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Exercice 1.
Notons 𝑈 ≔ R∗

+ × ]0, 𝜋[ × ]0, 2𝜋[ ; on considère l’application 𝒇 ∶ 𝑈 → R3 définie par

⎛⎜
⎝

𝑥
𝑦
𝑧
⎞⎟
⎠

= 𝒇(𝑟, 𝜃, 𝜙) = ⎛⎜
⎝

𝑟 sin 𝜃 cos 𝜙
𝑟 sin 𝜃 sin 𝜙

𝑟 cos 𝜃
⎞⎟
⎠

. (1.1)

1) 𝒇 est-elle un difféomorphisme local ?
2) Trouver, si elle est définie, l’application réciproque de 𝒇.
3) Donner l’ensemble 𝒇−1(]0, +∞[3) et calculer la matrice jacobienne de 𝒇−1. Trouver le

jacobien de 𝒇−1 en fonction du jacobien de 𝒇.

Solution
1) La matrice jacobienne de 𝒇 est

D 𝒇(𝑟, 𝜃, 𝜙) = ⎛⎜
⎝

sin(𝜃) cos(𝜙) 𝑟 cos(𝜃) cos(𝜙) −𝑟 sin(𝜃) sin(𝜙)
sin(𝜃) sin(𝜙) 𝑟 cos(𝜃) sin(𝜙) 𝑟 sin(𝜃) cos(𝜙)

cos(𝜃) −𝑟 sin(𝜃) 0
⎞⎟
⎠

. (1.2)

Donc

det(D 𝒇(𝑟, 𝜃, 𝜙)) = 𝑟 cos(𝜃) cos(𝜙)𝑟 sin(𝜃) cos(𝜙) cos(𝜃)
+ 𝑟 sin(𝜃) sin(𝜙) sin(𝜃) sin(𝜙)𝑟 sin(𝜃)
+ 𝑟 sin(𝜃) sin(𝜙)𝑟 cos(𝜃) sin(𝜙) cos(𝜃)

+ sin(𝜃) cos(𝜙)𝑟 sin(𝜃) cos(𝜙)𝑟 sin(𝜃)

(1.3)

= 𝑟2 sin(𝜃)( cos2(𝜙) cos2(𝜃) + sin2(𝜙) sin2(𝜃)
+ sin2(𝜙) cos2(𝜃) + cos2(𝜙) sin2(𝜃))

(1.4)

= 𝑟2 sin(𝜃) ≠ 0. (1.5)

Alors 𝒇 est un difféomorphisme local en tout point (𝑟, 𝜃, 𝜙) ∈ R∗
+ × ]0, 𝜋[ × ]0, 2𝜋[.

2) Nous pouvons définir la fonction réciproque 𝒇−1 ∶ 𝑉 → 𝑈 avec 𝑉 ≔ R3 ∖ (R+ × {0} × R) :
on supprime le demi-plan fermé qui n’est pas dans l’image de 𝒇. Pour tout (𝑥, 𝑦, 𝑧) ∈ 𝑉, on
définit

𝒇−1(𝑥, 𝑦, 𝑧) ≔ ⎛⎜⎜⎜
⎝

√𝑥2 + 𝑦2 + 𝑧2

arccos 𝑧
√𝑥2+𝑦2+𝑧2

𝑔(𝑥, 𝑦, 𝑧)

⎞⎟⎟⎟
⎠

. (1.6)
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La fonction 𝑔 peut-être définie par morceaux, comme suit :

𝑔(𝑥, 𝑦, 𝑧) ≔

⎧{{{{
⎨{{{{⎩

arccos 𝑥
√𝑥2 + 𝑦2

si 𝑦 > 0,

2𝜋 − arccos 𝑥
√𝑥2 + 𝑦2

si 𝑦 < 0,

𝜋 − arcsin 𝑦
√𝑥2 + 𝑦2

si 𝑥 < 0.

(1.7)

La troisième région n’est pas disjointe des deux premières, mais, lorsque deux formules pour
𝑔 sont possibles, elles définissent bien la même fonction. On s’est aussi assuré que ces trois
expressions sont de classe 𝐶1 sur leurs régions respectives.

