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Exercice 1.
Définissons, pour tout 𝑥 ∈ R∗

+,

𝛤(𝑥) ≔ ∫
+∞

0
𝑡𝑥−1e−𝑡 d𝑡. (1.1)

1) Montrer que 𝛤 est définie sur R∗
+ ; que 𝛤 ∈ C∞(R∗

+) ; et que, ∀𝑥 ∈ R∗
+, ∀𝑘 ∈ N,

𝛤 (𝑘)(𝑥) = ∫
+∞

0
ln𝑘(𝑡)𝑡𝑥−1e−𝑡 d𝑡. (1.2)

Indication. L’intégrale discutée ici entre 0 et +∞ doit être comprise comme une somme d’une
intégrale généralisée sur ]0, 𝑐] et d’une intégrale généralisée sur [𝑐, +∞[ pour une constante
0 < 𝑐 < ∞. Etudier chacune de ces deux intégrales (avec un paramètre) séparément.

2) Soit 𝑥 ∈ R∗
+.

a) Montrer que ∀𝑥 ∈ R∗
+, 𝛤(𝑥 + 1) = 𝑥𝛤(𝑥).

b) En déduire que ∀𝑛 ∈ N, 𝛤(𝑛 + 1) = 𝑛! ; i.e. 𝛤 permet de généraliser la notion de
factorielle à des arguments non entiers.

Solution
Remarque. Le cours (§ 5.3) a été détaillé pour une intégrale généralisée dépendant de paramètres,
pour un intervalle d’intégration non compact du type [𝑎, 𝑏[ avec −∞ < 𝑎 < 𝑏 ⩽ +∞. Cependant la
théorie s’adapte à tout intervalle non compact ; l’adaptation au cas ]𝑎, 𝑏] avec −∞ ⩽ 𝑎 < 𝑏 < +∞
est directe.

Dans le présent exercice, la question porte sur une intégrale généralisée définie sur l’intervalle
non compact ]0, +∞[. Il y a donc deux difficultés : en 0 et « en +∞ », mais la théorie du cours
reste valable. En cas de doutes, écrire l’intégrale généralisée (avec un paramètre) comme une
somme d’une intégrale généralisée sur ]0, 1] et d’une intégrale généralisée sur [1, +∞[, puis étudier
chacune de ces deux intégrales (avec un paramètre) séparément.

1) Soit 𝑥 ∈ R∗
+ ; notons 𝛾𝑥 ≔ 𝑡 ↦ 𝑡𝑥−1e−𝑡 (pour chaque 𝑥 fixé, on obtient ainsi une fonction de 𝑡).

Observons que 𝛾𝑥 est continue sur ]0, +∞[, 0 < 𝛾𝑥(𝑡) ⩽ 𝑡𝑥−1 sur ]0, 1] et 0 < 𝛾𝑥(𝑡) ⩽ 𝐶/𝑡2 sur
[1, +∞[ pour une certaine constante 𝐶 > 0 dépendante de 𝑥. En effet lim𝑡→+∞ 𝑡𝑥−1𝑒−𝑡𝑡2 = 0.
Comme ∫1

0 𝑡𝑥−1 d𝑡 converge et que ∫+∞
1 𝑡−2 d𝑡 converge, nous en déduisons que ∫+∞

0 𝛾𝑥
converge. 𝛤 est donc bien définie pour 𝑥 ∈ R∗

+.
Soient 0 < 𝑎 < 𝑏 < +∞. Nous allons maintenant montrer que 𝛤 ∈ C∞(]𝑎, 𝑏[). Notons
𝛾(𝑡, 𝑥) = 𝑡𝑥−1e−𝑡 = e(𝑥−1) ln 𝑡e−𝑡 et observons que 𝛾 ∈ C∞(R∗

