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Exercice 1.
Soit 𝑥 ∈ ]0, +∞[. Calculer

∫
𝜋/2

0
ln(𝑥2 cos2(𝑡) + sin2(𝑡)) d𝑡 ≕ 𝑔(𝑥). (1.1)

Justifier toutes les étapes.
Indication. Calculer 𝑔′ et en déduire 𝑔, en observant que 𝑔(1) = 0.

Solution
D’après le théorème de dérivation des fonctions dépendant d’un paramètre (cf. cours, § 5.1,

deuxième théorème), 𝑔 est continûment dérivable sur R∗
+. Soit 𝑥 ∈ R∗

+ ⧵ {1}.

𝑔′(𝑥) = ∫
𝜋
2

0

2𝑥 cos2(𝑡)
𝑥2 cos2(𝑡) + sin2(𝑡)

d𝑡 (1.2)

(avec 𝑧 ≔ tan(𝑡))

= ∫
+∞

0

2𝑥
𝑥2 + 𝑧2

1
1 + 𝑧2 d𝑧 (1.3)

= ∫
+∞

0

2𝑥
1 − 𝑥2 ( 1

𝑧2 + 𝑥2 − 1
𝑧2 + 1) d𝑧 (1.4)

= 2𝑥
1 − 𝑥2 lim

𝑍→+∞
( 1

𝑥 arctan(𝑍
𝑥 ) − arctan(𝑍)) (1.5)

= 𝜋
1 + 𝑥 . (1.6)

Les intégrales généralisées sont absolument convergentes (en fait les intégrandes sont strictement
positives sur [0, +∞[). En cas de doute sur la manipulation des intégrales généralisées sur [0, +∞[,
intégrer d’abord sur [0, 𝑍] puis étudier lim𝑍→+∞.

La continuité de 𝑔′ en 1 assure que 𝑔′(1) = 𝜋/2. On obtient

𝑔(𝑥) = 𝑔(𝑥) − 𝑔(1) = ∫
𝑥

1

𝜋
1 + 𝑡 d𝑡 = 𝜋 ln(1 + 𝑥

2 ). (1.7)

Exercice 2.
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Définissons 𝑓 ∶ R → R par

∀𝑥 ∈ R, 𝑓(𝑥) = ∫
𝑥

0
sin(𝑥√1 + 𝑡2) d𝑡. (2.1)

Montrer que 𝑓 admet un minimum local en 0.

Solution
Soit 𝑥 ∈ R. La formule de dérivation d’intégrale paramétrique (cf. cours, §5.2, premier

théorème) donne

𝑓 ′(𝑥) = sin(𝑥√1 + 𝑥2) + ∫
𝑥

0

√1 + 𝑡2 cos(𝑥√1 + 𝑡2) d𝑡 ; (2.2)

en particulier, 𝑓 ′(0) = 0.
Étudions maintenant 𝑓″ :

𝑓″(𝑥) = cos(𝑥√1 + 𝑥2) × (√1 + 𝑥2 + 𝑥2
√

1 + 𝑥2
)

+ √1 + 𝑥2 cos(𝑥√1 + 𝑥2) − ∫
𝑥

0
(1 + 𝑡2) sin(𝑥√1 + 𝑡2) d𝑡 ; (2.3)

en particulier, 𝑓″(0) = 2. Ainsi, 𝑓 admet bien un minimum local en 0.

Exercice 3.
Soit −∞ < 𝑎 < 𝑏 < ∞ et 𝒇 ∶ [𝑎, 𝑏] → R𝑚, 𝑡 ↦ 𝒇(𝑡) = (𝑓1(𝑡), … , 𝑓𝑚(𝑡)), une fonction continue.

Prouver que

∥∫
𝑏

𝑎
𝒇(𝑡)𝑑𝑡∥ ⩽ ∫

𝑏

𝑎
‖𝒇(𝑡)‖𝑑𝑡,

où ‖ ⋅ ‖ est la norme euclidienne.