3) Nous trouvons aisément 𝒇−1(]0, +∞[3) = R∗
+ × ]0, 𝜋

2
[ × ]0, 𝜋

2
[. Pour calculer la matrice

jacobienne de 𝒇−1, notons 𝑠 ≔ √𝑥2 + 𝑦2 et 𝑟 ≔ √𝑥2 + 𝑦2 + 𝑧2 :

D (𝒇−1)(𝑥, 𝑦, 𝑧) = ⎛⎜
⎝

𝑥/𝑟 𝑦/𝑟 𝑧/𝑟
𝑧𝑥/𝑟2𝑠 𝑧𝑦/𝑟2𝑠 − 𝑠/𝑟2

− 𝑦/𝑠2 𝑥/𝑠2 0
⎞⎟
⎠

(1.8)

(les trois expressions ci-dessus pour 𝑔 conduisant au même résultat) et det(D (𝒇−1)(𝑥, 𝑦, 𝑧)) =
1/𝑟𝑠. Ce dernier résultat peut également être obtenu à partir du jacobien de 𝒇 :

det(D (𝒇−1)(𝑥, 𝑦, 𝑧)) = det(D 𝒇(𝑟, 𝜃, 𝜙))−1 = 1
𝑟2 sin(𝜃) = 1

𝑟𝑠 . (1.9)

Exercice 2.
1) Soient 𝐸, 𝐹 ⊂ R𝑛 ouverts non-vides et 𝒇 ∶ 𝐸 → 𝐹 un difféomorphisme local en tout point

de 𝐸. Montrer que si 𝒇 est une bijection entre 𝐸 et 𝐹, alors 𝒇 est un difféomorphisme global.
2) Soient 𝒉 ∈ C1(R𝑛,R𝑛) et 𝜖 ∈ R+∗ ; pour tout 𝒙 ∈ R𝑛, notons 𝒇𝜖(𝒙) ≔ 𝒙+𝜖𝒉(𝒙). Supposons

qu’il existe 𝑀 > 0 tel que, pour tout 𝒙 ∈ R𝑛, ||| D 𝒉(𝒙)||| ⩽ 𝑀. |||⋅||| dénote la norme
spectrale d’une matrice : pour tout 𝐴 ∈ R𝑛×𝑛,

|||𝐴||| ≔ sup{‖𝐴𝒙‖ ∶ 𝒙 ∈ R𝑛, ‖𝒙‖ = 1} (2.1)

avec ‖⋅‖ la norme euclidienne. Montrer que, si 𝜖 < 𝑀−1, 𝒇𝜖 ∶ R𝑛 → R𝑛 est un difféomorphisme
global.
Indication. Vous pouvez montrer que 𝒇𝜖 est bijective en utilisant le théorème du point fixe
de Banach.

Solution
1) Puisque 𝒇 est une bijection, elle admet une application inverse 𝒈 ∶ 𝐹 → 𝐸. De plus, D 𝒈(𝒚)

est continue en tout point 𝒚 ∈ 𝐹 car 𝒇 est un difféomorphisme local en 𝒈(𝒚) ∈ 𝐸. Donc
𝒈 ∈ C1(𝐹) et 𝒇 est un difféomorphisme global.

2) D’après le point 1, il suffit de montrer que 𝒇𝜖 est bijective et est un difféomorphisme local
sur R𝑛.
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Bijectivité. Les trois affirmations suivantes sont équivalentes :
(i) 𝒇𝜖 ∶ R𝑛 → R𝑛 est une bijection ;

(ii) ∀𝒛 ∈ R𝑛, ∃!𝒙 ∈ R𝑛 : 𝒇𝜖(𝒙) = 𝒛 ;
(iii) Pour tout, 𝒛 ∈ R𝑛, l’application 𝜙𝒛 ∶ R𝑛 → R𝑛, définie pour tout 𝒙 ∈ R𝑛 par

