1(𝑥), 𝜙2(𝑥)) = 𝑓2(𝑥, 𝜙1(𝑥), 𝜙2(𝑥)) = 0. (1.3)

Prenons 𝑥 dans un tel voisinage ; nous voulons résoudre le système de deux équations

{
𝑓1(𝑥, 𝑦, 𝑧) = 0
𝑓2(𝑥, 𝑦, 𝑧) = 0

(1.4)

à deux inconnues 𝑦 et 𝑧. Nous avons

D(𝑦,𝑧) 𝑓(𝑥, 𝑦, 𝑧) = ⎛⎜
⎝

∂𝑓1

∂𝑦
∂𝑓1

∂𝑧
∂𝑓2

∂𝑦
∂𝑓2

∂𝑧

⎞⎟
⎠

= (−3𝑦2 1
4𝑦3 −5𝑧4), (1.5)

donc

det(D(𝑦,𝑧) 𝑓(0, 2, 0)) = det(−12 1
32 0) = −32 ≠ 0. (1.6)
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Le théorème des fonctions implicites permet alors d’affirmer qu’il existe 𝛿 > 0 et deux
fonctions 𝜙1, 𝜙2 ∈ C1(]−𝛿, +𝛿[,R) telles que, pour tout 𝑥 ∈ ]−𝛿, +𝛿[,

⎧{{
⎨{{⎩

𝑓1(𝑥, 𝜙1(𝑥), 𝜙2(𝑥)) = 0,
𝑓2(𝑥, 𝜙1(𝑥), 𝜙2(𝑥)) = 0,

𝜙1(0) = 2,
𝜙2(0) = 0.

(1.7)

En particulier, nous avons bien

{
𝑥 − (𝜙1(𝑥))3 + 𝜙2(𝑥) + 8 = 0,

𝑥3 + (𝜙1(𝑥))4 − (𝜙2(𝑥))5 − 16 = 0.
(1.8)

2) En dérivant les relations (1.8) et en les évaluant en 𝑥 = 0, on obtient :

{
1 − 3(𝜙1(0))2𝜙′

1(0) + 𝜙′
2(0) = 0,

4(𝜙1(0))3𝜙′
1(0) − 5(𝜙2(0))4𝜙′

2(0) = 0.
⟺ {

1 − 12𝜙′
1(0) + 𝜙′

2(0) = 0,
32𝜙′

1(0) = 0.
(1.9)

⟺ {
𝜙′

1(0) = 0,
𝜙′

2(0) = −1.
(1.10)

La tangente à la courbe 𝑦 = 𝜙1(𝑥) au point d’abscisse 0 a donc pour équation 𝑦 =
𝜙1(0) = 2 et la tangente à la courbe 𝑧 = 𝜙2(𝑥) au point d’abscisse 0 a pour équation
𝑧 = 𝜙2(0) + 𝜙′

2(0) × (𝑥 − 0) = −𝑥.
3) D’autre part,

D 𝑓(𝑥, 𝑦, 𝑧) = ⎛⎜
⎝

∂𝑓1

∂𝑥
∂𝑓1

∂𝑦
∂𝑓1

∂𝑧
∂𝑓2

∂𝑥
∂𝑓2

∂𝑦
∂𝑓2

∂𝑧

⎞⎟
⎠

(𝑥, 𝑦, 𝑧) = ( 1 −3𝑦2 1
3𝑥2 4𝑦3 −5𝑧4), (1.11)

donc

det(D(𝑥,𝑧) 𝑓(0, 2, 0)) = det(1 1
0 0) = 0. (1.12)

On ne peut donc pas utiliser le théorème des fonctions implicites pour s’assurer que 𝑥 et 𝑧
s’expriment comme fonctions de 𝑦 de classe C1 au voisinage de 𝑦 = 2.
Remarque. Cela ne signifie pas qu’il est impossible a priori d’expliciter 𝑥 et 𝑧 comme
fonctions de 𝑦 au voisinage de 𝑦 = 2 (continues, ou même de classe 𝐶1). Dans certains
problèmes, une reformulation préliminaire de l’énoncé peut permettre l’application du
théorème des fonctions implicites. Néanmoins, dans notre exemple, il est en effet impossible
d’expliciter 𝑥 et 𝑧 comme fonctions 𝑥 = 𝜓1(𝑦) et 𝑧 = 𝜓2(𝑦) de classe 𝐶1 de 𝑦 au voisinage
de 𝑦 = 2. Pour le voir, supposons que ce soit possible, et soit 𝑦 = 𝜙1(𝑥) et 𝑧 = 𝜙2(𝑥) comme
dans les parties 1 et 2 ci-dessus. Pour tout 𝑥 suffisamment proche de 0, (𝑥, 𝜙1(𝑥), 𝜙2(𝑥))
serait suffisamment proche de (0, 2, 0) pour permettre d’écrire 𝑥 = 𝜓1(𝑦) avec 𝑦 = 𝜙1(𝑥).
D’où 𝑥 = 𝜓1(𝜙1(𝑥)) et la contradiction 1 = 𝜓′

