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Exercice 1.
Considérons l’espace 𝑀(𝑚, 𝑛) des matrices réelles de taille 𝑚 × 𝑛. Nous noterons ‖⋅‖2 la norme

euclidienne de R𝑚 et celle de R𝑛, indifféremment.
1) Montrer que 𝑀(𝑚, 𝑛), muni des opérations usuelles de somme des matrices et proportion

par un scalaire, est un espace vectoriel.
2) Considérons l’application

|||⋅||| ∶ 𝑀(𝑚, 𝑛) → R+, |||𝐴||| = sup{
‖𝐴𝒙‖2
‖𝒙‖2

∶ 𝒙 ∈ R𝑛 ⧵ {𝟎}}, (1.1)

appelée « norme spectrale ».
a) Prouver que |||⋅||| est bien définie sur 𝑀(𝑚, 𝑛).
b) Prouver que |||⋅||| est une norme sur 𝑀(𝑚, 𝑛).
c) Montrer que le supremum de (1.1) est un maximum, i.e.

∃𝒚 ∈ R𝑛 ⧵ {𝟎} ∶
‖𝐴𝒚‖2
‖𝒚‖2

= |||𝐴|||. (1.2)

3) Considérons l’application

‖⋅‖𝐹 ∶ 𝑀(𝑚, 𝑛) → R+, ‖𝐴‖𝐹 = √∑
𝑖,𝑗

𝐴2
𝑖,𝑗, (1.3)

appelée « norme de Frobenius ».
a) Montrer que ‖⋅‖𝐹 définit également une norme sur 𝑀(𝑚, 𝑛).
b) Trouver deux constantes strictement positives 𝐶1, 𝐶2 telles que, ∀𝐴 ∈ 𝑀(𝑚, 𝑛),

𝐶1|||𝐴||| ⩽ ‖𝐴‖𝐹 ⩽ 𝐶2|||𝐴|||. (1.4)

Solution
1) Veuillez vérifier les huit propriétés de la définition d’un espace vectoriel réel (cf. polycopié).

Observez que 𝑀(𝑚, 𝑛) et R𝑘 avec 𝑘 = 𝑚𝑛 sont isomorphes en tant qu’espaces vectoriels,
où un isomorphisme possible fait correspondre à 𝐴 ∈ 𝑀(𝑚, 𝑛) le vecteur colonne dans R𝑘

obtenu en mettant successivement l’une en-dessous de l’autre les 𝑛 colonnes de 𝐴.
2) a) La fonction R𝑛 ∋ 𝒙 ↦ 𝐴𝒙 ∈ R𝑚 (𝒙 et 𝐴𝒙 vus comme vecteurs colonnes) est continue

sur R𝑛 (chaque composante de cette fonction est en effet une combinaison linéaire des
fonctions continues 𝒙 ↦ 𝑥𝑖, 1 ⩽ 𝑖 ⩽ 𝑛), et la fonction 𝒙 ↦ 𝑓(𝒙) ≔ ‖𝐴𝒙‖2 aussi en tant
que composition d’applications continues. Notons 𝑆1 = {𝒙 ∈ R𝑛 ∶ ‖𝒙‖2 = 1} la sphère
unité de R𝑛. Puisque 𝑆1 est compacte et 𝑓 est continue, la restriction 𝑓|𝑆1

est bornée
et donc sup𝒙∈𝑆1

𝑓(𝒙) < +∞, autrement dit, |||𝐴||| < +∞.
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b) Soit 𝐴 ∈ 𝑀(𝑚, 𝑛). On a que |||𝐴||| ⩾ 0, et

|||𝐴||| = 0 ⟹ (∀𝒙 ∈ R𝑛, ‖𝐴𝒙‖2 = 0) ⟹ 𝐴 = 0𝑀(𝑚,𝑛). (1.5)

Ensuite,

|||𝜆𝐴||| = sup
𝒙∈R𝑛⧵{𝟎}

‖𝜆𝐴𝒙‖2
‖𝒙‖2

= sup
𝒙∈R𝑛⧵{𝟎}

|𝜆|‖𝐴𝒙‖2
‖𝒙‖2

= |𝜆| sup
𝒙∈R𝑛⧵{𝟎}

‖𝐴𝒙‖2
‖𝒙‖2

= |𝜆| |||𝐴|||. (1.6)