𝜙𝒛(𝒙) ≔ 𝒛 − 𝜖𝒉(𝒙), a un unique point fixe.
Prouvons que (iii) est vrai. Soit 𝒛 ∈ R𝑛. Pour tout 𝒙 ∈ R𝑛,

||| D 𝜙𝒛(𝒙)||| = 𝜖||| D 𝒉(𝒙)||| ⩽ 𝜖𝑀 < 1, (2.2)

donc pour tout 𝒙, 𝒚 ∈ R𝑛, on a

‖𝜙𝒛(𝒚) − 𝜙𝒛(𝒙)‖ = ∥∫
1

0
D 𝜙𝒛(𝒙 + 𝑡(𝒚 − 𝒙))(𝒚 − 𝒙) d𝑡∥ (2.3)

⩽ ∫
1

0
‖D 𝜙𝒛(𝒙 + 𝑡(𝒚 − 𝒙))(𝒚 − 𝒙)‖ d𝑡 (2.4)

⩽ ∫
1

0
||| D 𝜙𝒛(𝒙 + 𝑡(𝒚 − 𝒙))||| × ‖𝒚 − 𝒙‖ d𝑡 (2.5)

⩽ 𝜖𝑀‖𝒚 − 𝒙‖ ; (2.6)

donc 𝜙𝒛 est contractante sur R𝑛, qui est un ensemble fermé. Il s’ensuit que 𝜙𝒛 a un
unique point fixe dans R𝑛 (i.e. ∃!𝒙 ∈ R𝑛 : 𝒙 = 𝜙𝒛(𝒙)) : nous avons prouvé (iii). On en
conclut (i) : 𝒇𝜖 est bijective de R𝑛 dans R𝑛.

Difféomorphisme local. Il suffit de montrer que, pour tout 𝒙 ∈ R𝑛, D 𝒇𝜖(𝒙) = I + 𝜖 D 𝒉(𝒙)
est inversible – i.e. det(D 𝒇𝜖(𝒙)) ≠ 0.
Soit 𝒗 ∈ R𝑛 tel que D 𝒇𝜖(𝒙)𝒗 = 𝒗 + 𝜖 D ℎ(𝒙)𝒗 = 𝟎. Alors

‖𝒗‖ = ‖𝜖 D ℎ(𝒙)𝒗‖ ⩽ 𝜖||| D ℎ(𝒙)||| × ‖𝒗‖ ⩽ 𝜖𝑀‖𝒗‖ < ‖𝒗‖. (2.7)

Ceci implique ‖𝒗‖ = 0, i.e. 𝒗 = 𝟎. On en déduit que, ∀𝒙 ∈ R𝑛, det(D 𝒇𝜖(𝒙)) ≠ 0. Par
conséquent, 𝒇𝜖 est un difféomorphisme local en tout 𝒙 ∈ R𝑛, et également global sur
R𝑛 puisque 𝒇𝜖 est une bijection.

Exercice 3.
Définitions. Soient 𝑈, 𝑉 ⊂ R𝑛 ouverts et 𝜓 ∶ 𝑈 → 𝑉 un difféomorphisme.

— Si det(D 𝜓) est strictement positif partout, on dit que 𝜓 « préserve l’orientation ».
— Si det(D 𝜓) est strictement négatif partout, on dit que 𝜓 « renverse l’orientation ».

1) Montrer que si 𝑈 est connexe par arcs, alors soit 𝜓 préserve l’orientation, soit 𝜓 renverse
l’orientation.

2) Donner des exemples d’ouverts 𝑈 et 𝑉 qui ne sont pas connexes par arcs et d’un difféomor-
phisme 𝜓 ∶ 𝑈 → 𝑉 qui ne préserve ni ne renverse l’orientation.

Solution
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1) Supposons l’existence de 𝒂, 𝒃 ∈ 𝑈 tels que det(D 𝜓)(𝒂) < 0 et det(D 𝜓)(𝒃) > 0. Comme 𝑈 est
connexe par arcs et det(D 𝜓) est continu, l’image de 𝑈 par det(D 𝜓) est un intervalle. Puisque
cet intervalle contient une valeur strictement négative et une valeur strictement positive,
det(D 𝜓) doit s’annuler sur 𝑈. Or ceci est impossible puisque 𝜓 est un difféomorphisme ;
cette contradiction prouve le résultat.

