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Série 9 du lundi 17 mars 2025

Exercice 1.

Considérons l'espace M (m,n) des matrices réelles de taille m x n. Nous noterons ||y la norme
euclidienne de R™ et celle de R", indifféremment.

1) Montrer que M (m,n), muni des opérations usuelles de somme des matrices et proportion
par un scalaire, est un espace vectoriel.

2) Cousidérons l'application
Az,

]2

-l M(m,n) = Ry, ANl = Sup{ cx e R™\ {0}}7 (1.1)

appelée « norme spectrale ».
a) Prouver que |||-||| est bien définie sur M (m,n).
b) Prouver que |||-||| est une norme sur M(m,n).
¢) Montrer que le supremum de (1.1) est un maximum, i.e.

[ Ayl
lyll2

Jy € R\ {0} : = [I1Alll (1.2)

3) Cousidérons l'application

I M(m,n) =Ry, [Alp= [> A7 (1.3)
i

appelée « norme de Frobenius ».
a) Montrer que || définit également une norme sur M (m,n).
b) Trouver deux constantes strictement positives C, C, telles que, VA € M (m,n),

CilllAll < 1Al < Coll|Alll- (1.4)

Solution

1) Veuillez vérifier les huit propriétés de la définition d’un espace vectoriel réel (cf. polycopié).
Observez que M(m,n) et R¥ avec k = mn sont isomorphes en tant qu’espaces vectoriels,
otl un isomorphisme possible fait correspondre & A € M(m,n) le vecteur colonne dans R¥
obtenu en mettant successivement I'une en-dessous de lautre les n colonnes de A.

2) a) La fonction R" 5 & » Az € R™ (x et Az vus comme vecteurs colonnes) est continue
sur R™ (chaque composante de cette fonction est en effet une combinaison linéaire des
fonctions continues @ > x;, 1 < i < n), et la fonction x — f(x) := |Ax|, aussi en tant
que composition d’applications continues. Notons S; = {x € R™ : |||, = 1} la sphére
unité de R"™. Puisque S; est compacte et f est continue, la restriction f|g est bornée
et donc sup,_g f(x) < 400, autrement dit, [ A]| < +oo.



3)

b) Soit A € M(m,n). On a que ||4]| > 0, et

[[All =0 = (Yz € R",[|Az[y = 0) = A = Ops(m,n)- (1.5)
Ensuite,
[AAz| Al Az|| | Az]|
Al = 2= s T DY == =M IA]l. (1.6)
xcRn\{0} (B8 zcRn\{0} (2P zcRn\{0} (e
Enfin,
A+ B)x
lA+B= sp LAFDBl (1.7)
xcR"\{0} (B2
A B
o g Azt 1Bels 1.9
zcRn\{0} (P
B A, |Bal, o)
zeR7\{0} ] zeR"\{0} B4 P
= [IIA[ll + I Bll- (1.10)

c¢) Puisque S; est compacte et f continue, la restriction f|g, est bornée et ses bornes sont
atteintes sur S;. Par conséquent,

[1Alll = sup{f(z) : @ € 51} = max{f(x) : @ € S} (1.11)
et Jy e 5 [Ayly = max{f(z): x € 5} = [[|4]]. (1.12)

Le maximum est aussi atteint en —y, et peut-étre en d’autres vecteurs de norme 1.

a) Une premiére solution est d’utiliser I'isomorphisme ci-dessus entre M (m,n) et R™";
en effet, si A € M(m,n) est envoyée sur 4 € R™" par cet isomorphisme, alors la
définition de |A||p donne immédiatement |A|r = |x 4]ls (norme euclidienne). Mais
voici aussi la solution qui ne passe pas par cet isomorphisme.

Clairement, on a |A[z > 0, YA € M(m,n). Ensuite, si | A| = 0, alors A, ; = 0 pour
tous i € {1,...,m} et j € {1,...,n}, et donc A = 0y )

Pour la deuxiéme propriété, [[AA|p= />, i A2A47 ;= |M[|A| p. Enfin, utilisant I'inéga-
lité de Cauchy—Schwarz,

|A+ Bl = Z(Ai,j+Bi,j)2 (1.13)
1,7
4,7 %,J %]
1/2 1/2
<Y AY D B2 (Z Aij) (Z B?,]) (1.15)
4,J 1,J 1,5 i,j
= (|All¢+ |Bl»)>. (1.16)

b) De nouveau, on peut utiliser utiliser I'isomorphisme ci-dessus entre M (m,n) et R™";
en effet, comme déja mentionné, si A € M(m,n) est envoyée sur x4 € R™" par
cet isomorphisme, alors la définition de |A|r donne |A|p = |x4l2. De plus, en
posant N(x4) := |||A]||, on vérifie facilement que 'on définit ainsi une norme N sur