Enfin,

|||𝐴 + 𝐵||| = sup
𝒙∈R𝑛⧵{𝟎}

‖(𝐴 + 𝐵)𝒙‖2
‖𝒙‖2

(1.7)

⩽ sup
𝒙∈R𝑛⧵{𝟎}

‖𝐴𝒙‖2 + ‖𝐵𝒙‖2
‖𝒙‖2

(1.8)

⩽ sup
𝒙∈R𝑛⧵{𝟎}

‖𝐴𝒙‖2
‖𝒙‖2

+ sup
𝒙∈R𝑛⧵{𝟎}

‖𝐵𝒙‖2
‖𝒙‖2

(1.9)

= |||𝐴||| + |||𝐵|||. (1.10)

c) Puisque 𝑆1 est compacte et 𝑓 continue, la restriction 𝑓|𝑆1
est bornée et ses bornes sont

atteintes sur 𝑆1. Par conséquent,

|||𝐴||| = sup{𝑓(𝒙) ∶ 𝒙 ∈ 𝑆1} = max{𝑓(𝒙) ∶ 𝒙 ∈ 𝑆1} (1.11)
et ∃𝒚 ∈ 𝑆1 ‖𝐴𝒚‖2 = max{𝑓(𝒙) ∶ 𝒙 ∈ 𝑆1} = |||𝐴|||. (1.12)

Le maximum est aussi atteint en −𝒚, et peut-être en d’autres vecteurs de norme 1.
3) a) Une première solution est d’utiliser l’isomorphisme ci-dessus entre 𝑀(𝑚, 𝑛) et R𝑚𝑛 ;

en effet, si 𝐴 ∈ 𝑀(𝑚, 𝑛) est envoyée sur 𝒙𝐴 ∈ R𝑚𝑛 par cet isomorphisme, alors la
définition de ‖𝐴‖𝐹 donne immédiatement ‖𝐴‖𝐹 = ‖𝒙𝐴‖2 (norme euclidienne). Mais
voici aussi la solution qui ne passe pas par cet isomorphisme.
Clairement, on a ‖𝐴‖𝐹 ⩾ 0, ∀𝐴 ∈ 𝑀(𝑚, 𝑛). Ensuite, si ‖𝐴‖𝐹 = 0, alors 𝐴𝑖,𝑗 = 0 pour
tous 𝑖 ∈ {1, … , 𝑚} et 𝑗 ∈ {1, … , 𝑛}, et donc 𝐴 = 0𝑀(𝑚,𝑛).

Pour la deuxième propriété, ‖𝜆𝐴‖𝐹 = √∑𝑖,𝑗 𝜆2𝐴2
𝑖,𝑗 = |𝜆|‖𝐴‖𝐹. Enfin, utilisant l’inéga-

lité de Cauchy–Schwarz,

‖𝐴 + 𝐵‖2
𝐹 = ∑

𝑖,𝑗
(𝐴𝑖,𝑗 + 𝐵𝑖,𝑗)2 (1.13)

= ∑
𝑖,𝑗

𝐴2
𝑖,𝑗 + ∑

𝑖,𝑗
𝐵2

𝑖,𝑗 + 2 ∑
𝑖,𝑗

𝐴𝑖,𝑗𝐵𝑖,𝑗 (1.14)

⩽ ∑
𝑖,𝑗

𝐴2
𝑖,𝑗 + ∑

𝑖,𝑗
𝐵2

𝑖,𝑗 + 2(∑
𝑖,𝑗

𝐴2
𝑖,𝑗)

1/2

(∑
𝑖,𝑗

𝐵2
𝑖,𝑗)

1/2

(1.15)

