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Exercice 1.
Notons U := R% x ]0,7[ x ]0,27[; on considére application f : U — R3 définie par

T rsin f cos ¢
(y> = f(r,0,¢9) = (rsin@sinqﬁ). (1.1)
2 rcos f

1) f est-elle un difféomorphisme local ?
2) Trouver, si elle est définie, I'application réciproque de f.

3) Donner I'ensemble £1(]0,+00[?) et calculer la matrice jacobienne de f~!. Trouver le
jacobien de f~! en fonction du jacobien de f.

Solution

1) La matrice jacobienne de f est

sin(f) cos(¢) rcos(0) cos(¢p) —rsin(0)sin(¢)
D f(r,0,¢) = (sin(@) sin(¢) rcos(f)sin(¢)  rsin(f) cos(¢) ) (1.2)
cos () —rsin(6) 0

Donc
det(D f(r,0,¢)) = rcos(0) cos(¢)rsin(f) cos(¢) cos(6) (1.3)
+ 7sin(0) sin(¢) sin(0) sin(p)r sin(d)
) sin(¢@)r cos(0) sin(¢) cos(6)

+ rsin(0
+ sin(#) cos(¢)rsin(#) cos(p)rsin(0)
= 725in(6)( cos?(¢) cos?(6) + sin?(¢) sin®(6) (1.4)
+ sin?(¢) cos? () + cos?(¢) sin?(6))
=7r2sin(f) # 0. (1.5)

Alors f est un difféomorphisme local en tout point (r,0,¢) € R* x ]0, 7| x |0, 2.

2) Nous pouvons définir la fonction réciproque f=1:V — Uavec V:=R3\ (R, x {0} x R) :
on supprime le demi-plan fermé qui n’est pas dans 'image de f. Pour tout (z,y,z) € V, on
définit

/$2+y2+22
z

f Yz, y,2) = | arccos T | (1.6)
9(x,y,2)



La fonction g peut-étre définie par morceaux, comme suit :

x .
arccos ——— siy > 0,
/12 + y2
2 L iy <0
g(x,y,z) = { 2T —arccos xQ——l—yZ siy <0, (1.7)
T — arcsin N — siz <O.

La troisiéme région n’est pas disjointe des deux premiéres, mais, lorsque deux formules pour
g sont possibles, elles définissent bien la méme fonction. On s’est aussi assuré que ces trois
expressions sont de classe C'! sur leurs régions respectives.

3) Nous trouvons aisément f1(]0,+oo[’) = R} x ]0, g[ x 10, g[ Pour calculer la matrice
jacobienne de !, notons s := /22 + 92 et r:= /22 + 32 + 22 :

x/,,. y/r Z/r
D(ffl)(x,y,z) = Zz/’rzs Zy/’r2s _5/7'2
*9/52 z/SZ 0

(1.8)

(les trois expressions ci-dessus pour g conduisant au méme résultat) et det(D (f71)(x,y,2)) =
1/rs. Ce dernier résultat peut également étre obtenu & partir du jacobien de f :

1 1

det(D (£) (.9, 2)) = det(D £(r,0,0) " = s = o (1.9)

Exercice 2.

1) Soient E, F' C R™ ouverts non-vides et f : E — F un difféomorphisme local en tout point
de E. Montrer que si f est une bijection entre F et F, alors f est un difféomorphisme global.

2) Soient h € C}H(R",R") et € € R, ; pour tout * € R", notons f,(x) := x+eh(x). Supposons
qu’il existe M > 0 tel que, pour tout € R, |||Dh(x)|| < M. ||| dénote la norme
spectrale d’une matrice : pour tout A € R™*",

]l = sup{| Az| : @ € R", || = 1} (2.1)

avec ||| la norme euclidienne. Montrer que, sie < M1, f. : R™ — R" est un difféomorphisme
global.

Indication. Vous pouvez montrer que f, est bijective en utilisant le théoréme du point fixe
de Banach.

Solution

1) Puisque f est une bijection, elle admet une application inverse g : F' — E. De plus, D g(y)
est continue en tout point y € F car f est un difféomorphisme local en g(y) € E. Donc
g € CL(F) et f est un difféomorphisme global.

2) D’apres le point 1, il suffit de montrer que f, est bijective et est un difféomorphisme local
sur R™.



Bijectivité. Les trois affirmations suivantes sont équivalentes :
(1) f.:R™ — R"™ est une bijection;
() VzeR", Jlx e R : f (x) = z;
(1) Pour tout, z € R™, 'application ¢, : R™ — R", définie pour tout & € R™ par
¢,(x) :== z— eh(x), a un unique point fixe.