Solution
Première méthode. Chaque fonction 𝑓𝑖 ∶ [𝑎, 𝑏] → R, 𝑖 = 1, … , 𝑚, est intégrable, ainsi que la
fonction 𝑔 = ‖𝒇‖ ∶ [𝑎, 𝑏] → R+, étant une composition de fonctions continues sur [𝑎, 𝑏]. Notons
𝒗 ∈ R𝑚 le vecteur de composantes 𝑣𝑖 = ∫𝑏

𝑎 𝑓𝑖(𝑡)𝑑𝑡, 𝑖 = 1, … , 𝑚. Si 𝒗 = 𝟎, l’inégalité est évidente.
Si 𝒗 ≠ 𝟎, alors

‖𝒗‖2 = ∥∫
𝑏

𝑎
𝒇(𝑡)𝑑𝑡∥

2

=
𝑚

∑
𝑖=1

𝑣𝑖𝑣𝑖 = ∫
𝑏

𝑎

𝑚

∑
𝑖=1

𝑣𝑖𝑓𝑖(𝑡)𝑑𝑡 ⩽ ∫
𝑏

𝑎
‖𝒗‖‖𝒇(𝑡)‖𝑑𝑡

par l’inégalité de Cauchy-Schwarz, et on peut diviser par ‖𝒗‖ à gauche et à droite.
Deuxième méthode :

∥∫
𝑏

𝑎
𝒇(𝑡)𝑑𝑡∥ = ∥ lim

𝑛→∞

𝑛

∑
𝑘=1

𝑏 − 𝑎
𝑛 𝒇(𝑎 + (𝑏 − 𝑎)𝑘/𝑛)∥ = lim

𝑛→∞
∥

𝑛

∑
𝑘=1

𝑏 − 𝑎
𝑛 𝒇(𝑎 + (𝑏 − 𝑎)𝑘/𝑛)∥

⩽ lim
𝑛→∞

𝑛

∑
𝑘=1

∥𝑏 − 𝑎
𝑛 𝒇(𝑎 + (𝑏 − 𝑎)𝑘/𝑛)∥ = lim

𝑛→∞

𝑛

∑
𝑘=1

𝑏 − 𝑎
𝑛 ∥𝒇(𝑎 + (𝑏 − 𝑎)𝑘/𝑛)∥ = ∫

𝑏

𝑎
‖𝒇(𝑡)‖𝑑𝑡.
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Cette deuxième preuve est valable pour toute norme.

Exercice 4.
QCM 1. Soit la fonction 𝑓∶ R2 → R définie par𝑓(𝑥, 𝑦) = 𝑥+𝑥2𝑒sin(𝑦). Alors la matrice hessienne
de 𝑓 en (𝑥, 𝑦) est

𝑒sin(𝑦)(
𝑥2( cos(𝑦)2 − sin(𝑦)) 2𝑥 cos(𝑦)

2𝑥 cos(𝑦) 2
)

𝑒sin(𝑦)(
2 2𝑥 cos(𝑦)

2𝑥 cos(𝑦) 𝑥2( cos(𝑦)2 − sin(𝑦))
)

𝑒sin(𝑦)(
2 2𝑥 cos(𝑦)

2𝑥 cos(𝑦) −𝑥2 sin(𝑦)
)

𝑒sin(𝑦)(
2 2𝑥 cos(𝑦)

2𝑥 cos(𝑦) 𝑥2 cos(𝑦)2
)

QCM 2. Vrai ou faux ?

Q1 : Soit une fonction 𝑓∶ 𝐷 → R et soit (𝑥0, 𝑦0) ∈ 𝐷 où 𝐷 ⊂ R2 est ouvert. Si lim
(𝑥,𝑦)→(𝑥0,𝑦0)

𝑓(𝑥, 𝑦)
existe, alors 𝑓 est continue en (𝑥0, 𝑦0).

Q2 : Soit une fonction 𝑓∶ 𝐴 × R → R et soit (𝑥0, 𝑦0) ∈ 𝐴 × R, où 𝐴 ⊂ R est ouvert. Si
lim

𝑥→𝑥0
𝑓(𝑥, 𝑦0) existe, alors lim

(𝑥,𝑦)→(𝑥0,𝑦0)
𝑓(𝑥, 𝑦0) existe.