1(𝜙1(0))𝜙′
1(0) = 𝜓′

1(2) ⋅ 0 = 0 par (1.10).
En revanche,

det(D(𝑥,𝑦) 𝑓(0, 2, 0)) = det(1 −12
0 32 ) = 32 ≠ 0. (1.13)

Le théorème des fonctions implicites permet donc d’exprimer 𝑥 et 𝑦 en fonction de 𝑧 au
voisinage de 𝑧 = 0.
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Exercice 2.
Soit 𝒉 ∶ R2 × R2 → R2 une fonction définie par

𝒉(𝒖, 𝒘) = ( 𝑢2
1 + 𝑢2 + 𝑤2

1
𝑒𝑢1 − 1 + 𝑢2 + 𝑤2

). (2.1)

1) Montrer que 𝒉(𝟎, 𝟎) = (0, 0)⊤ et que 𝒉 ∈ C2(R2 × R2,R2).
2) Soit 𝜖 > 0 ; notons B(𝟎, 𝜖) ⊂ R2 la boule ouverte de rayon 𝜖 centrée sur 𝟎. Montrer que, si

𝜖 > 0 est suffisamment petit, ∃𝒇 ∈ C2(B(𝟎, 𝜖),R2) telle que, ∀𝒘 ∈ B(𝟎, 𝜖), 𝒉(𝒇(𝒘), 𝒘) = 𝟎.
3) Calculer D 𝒇(𝟎).

Solution
1) Puisque chaque composante de 𝒉 est une somme de fonctions C2, 𝒉 est aussi C2.
2) Il suffit de vérifier le théorème des fonctions implicites. Notons 𝒉 ≔ (ℎ1, ℎ2)⊤, 𝒖 ≔ (𝑢1, 𝑢2),

et 𝒘 ≔ (𝑤1, 𝑤2). Comme 𝒉 ∈ C1(R2 × R2,R2), nous avons

D 𝒉(𝒖, 𝒘) = ⎛⎜⎜
⎝

∂ℎ1

∂𝑢1

∂ℎ1

∂𝑢2

∂ℎ1

∂𝑤1

∂ℎ1

∂𝑤2
∂ℎ2

∂𝑢1

∂ℎ2

∂𝑢2

∂ℎ2

∂𝑤1

∂ℎ2

∂𝑤2

⎞⎟⎟
⎠

(𝒖, 𝒘) = (2𝑢1 1 2𝑤1 0
𝑒𝑢1 1 0 1) (2.2)

et notons

D𝒖 𝒉(𝒖, 𝒘) = ⎛⎜⎜
⎝

∂ℎ1

∂𝑢1

∂ℎ1

∂𝑢2
∂ℎ2

∂𝑢1

∂ℎ2

∂𝑢2

⎞⎟⎟
⎠

(𝒖, 𝒘), D𝒘 𝒉(𝒖, 𝒘) = ⎛⎜⎜
⎝

∂ℎ1

∂𝑤1

∂ℎ1

∂𝑤2
∂ℎ2

∂𝑤1

∂ℎ2

∂𝑤2

⎞⎟⎟
⎠

(𝒖, 𝒘). (2.3)

Puisque det(D𝒖 𝒉(𝟎, 𝟎)) ≠ 0, d’après le théorème des fonctions implicites il existe 𝜖 > 0 et
une fonction 𝒇 ∈ C2(B((0, 0), 𝜖),R2) telle que 𝒇(𝟎) = 𝟎 ∈ R2 et, pour tout 𝒘 ∈ B((0, 0), 𝜖) ⊂
R2, 𝒉(𝒇(𝒘), 𝒘) = 𝟎 et det(D𝒖 𝒉(𝒇(𝒘), 𝒘)) ≠ 0.