2) Considérer 𝑈 = ]1, 2[ ∪ ]−4, −3[, 𝑉 = ]1, 2[ ∪ ]3, 4[ et 𝜓 = |⋅|. N.B. 𝜓 n’est pas différentiable
en 0, mais ce point n’appartient pas à 𝑈.

Exercice 4.
Soit 𝜀 ∈ R∗

+. Montrer que le système d’équations

{
𝑥 + sin(𝑥𝑦) = 𝜀
cos(𝑥𝑦) + 𝑦 = 1 + 𝜀

a une solution unique dans un voisinage de (0, 0), pour 𝜀 suffisamment petit.

Solution
On définit

F(𝑥, 𝑦) ≔ (𝑥 + sin(𝑥𝑦)
cos(𝑥𝑦) + 𝑦).

Nous allons appliquer le théorème d’inversion locale à F, qui est de classe 𝐶1(R2;R2), en
(0, 0).

F(0, 0) = (0
1).

𝐷F(𝑥,𝑦)(𝑥, 𝑦) = (1 + 𝑦 cos(𝑥𝑦) 𝑥 cos(𝑥𝑦)
−𝑦 sin(𝑥𝑦) −𝑥 sin(𝑥𝑦) + 1).

En l’origine, on a

𝐷F(𝑥,𝑦)(0, 0) = (1 0
0 1),

qui est évidemment inversible. Les hypothèses du théorème sont donc satisfaites et il existe un
voisinage 𝑈 de (0, 0) et un voisinage 𝑉 de (0, 1) tels que 𝐹 ∶ 𝑈 → 𝑉 est un difféomorphisme, donc
un particulier inversible. Pour 𝜖 suffisamment petit, on a (𝜖, 1 + 𝜖) ∈ 𝑉 donc il existe un seul point
(𝑥∗, 𝑦∗) ∈ 𝑈 tel que 𝐹(𝑥∗, 𝑦∗) = (𝜖, 1 + 𝜖).

Exercice 5.
QCM 1. Soit la fonction 𝑓∶ R2 → R définie par

𝑓(𝑥, 𝑦) =
⎧{
⎨{⎩

𝑥5 − 𝑦5

𝑥4 + 𝑦4 si (𝑥, 𝑦) ≠ (0, 0) ,

0 si (𝑥, 𝑦) = (0, 0) .
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Alors

lim
(𝑥,𝑦)→(0,0)

∂𝑓
∂𝑦

(𝑥, 𝑦) = 0
∂𝑓
∂𝑦

(0, 0) = −1

lim
(𝑥,𝑦)→(0,0)

∂𝑓
∂𝑦

(𝑥, 𝑦) = −1
∂𝑓
∂𝑦

(0, 0) = 1

Solution
On calcule la dérivée partielle concernée. On trouve

∂𝑓
∂𝑦(0, 0) = lim

ℎ→0

𝑓(0, ℎ) − 𝑓(0, 0)
ℎ = lim

ℎ→0

−ℎ5

ℎ4
− 0

ℎ = lim
ℎ→0

(−1) = −1.

Remarque : Pour (𝑥, 𝑦) ≠ (0, 0) on a

∂𝑓
∂𝑦(𝑥, 𝑦) =

−5𝑦4(𝑥4 + 𝑦4) − 4𝑦3(𝑥5 − 𝑦5)
(𝑥4 + 𝑦4)2 = −𝑦8 − 5𝑦4𝑥4 − 4𝑦3𝑥5

(𝑥4 + 𝑦4)2

et la limite lim
(𝑥,𝑦)→(0,0)

∂𝑓
∂𝑦(𝑥, 𝑦) n’existe pas car, par exemple,

lim
𝑥→0

∂𝑓
∂𝑦(𝑥, 0) = 0 ≠ −1 = lim

𝑦→0

∂𝑓
∂𝑦(0, 𝑦).
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