Q3 : Soit une fonction 𝑓∶ R2 → R, 𝑟0 > 0 et une fonction 𝑔∶ ]0, 𝑟0[ → R avec lim
𝑟→0+

𝑔(𝑟) =
0 . Si ∣𝑓(𝑟 cos(𝜑), 𝑟 sin(𝜑))∣ ⩽ 𝑔(𝑟) pour tout 𝑟 ∈ ]0, 𝑟0[ et tout 𝜑 ∈ [0, 2𝜋[, alors

lim
(𝑥,𝑦)→(0,0)

𝑓(𝑥, 𝑦) = 0.

Q4 : Soit une fonction 𝑓∶ R2 → R et soit une fonction 𝑔∶ ]0, ∞[ → R avec lim
𝑟→0+

𝑔(𝑟) = 0 . S’il
existe une valeur 𝜑0 de 𝜑 ∈ [0, 2𝜋[ telle que |𝑓(𝑟 cos(𝜑0), 𝑟 sin(𝜑0))| ⩽ 𝑔(𝑟) pour tout
𝑟 ∈ ]0, ∞[, alors lim

(𝑥,𝑦)→(0,0)
𝑓(𝑥, 𝑦) = 0.

Solution
Q1 : Réponse : faux. L’existence de la limite ne suffit pas, il faut en plus que cette limite

soit égale à la valeur de 𝑓 en (𝑥0, 𝑦0), c’est-à-dire que lim
(𝑥,𝑦)→(𝑥0,𝑦0)

𝑓(𝑥, 𝑦) = 𝑓(𝑥0, 𝑦0).

Q2 : Réponse : faux. Considérons 𝐴 = R, (𝑥0, 𝑦0) = (0, 0) et 𝑓∶ R2 → R donnée par
𝑓(0, 0) = 1 et 𝑓(𝑥, 𝑦) = 0 pour (𝑥, 𝑦) ≠ (0, 0). Posons encore 𝑔(𝑥, 𝑦) = 𝑓(𝑥, 0). On
obtient lim

𝑥→0
𝑓(𝑥, 0) = lim

𝑥→0
0 = 0, mais lim

(𝑥,𝑦)→(0,0)
𝑔(𝑥, 𝑦) n’existe pas car lim

𝑥→0
𝑔(𝑥, 0) =

lim
𝑥→0

𝑓(𝑥, 0) = 0 et lim
𝑦→0

𝑔(0, 𝑦) = lim
𝑦→0

𝑓(0, 0) = lim
𝑦→0

1 = 1.

Q3 : Réponse : vrai. Soit 𝜖 > 0. Comme lim
𝑟→0+

𝑔(𝑟) = 0, il existe 𝛿 ∈ ]0, 𝑟0] tel que |𝑔(𝑟)| ⩽ 𝜖
pour tout 𝑟 ∈ ]0, 𝛿]. D’où |𝑓(𝑟 cos(𝜑), 𝑟 sin(𝜑))| ⩽ 𝑔(𝑟) ⩽ 𝜖 pour tout 𝑟 ∈ ]0, 𝛿] et tout
𝜑 ∈ [0, 2𝜋[. Ainsi |𝑓(𝑥, 𝑦)| ⩽ 𝜖 pour tout (𝑥, 𝑦) ∈ R2 tel que 0 < ‖(𝑥, 𝑦)‖ ⩽ 𝛿.

Q4 : Réponse : faux. Contre-exemple : soit 𝑓(𝑥, 0) = 0 pour 𝑥 ∈ ]0, ∞[, 𝑓(𝑥, 𝑦) = 1 sinon,
et soit 𝑔(𝑟) = 0 pour tout 𝑟 ∈ ]0, ∞[. Alors pour 𝜑 = 0, on a pour tout 𝑟 ∈ ]0, ∞[,

0 = |𝑓(𝑟, 0)| = |𝑓(𝑟 cos(0), 𝑟 sin(0))| = 𝑔(𝑟) ,

mais la limite lim
(𝑥,𝑦)→(0,0)

𝑓(𝑥, 𝑦) n’existe pas.
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