3) Posons 𝒈(𝒘) ≔ 𝒉(𝒇(𝒘), 𝒘) pour 𝒘 ∈ B(𝟎, 𝜖) ; ceci définit une fonction 𝒈 de classe C2 : elle
vaut la constante 𝟎 ∈ R2. Nous avons

( 0 0
0 0 ) = D 𝒈 = D𝒖 𝒉(𝒇(⋅), ⋅) × D 𝒇 + D𝒘 𝒉(𝒇(⋅), ⋅) (2.4)

d’où
D 𝒇 = −(D𝒖 𝒉(𝒇(⋅), ⋅))−1 D𝒘 𝒉(𝒇(⋅), ⋅). (2.5)

Donc,

D𝒘 𝒉(𝟎, 𝟎) = (0 0
0 1), (2.6)

D𝒖 𝒉(𝟎, 𝟎) = (0 1
1 1) ⟹ (D𝒖 𝒉(𝟎, 𝟎))−1 = −( 1 −1

−1 0 ), (2.7)

et, finalement,

D 𝒇(𝟎) = (0 −1
0 0 ). (2.8)
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Exercice 3.
Considérons la fonction 𝐹 ∶ R5 → R2 définie pour tout (𝑥, 𝑦, 𝑧, 𝑢, 𝑣) ∈ R5 par

𝐹(𝑥, 𝑦, 𝑧, 𝑢, 𝑣) = ( 𝑥𝑦2 + 𝑥𝑧𝑢 + 𝑦𝑣2 − 3
𝑢3𝑦𝑧 + 2𝑥𝑣 − 𝑢2𝑣2 − 2) ; (3.1)

et l’équation

𝐹(𝑥, 𝑦, 𝑧, 𝑢, 𝑣) = (0
0). (3.2)

1) Montrez que (1, 1, 1, 1, 1) est solution de (3.2).
2) Dans l’équation (3.2), est-il possible d’exprimer 𝑢 et 𝑣 en fonction de (𝑥, 𝑦, 𝑧) au voisinage

de (1, 1, 1, 1, 1) ?
3) Quelles autres paires de variables peuvent être exprimées en fonction des autres au voisinage

de (1, 1, 1, 1, 1) ?

Solution
1) Par calcul direct :

𝐹(1, 1, 1, 1, 1) = (1 + 1 + 1 − 3
1 + 2 − 1 − 2) = (0

0). (3.3)

2) En calculant le jacobien de 𝐹 nous obtenons :

D 𝐹(𝑥, 𝑦, 𝑧, 𝑢, 𝑣) = (𝑦2 + 𝑧𝑢 2𝑦𝑥 + 𝑣2 𝑥𝑢 𝑥𝑧 2𝑦𝑣
2𝑣 𝑢3𝑧 𝑢3𝑦 3𝑢2𝑦𝑧 − 2𝑢2𝑣2 2𝑥 − 2𝑢2𝑣2), (3.4)

d’ où

D 𝐹(1, 1, 1, 1, 1) = (2 3 1 1 2
2 1 1 1 0). (3.5)

Donc, puisque

det(D 𝐹(𝑢,𝑣)(1, 1, 1, 1, 1)) = ∣1 2
1 0∣ ≠ 0. (3.6)

nous pouvons exprimer 𝑢 et 𝑣 en fonction de 𝑥, 𝑦 et 𝑧.
3) De même, de (3.5) nous avons qu’en calculant les déterminants de chaque paire, nous

pouvons exprimer toutes les paires de variables en fonction des autres sauf (𝑥, 𝑧), (𝑧, 𝑢) et
(𝑥, 𝑢).

Exercice 4.
Notons

𝑆 ≔ {(𝑥, 𝑦, 𝑧) ∈ R3 ∶ 𝑥2 + 𝑦2 + 𝑧2 = 1}, (4.1)

la sphère de R3 de rayon 1 centrée en l’origine.
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1) Identifier les points (𝑥0, 𝑦0, 𝑧0) ∈ 𝑆 au voisinage desquels on peut décrire 𝑆 comme le graphe
d’une fonction 𝛤 = 𝛤(𝑥, 𝑦) définie dans un voisinage 𝑈 de (𝑥0, 𝑦0). Pour les points où une
telle fonction 𝛤 existe, écrire 𝛤 explicitement. Pour les autres points, prouver qu’une telle
fonction n’existe pas.

2) Donner l’équation du plan tangent à 𝑆 en un point quelconque (𝑥0, 𝑦0, 𝑧0) ∈ 𝑆 (c’est-à-dire
le plan tangent au graphe de la fonction 𝛤(𝑥, 𝑦) du point précédent. Est-ce que l’expression
du plan tangent est valable aussi aux points (𝑥0, 𝑦0, 𝑧0) avec 𝑧0 = 0 ?) .