+ × R∗
+,R∗

+) et, pour 𝑘 ∈ N,

∂𝑘𝛾
∂𝑥𝑘 (𝑡, 𝑥) = ln(𝑡)𝑘𝑡𝑥−1e−𝑡. (1.3)
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Soient 𝑥 ∈ ]𝑎, 𝑏[ et 𝑡 ∈ R∗
+. Si 𝑡 ⩽ 1, 𝑡𝑥 ⩽ 𝑡𝑎 ; si 𝑡 ⩾ 1, 𝑡𝑥 ⩽ 𝑡𝑏. Ainsi, pour tout 𝑥 ∈ ]𝑎, 𝑏[ et

tout 𝑡 ∈ R∗
+,

∣ ∂𝑘𝛾
∂𝑥𝑘 (𝑡, 𝑥)∣ ⩽ |ln(𝑡)|𝑘e−𝑡𝑡−1 max{𝑡𝑎, 𝑡𝑏} ≔ 𝑔𝑘(𝑡). (1.4)

Nous avons donc une fonction majorante de ∣ ∂𝑘𝛾
∂𝑥𝑘

∣ indépendante de la variable 𝑥 ∈ ]𝑎, 𝑏[ ;
montrons que ∫+∞

0 𝑔𝑘 converge.
Puisque

lim
𝑡→0+

𝑡𝑠𝑔𝑘(𝑡) = lim
𝑡→0+

𝑡𝑠|ln(𝑡)|𝑘e−𝑡𝑡𝑎−1 = 0, ∀𝑠 > 1 − 𝑎, (1.5)

∫1
0 𝑔𝑘 converge. Puisque lim𝑡→+∞ 𝑡2𝑔𝑘(𝑡) = 0, ∫+∞

1 𝑔𝑘 converge. Finalement, ∫+∞
0 𝑔𝑘 converge.

Par conséquent, 𝛤 ∈ C𝑘(]𝑎, 𝑏[) : appliquer les résultats du cours et effectuer une récurrence
sur 𝑘 ∈ N. Ce résultat étant valable pour tout 𝑎 ∈ R∗

+, 𝑏 ∈ ]𝑎, +∞[ et 𝑘 ∈ N, nous en
déduisons 𝛤 ∈ C∞(R∗

+). De plus,

𝛤 (𝑘)(𝑥) = ∫
+∞

0
ln(𝑡)𝑘𝑡𝑥−1e−𝑡 d𝑡. (1.6)

2) Soit 𝑥 ∈ R∗
+.

a) Intégrons par parties :

𝛤(𝑥 + 1) = ∫
+∞

0
𝑡𝑥e−𝑡 d𝑡 = 0 + ∫

+∞

0
𝑥𝑡𝑥−1e−𝑡 d𝑡 = 𝑥𝛤(𝑥). (1.7)

Notons que cette manœuvre est licite parce que ∫+∞
0 𝑥𝑡𝑥−1e−𝑡 d𝑡 existe. En cas de

doutes, intégrer d’abord sur [𝑡1, 1] (en effectuant l’intégration par parties) puis étudier
lim𝑡1→0+ ; ensuite faire de même sur [1, 𝑡2] puis étudier lim𝑡2→+∞.

b) Nous constatons que 𝛤(1) = 1. On en déduit par récurrence que pour tout 𝑛 ∈ N,
𝛤(𝑛 + 1) = 𝑛!.

Exercice 2.
Définissons la fonction

𝐹 ≔ (𝑥
𝑦) ↦ (𝑥2 − 𝑦2

2𝑥𝑦 ). (2.1)

1) Montrer que l’application 𝐹 admet une fonction inverse locale autour du point (0, 1), et que
cette fonction inverse est de classe C1.

2) 𝐹 est-elle globalement inversible ?
Indication. Vous pouvez utiliser le théorème sur l’existence d’un inverse local.

Solution
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Calculons la matrice jacobienne de 𝐹 et son déterminant 1 :

D 𝐹(𝑥, 𝑦) = (2𝑥 −2𝑦
2𝑦 2𝑥 ) ⟹ det(D 𝐹(𝑥, 𝑦)) = 4𝑥2 + 4𝑦2 ⟹ det(D 𝐹(0, 1)) ≠ 0. (2.2)

Il existe donc une fonction inverse locale dans un voisinage du point (0, 1).
Cependant, 𝐹 n’est pas inversible globalement puisque non-injective. Par exemple, pour tout

𝑥 ∈ R∗, les deux points (𝑥, 𝑥) et (−𝑥, −𝑥) sont différents mais ont même image par 𝐹 : (0, 2𝑥2).
On peut néanmoins trouver une fonction inverse locale dans un voisinage de (𝑥, 𝑥) et une fonction
inverse locale dans un voisinage de (−𝑥, −𝑥).