R™" (en utilisant que [||-||| est une norme sur M(m,n)). Comme toutes les normes
sont équivalentes sur R™", il existe Cp,Cy > 0 telles que, pour tout A € M(m,n),
CiN(z4) <[@allz < CoN(4) et done G| Al < [[Allr < Col| Al

On peut aussi résoudre le probléme explicitement. Soit @ = Z;;l re; € R™, (e;)7,
les vecteurs de la base canonique de R™ et (a;)}_; les colonnes de A. Alors, on a

(ij|”a'j|2) (1.17)

=1

< ( ) (Daj@) (118)
j=1 j=1

= |=l3 (ZZA%) (1.19)

n

Z zja;

J=1

2
<
2

|Az|3 =

=1 i=1
= [lzl3]Al%- (1.20)
Donc, Vo € R™ \ {0}, % < || Al g, cest-a-dire, |||Al]| < [ A]|p. De maniére similaire,
T2
JAIE =DA%, = lajl3 = _lAel3 (1.21)
0 = =
" | Ae;|3
_y! Jﬂz (1.22)
j=1 Hej”2
- | A3

=Y _llAll* =nllAf*,  (1.23)
j=1

= wern\(0) |3

done, [A]p < v/l A]l.

Exercice 2.
Soient f € C%(R?%,R) et a € R*.

1) On effectue le changement de variable suivant :

u+v u—v
Flu,v) = ( , ) 2.1
(o) = F(5E2 25 (2.1)
2 2 2
Calculer 2£ , O ot 22 en fonction de ﬂ, ﬂ’ 9T ot M, ou x et y représentent respecti-
ou’ v ovdu Oox Oy 0x2 oy2

vement la premiere et la seconde variable de f.

2) Montrer que si f vérifie
o2 f o2 f
522 (@ Y) — a28—y2($,y) =0, (2.2)
alors il existe g, h € C%(R,R) tels que f(x,y) = g(ax + ) + h(ax — y) sur R2.

Solution



1) On utilise la formule des dérivées composées :

oF 1 O0fru+v u—v 10f/u+v u—vy
a_u(“’v)_%a_x( %2 2 )J’i@( 2 2 ) (2:3)
de méme,
oF 1 0fru4+v u—vw —10f/u+v u—w
%(“’”)*%%( 2 ' 2 )+7@( 2 2 ) (2:4)
Enfin,
0°F  0°F 1 (109*f —1 0°f 1(1 092°f —10°f
—auav——avau—%(%@+7axay +3 %axay‘LTaTﬁ) (2:5)
1 9%2f 19%f
= 12022 10 (26)

o F et ses dérivées partielles d’ordres 1 et 2 sont évaluées en (u,v), et ont f et ses dérivées
partielles d’ordres 1 et 2 sont évaluées en ((u + v)/(2a), (u —v)/2).

2) On effectue le changement de variable précédent. On obtient alors

RF 1 (0f  L,0°\
o = 1z (53 "534 =0 (27)

En intégrant (2.7) par rapport a la premiére variable de F, on trouve qu’il existe une fonction
a telle que, V(u,v) € R?,

oF

E(u,v) = a(v). (2.8)
Comme f € C%(R?), alors F' € C?(R?) et a € CL(R).
En intégrant (2.8) par rapport a la deuxiéme variable de F, on trouve qu’il existe une
fonction g telle que, V(u,v) € R?, F(u,v) = g(u) + h(v), avec h une primitive quelconque
de «. Puisque F, h sont de classe C?, g aussi. Finalement u et v sont exprimées comme
fonctions de z et y.

Exercice 3.

Ecrire le développement limité & ordre 3 et au point (1,1) de la fonction

f=(2,y) e,

en utilisant le développement limité a 'ordre 3 de la fonction u > e€* en 0.

Indication. Ecrire f(z,y) = e ** ottu:= (x — 1) + (y — 1) + (z — 1)(y — 1). Justifier toutes les

étapes.