= (‖𝐴‖𝐹 + ‖𝐵‖𝐹)2. (1.16)

b) De nouveau, on peut utiliser utiliser l’isomorphisme ci-dessus entre 𝑀(𝑚, 𝑛) et R𝑚𝑛 ;
en effet, comme déjà mentionné, si 𝐴 ∈ 𝑀(𝑚, 𝑛) est envoyée sur 𝒙𝐴 ∈ R𝑚𝑛 par
cet isomorphisme, alors la définition de ‖𝐴‖𝐹 donne ‖𝐴‖𝐹 = ‖𝒙𝐴‖2. De plus, en
posant 𝑁(𝒙𝐴) ∶= |||𝐴|||, on vérifie facilement que l’on définit ainsi une norme 𝑁 sur
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R𝑚𝑛 (en utilisant que |||⋅||| est une norme sur 𝑀(𝑚, 𝑛)). Comme toutes les normes
sont équivalentes sur R𝑚𝑛, il existe 𝐶1, 𝐶2 > 0 telles que, pour tout 𝐴 ∈ 𝑀(𝑚, 𝑛),
𝐶1𝑁(𝒙𝐴) ⩽ ‖𝒙𝐴‖2 ⩽ 𝐶2𝑁(𝒙𝐴) et donc 𝐶1|||𝐴||| ⩽ ‖𝐴‖𝐹 ⩽ 𝐶2|||𝐴|||.
On peut aussi résoudre le problème explicitement. Soit 𝒙 = ∑𝑛

𝑗=1 𝑥𝑗𝒆𝑗 ∈ R𝑛, (𝒆𝑗)𝑛
𝑗=1

les vecteurs de la base canonique de R𝑛 et (𝒂𝑗)𝑛
𝑗=1 les colonnes de A. Alors, on a

‖𝐴𝒙‖2
2 = ∥

𝑛

∑
𝑗=1

𝑥𝑗𝒂𝑗∥
2

2

⩽ (
𝑛

∑
𝑗=1

|𝑥𝑗|‖𝒂𝑗‖2)
2

(1.17)

⩽ (
𝑛

∑
𝑗=1

𝑥2
𝑗)(

𝑛

∑
𝑗=1

‖𝒂𝑗‖2
2) (1.18)

= ‖𝒙‖2
2(

𝑛

∑
𝑗=1

𝑚

∑
𝑖=1

𝐴2
𝑖,𝑗) (1.19)

= ‖𝒙‖2
2‖𝐴‖2

𝐹. (1.20)

Donc, ∀𝒙 ∈ R𝑚 ⧵ {𝟎}, ‖𝐴𝒙‖2

‖𝒙‖2
⩽ ‖𝐴‖𝐹, c’est-à-dire, |||𝐴||| ⩽ ‖𝐴‖𝐹. De manière similaire,

‖𝐴‖2
𝐹 = ∑

𝑖,𝑗
𝐴2

𝑖,𝑗 =
𝑛

∑
𝑗=1

‖𝒂𝑗‖2
2 =

𝑛

∑
𝑗=1

‖𝐴𝒆𝑗‖2
2 (1.21)

=
𝑛

∑
𝑗=1

‖𝐴𝒆𝑗‖2
2

‖𝒆𝑗‖2
2

(1.22)

⩽
𝑛

∑
𝑗=1

sup
𝒙∈R𝑛⧵{𝟎}

‖𝐴𝒙‖2
2

‖𝒙‖2
2

=
𝑛

∑
𝑗=1

|||𝐴|||2 = 𝑛|||𝐴|||2, (1.23)

donc, ‖𝐴‖𝐹 ⩽
√

𝑛|||𝐴|||.

Exercice 2.
Soient 𝑓 ∈ C2(R2,R) et 𝑎 ∈ R∗.

1) On effectue le changement de variable suivant :

𝐹(𝑢, 𝑣) = 𝑓(𝑢 + 𝑣
2𝑎 , 𝑢 − 𝑣

2 ) (2.1)

Calculer ∂𝐹
∂𝑢

, ∂𝐹
∂𝑣

et ∂2𝐹
∂𝑣∂𝑢

en fonction de ∂𝑓
∂𝑥

, ∂𝑓
∂𝑦

, ∂2𝑓
∂𝑥2

et ∂2𝑓
∂𝑦2

, où 𝑥 et 𝑦 représentent respecti-
vement la première et la seconde variable de 𝑓.