Solution
1) Notons 𝑔(𝑥, 𝑦, 𝑧) ≔ 𝑥2 + 𝑦2 + 𝑧2 − 1. « ∂𝑔

∂𝑧
(𝑥0, 𝑦0, 𝑧0) ≠ 0 » est une condition suffisante

pour décrire 𝑆 localement autour d’un point (𝑥0, 𝑦0, 𝑧0) ∈ 𝑆 comme un graphe de la forme
{(𝑥, 𝑦, 𝛤 (𝑥, 𝑦)) ∶ (𝑥, 𝑦) ∈ 𝑈}, avec 𝑈 ⊂ R2 un ouvert contenant (𝑥0, 𝑦0) Dans cet exemple,
comme ∂𝑔

∂𝑧
(𝑥0, 𝑦0, 𝑧0) = 2𝑧0, ceci est équivalent à 𝑧0 ≠ 0. Explicitement, pour 𝑧0 > 0 la

fonction 𝛤 est donnée pour tout (𝑥, 𝑦) ∈ B(𝟎, 1) ⊂ R2 par

𝛤(𝑥, 𝑦) ≔ √1 − 𝑥2 − 𝑦2; (4.2)

pour 𝑧0 < 0, elle est donnée par

𝛤(𝑥, 𝑦) ≔ −√1 − 𝑥2 − 𝑦2. (4.3)

Ici 𝑈 = B(𝟎, 1) peut être choisi d’une manière qui ne dépend pas de (𝑥0, 𝑦0, 𝑧0), pourvu que
𝑧0 ≠ 0.
La condition « ∂𝑔

∂𝑧
(𝑥0, 𝑦0, 𝑧0) ≠ 0 » est suffisante mais pas nécessaire pour exprimer 𝑧 comme

une fonction des autres variables. Or, dans cet exemple, on peut démontrer qu’une telle
description n’existe pas pour les points (𝑥0, 𝑦0, 0). Procédons par contradiction : supposons
qu’on a un voisinage 𝑉 ⊂ R3 de (𝑥0, 𝑦0, 0), un voisinage 𝑈 ⊂ R2 de (𝑥0, 𝑦0), et une fonction
𝛤 ∶ 𝑈 → R tels que

𝑆 ∩ 𝑉 = {(𝑥, 𝑦, 𝛤 (𝑥, 𝑦)) ∶ (𝑥, 𝑦) ∈ 𝑈}. (4.4)

Comme (𝑥0, 𝑦0, 0) ∈ 𝑆, on a 𝑥2
0 + 𝑦2

0 = 1, i.e. (𝑥0, 𝑦0) ∈ ∂B(𝟎, 1). Or 𝑈 est un voisinage de
(𝑥0, 𝑦0), donc il contient des points de B(𝟎, 1)

∁
. Choisissons donc (𝑥, 𝑦) ∈ 𝑈 ∖ B(𝟎, 1), i.e.

tels que 𝑥2 + 𝑦2 > 1. L’équation (4.4) implique

0 = 𝑔(𝑥, 𝑦, 𝛤 (𝑥, 𝑦)) = 𝑥2 + 𝑦2 + 𝛤(𝑥, 𝑦)2 − 1 > 1 + 0 − 1 = 0, (4.5)

d’où une contradiction.
2) On a 𝒗 ≔ ∇ 𝑔(𝑥0, 𝑦0, 𝑧0) = 2(𝑥0, 𝑦0, 𝑧0)⊤ ≠ 𝟎 pour tout (𝑥0, 𝑦0, 𝑧0) ∈ 𝑆. Alors le plan

tangent au point (𝑥0, 𝑦0, 𝑧0) ∈ 𝑆 est donné par les points (𝑥, 𝑦, 𝑧) ∈ R3 satisfaisant

𝑣1(𝑥 − 𝑥0) + 𝑣2(𝑦 − 𝑦0) + 𝑣3(𝑧 − 𝑧0) = 0, (4.6)
⟺ 2𝑥0(𝑥 − 𝑥0) + 2𝑦0(𝑦 − 𝑦0) + 2𝑧0(𝑧 − 𝑧0) = 0, (4.7)

⟺ 𝑥0𝑥 + 𝑦0𝑦 + 𝑧0𝑧 = 1. (4.8)

L’expression reste valable pour 𝑧0 = 0. Comme ∇ 𝑔(𝑥0, 𝑦0, 𝑧0) ≠ 𝟎 pour tout (𝑥0, 𝑦0, 𝑧0) ∈ 𝑆,
alors en particulier pour tout (𝑥0, 𝑦0, 0) ∈ 𝑆, il existe toujours un indice 𝑖 ∈ {1, 2} tel que
∂𝑔
∂𝑥𝑖

(𝑥0, 𝑦0, 0) ≠ 0. On peut donc appliquer le théorème des fonctions implicites pour exprimer
cette variable 𝑥𝑖 en fonction des autres variables, et ensuite obtenir l’expression du plan tangent
qui demeure inchangée.
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