Solution

D’apres la formule de Taylor en dimension 1, Vu € R,

1 1
et —exet =e+eu+ §eu2 + Eeu?’ + g(u) (3.1)



avec g(u) = o(|ul®) et g(0) = 0. Pour z,y € R, écrivons x =: 1 + a et y =: 1 + b. Considérons la
norme euclidienne, et utilisons g(u) = o(|u|?). Soit € > 0; si a + b+ ab # 0,

lga+b+ab)]  |g(a+b+ab)| y la + b+ ab)? < lg(a+ b+ ab)]
I(a,0)]3  [a+b+abl3 I(a,0)3 = la+b+abP®

1+1+](ab)])? <e (32)

si | (a, b)| est suffisamment petit. Cette conclusion reste valable si a+b+ab = 0, avec (a,b) # (0, 0).
Ainsi g(a + b+ ab) = o(|(a,b)|®) et on obtient

™Y — e(1+a)(1+b) (33
— el+atb+ab
=e+ela+b+ab)+ %e(a—l—b—l—ab)z—l— %e(a+b+ab)3+g(a+b—|—ab) (3.5)

=e+ela+b+ab)+ %e(a2 + b2 + 2ab + 2a%b + 2ab?)
1
+ ge(a3 + 3a?b + 3ab?® + b3) + o(||(a, b)|?)

— ot e(atb)+ Se(a? + b2 + ab) + %e(a?’ +9a2b+ 90 + 1) +o(|(a,0)[F)  (3.7)

2
:e+e(a:—1)+e(y—1)+e($_21)2+e(y_21>2 (3.8)

+2(x—1)(y—1) —l—eg(x— 1)2(y—1) —l—e§ y—

5 (
r—1)3 — U’
+e( 61) +e(y 61) +o((z,y) — (1L, 1)[?).

1)z —1)

Le polynoéme de Taylor d’ordre 3 de f au point (1,1) est donc

e+e(x71)+e(y—1)+e<x_1)2 +e(y_1)2 +2(z—1)(y—1)

2 2
r—1)3 13
+eg(x—1)2(y71)+eg(y—1)2(x—l)+e( 61> +e(y 61) . (3.9)

Exercice 4.

Soit f : R? — R la fonction donnée par

f(®) = f(x1,20,25) = ((x1 — 1)* + (22 — 2)* + (23 — 3)2)1/2~

Ecrire le polynoéme de Taylor de degré 2 de f en (0,0,0).

Solution
La fonction f est de classe C? sur un ouvert contenant 0. Par exemple f € C2(B(0,7r)) avec

r € ]0,v14[ puisque |0 — (1,2, 3)| = V14. En fait, elle est méme infiniment dérivable sur cette
boule. D’apres le cours, le polynéme demandé est donc

pizis Y L ala‘f . (4.1)

al :c‘l
0<|ex|<2 9




Cette somme inclut les termes suivants :

la] =0, = (0,0,0), al=1;
|a| = 1a = (1707())’ (Oa 170)7 <0a0a 1)7 al=1 5
|a| = 2’ a = (2707 0)’ (07 270)7 (O’ 07 2)7 a! = 2 ;
| = 2, a=(0,1,1), (1,0,1), (1,1,0), al = 1.

=

[ S SR )
= I I =

(4.
(4.
(4.
(4.

Soit & € B(0,r). Calculons les dérivées partielles de f en @ jusqu’a l'ordre 2. Pour tout

iVj E {172’3}’

of 1
B (®) = (3 i) s

0/ =_9__ z, —1)(x;— 7] !

Evaluons ces dérivées partielles au point 0 : £(0) = v/14 et, pour tout 7, j € {1,2, 3},

of —1
0) = ;
02f o %y i

5207, = VG avin

On obtient alors 'expression de p :

(@) = £(0) + G- (01 + 5L O)as + 50}z,

0% f 0% f o%f
+ (69@18:52 (0)z175 + W(O)%m:f; + W(O)xz%)

+5(5F0et+ o+ o

1 1
14 — \/ﬁ(.’l’}l + 2.’1]2 + 3$3) — 14\/ﬁ(2$1$2 + 31‘11’3 + 6$2$3)
1
+ 1322 + 1023 + 523).
28\/ﬁ< 1 2 3)

(4.6)

(4.7)

(4.10)

(4.11)



	Exercice 1. 
	Exercice 2. 
	Exercice 3. 
	Exercice 4. 