Exercice 3.
Soient 𝑈, 𝑉 , 𝑊 ⊂ R𝑛 ouverts ; soient 𝜙 ∈ C1(𝑈, 𝑉 ) et 𝜓 ∈ C1(𝑉 , 𝑊) deux difféomorphismes.

Montrer que 𝜓 ∘ 𝜙 est un difféomorphisme.

Solution
Nous savons que 𝜙−1 ∘ 𝜓−1 ∈ C1(𝑊, 𝑈) ; montrons qu’elle est également l’inverse de 𝜓 ∘ 𝜙. Par

associativité de la composition :

(𝜓 ∘ 𝜙) ∘ (𝜙−1 ∘ 𝜓−1) = 𝜓 ∘ (𝜙 ∘ 𝜙−1) ∘ 𝜓−1 = 𝜓 ∘ I𝑉 ∘ 𝜓−1 = I𝑊. (3.1)

De même (𝜙−1 ∘ 𝜓−1) ∘ (𝜓 ∘ 𝜙) = I𝑈. Nous avons noté I𝑈 la fonction identité I𝑈 ∶ 𝑈 → 𝑈 qui
envoie tout point de 𝑈 sur lui-même, de même pour I𝑉 ∶ 𝑉 → 𝑉 et I𝑊 ∶ 𝑊 → 𝑊.

Exercice 4.
Soient 𝑓 ∈ C2(R,R) et 𝑥0 ∈ R. Supposons 𝑓 ′(𝑥0) ≠ 0. Il existe alors deux ouverts 𝑈 ∋ 𝑥0 et

𝑉 ∋ 𝑓(𝑥0), et 𝑔 ∶ 𝑉 → 𝑈 une fonction inverse locale de 𝑓 en 𝑥0. Montrer que 𝑔 ∈ C2(𝑉 , 𝑈).

Solution
Notons 𝑉 ⊂ R le voisinage de 𝑓(𝑥0) où l’inverse locale 𝑔 est définie. D’après le théorème

d’existence d’une fonction inverse locale, 𝑔 ∈ C1(𝑉 ,R). On peut calculer sa dérivée 𝑔′ en utilisant
le théorème de dérivation des fonctions composées. Puisque 𝑔 ∘ 𝑓 = I𝑈 (la fonction identité qui
envoie tout point de 𝑈 sur lui-même),

(𝑔 ∘ 𝑓)′ = (𝑔′ ∘ 𝑓) ⋅ 𝑓 ′ = 1. (4.1)
Donc, ∀𝑥 ∈ 𝑉,

𝑔′(𝑓(𝑔(𝑥))) × 𝑓 ′(𝑔(𝑥)) = 1 et 𝑔′(𝑥) = 1
𝑓 ′(𝑔(𝑥)) (4.2)

⟹ 𝑔′ = 1
𝑓 ′ ∘ 𝑔 . (4.3)

Comme (𝑔′ ∘ 𝑓) ⋅ 𝑓 ′ = 1, nous pouvons affirmer que 𝑓 ′ ne s’annule pas sur 𝑈 = 𝑔(𝑉 ). Cela nous
permet de justifier que la fonction (𝑓 ′)−1 = 1

𝑓′
∈ C1(𝑔(𝑉 ),R) (elle intervient dans (4.3)). Alors

𝑔′ ∈ C1(𝑉 ,R) en tant que composition de fonctions de classe C1 (de (𝑓 ′)−1 et 𝑔, cf (4.3)).
Remarque. Il est important de noter que dans l’expression (4.3), la fonction 𝑔 est toujours de
classe C1 pourvu que les hypothèses du théorème d’inversion locale soient vérifiées. Par induction,
𝑓 ∈ C𝑘 ⟹ 𝑔 ∈ C𝑘. Ce résultat s’étend aux fonctions de plusieurs variables.

1. Couramment appelé « jacobien » de 𝐹.
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