Prouvons que (111) est vrai. Soit z € R™. Pour tout ¢ € R",
1D ¢z ()] = €l D h(z)[| < eM <1, (2.2)

donc pour tout ,y € R", on a

1
fo-(9) — 0x(@)] = [ Dnta-+ 1ty )0 dt” (2.3
< / ID (e + tly — @) (y — )] dt (2.4)
0
< / 1D é.(@ + ty — )] x |y — ] dt (2.5)
0
< eMly = (2.6)

donc ¢, est contractante sur R™, qui est un ensemble fermé. Il s’ensuit que ¢, a un
unique point fixe dans R™ (i.e. 3l € R™ : & = ¢, (x)) : nous avons prouvé (111). On en
conclut (1) : f. est bijective de R™ dans R™.

Difféomorphisme local. 1l suffit de montrer que, pour tout « € R®, D f.(x) =1+ €D h(x)
est inversible — i.e. det(D f.(x)) # 0.
Soit v € R™ tel que D f.(x)v = v+ eD h(x)v = 0. Alors

[v] = leD h(z)v| < €l D h()[l] x o] < eM]v] < v]. (2.7)

Ceci implique ||v| =0, i.e. v = 0. On en déduit que, V& € R™, det(D f.(x)) # 0. Par
conséquent, f. est un difféomorphisme local en tout € R", et également global sur
R™ puisque f, est une bijection.

Exercice 3.

Définitions. Soient U,V C R" ouverts et ¢ : U — V un difféomorphisme.
— Si det(D ) est strictement positif partout, on dit que ¥ « préserve 1’orientation ».

— Si det(D %) est strictement négatif partout, on dit que ¥ « renverse 1’orientation ».

1) Montrer que si U est connexe par arcs, alors soit ¢ préserve 'orientation, soit ¢ renverse
Iorientation.

2) Donner des exemples d’ouverts U et V qui ne sont pas connexes par arcs et d’un difféomor-
phisme v : U — V qui ne préserve ni ne renverse l’orientation.

Solution



1) Supposons l'existence de a, b € U tels que det(D ¢)(a) < 0 et det(D v)(b) > 0. Comme U est
connexe par arcs et det(D 1)) est continu, 'image de U par det(D 1) est un intervalle. Puisque
cet intervalle contient une valeur strictement négative et une valeur strictement positive,
det(D ) doit s’annuler sur U. Or ceci est impossible puisque 9 est un difféomorphisme ;
cette contradiction prouve le résultat.

2) Considérer U = |1,2[U]|—4, =3[, V =]1,2[U]3,4[ et ¥ = |-|. N.B. ¢ n’est pas différentiable
en 0, mais ce point n’appartient pas a U.

Exercice 4.

Soit € € R%.. Montrer que le systeme d’équations

x +sin(zy) = ¢
cos(zy) +y=1+¢

a une solution unique dans un voisinage de (0, 0), pour ¢ suffisamment petit.

Solution
On définit

Fe,y) = (x + sin(:ny)).

cos(wy) +y

Nous allons appliquer le théoréme d’inversion locale & F, qui est de classe C*(R?;R?), en

(0,0).
F(0,0) = (?)

(14 ycos(zy) x cos(zy)
DF(, ) (z,y) = ( —ysin(zy) —zsin(zy) +1)°

En lorigine, on a

1 0
DF(x,y)(O7O): (0 1)3

qui est évidemment inversible. Les hypotheses du théoréme sont donc satisfaites et il existe un
voisinage U de (0,0) et un voisinage V' de (0,1) tels que F : U — Vest un difféomorphisme, donc
un particulier inversible. Pour € suffisamment petit, on a (¢,1 4 ¢) € V donc il existe un seul point
(x*,y*) € U tel que F(z*,y*) = (¢,1 +¢€).

Exercice 5.

QCM 1. Soit la fonction f: R? — R définie par

25—y
flay) =4 =+
0 si (z,y) = (0,0).

st (,y) # (0,0),



Alors

of . af
By = 1 — =—1
(z,y)lg%O,O) dy (@) =0 D (:r:A,y)IE%O,m oy (z,9)
of - _
W 00—

[ Z©,0=1
oy
Solution

On calcule la dérivée partielle concernée. On trouve

—h5
0/ . o) — gy LO = FO.0) G 0 _
5y 00 = fim T = i = e =
Remarque : Pour (z,y) # (0,0) on a
0 (4 Syt +yt) — 4P —y°) P Sytat — 4y
oy~ (' + ")’ (x4 + ")’
et la limite lim

= ‘existe pas car, par exemple
(z,y)—(0,0) ay(x’y) nLexiste p r, par exemple,

COf, o Of



	Exercice 1. 
	Exercice 2. 
	Exercice 3. 
	Exercice 4. 
	Exercice 5. 
	QCM 1. 