2) Montrer que si 𝑓 vérifie

∂2𝑓
∂𝑥2 (𝑥, 𝑦) − 𝑎2 ∂2𝑓

∂𝑦2 (𝑥, 𝑦) = 0, (2.2)

alors il existe 𝑔, ℎ ∈ C2(R,R) tels que 𝑓(𝑥, 𝑦) = 𝑔(𝑎𝑥 + 𝑦) + ℎ(𝑎𝑥 − 𝑦) sur R2.

Solution
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1) On utilise la formule des dérivées composées :

∂𝐹
∂𝑢 (𝑢, 𝑣) = 1

2𝑎
∂𝑓
∂𝑥 (𝑢 + 𝑣

2𝑎 , 𝑢 − 𝑣
2 ) + 1

2
∂𝑓
∂𝑦 (𝑢 + 𝑣

2𝑎 , 𝑢 − 𝑣
2 ) ; (2.3)

de même,
∂𝐹
∂𝑣 (𝑢, 𝑣) = 1

2𝑎
∂𝑓
∂𝑥 (𝑢 + 𝑣

2𝑎 , 𝑢 − 𝑣
2 ) + −1

2
∂𝑓
∂𝑦 (𝑢 + 𝑣

2𝑎 , 𝑢 − 𝑣
2 ). (2.4)

Enfin,

∂2𝐹
∂𝑢∂𝑣 = ∂2𝐹

∂𝑣∂𝑢 = 1
2𝑎( 1

2𝑎
∂2𝑓
∂𝑥2 + −1

2
∂2𝑓

∂𝑥∂𝑦 ) + 1
2( 1

2𝑎
∂2𝑓

∂𝑥∂𝑦 + −1
2

∂2𝑓
∂𝑦2 ) (2.5)

= 1
4𝑎2

∂2𝑓
∂𝑥2 − 1

4
∂2𝑓
∂𝑦2 , (2.6)

où 𝐹 et ses dérivées partielles d’ordres 1 et 2 sont évaluées en (𝑢, 𝑣), et où 𝑓 et ses dérivées
partielles d’ordres 1 et 2 sont évaluées en ((𝑢 + 𝑣)/(2𝑎), (𝑢 − 𝑣)/2).

2) On effectue le changement de variable précédent. On obtient alors

∂2𝐹
∂𝑢∂𝑣 = 1

4𝑎2 ( ∂2𝑓
∂𝑥2 − 𝑎2 ∂2𝑓

∂𝑦2 ) = 0 (2.7)

En intégrant (2.7) par rapport à la première variable de 𝐹, on trouve qu’il existe une fonction
𝛼 telle que, ∀(𝑢, 𝑣) ∈ R2,

∂𝐹
∂𝑣 (𝑢, 𝑣) = 𝛼(𝑣). (2.8)

Comme 𝑓 ∈ C2(R2), alors 𝐹 ∈ C2(R2) et 𝛼 ∈ C1(R).
En intégrant (2.8) par rapport à la deuxième variable de 𝐹, on trouve qu’il existe une
fonction 𝑔 telle que, ∀(𝑢, 𝑣) ∈ R2, 𝐹(𝑢, 𝑣) = 𝑔(𝑢) + ℎ(𝑣), avec ℎ une primitive quelconque
de 𝛼. Puisque 𝐹, ℎ sont de classe C2, 𝑔 aussi. Finalement 𝑢 et 𝑣 sont exprimées comme
fonctions de 𝑥 et 𝑦.

Exercice 3.
Écrire le développement limité à l’ordre 3 et au point (1, 1) de la fonction

𝑓 = (𝑥, 𝑦) ↦ e𝑥𝑦,

en utilisant le développement limité à l’ordre 3 de la fonction 𝑢 ↦ e𝑢 en 0.
Indication. Écrire 𝑓(𝑥, 𝑦) = e1+𝑢, où 𝑢 ≔ (𝑥 − 1) + (𝑦 − 1) + (𝑥 − 1)(𝑦 − 1). Justifier toutes les
étapes.

Solution
D’après la formule de Taylor en dimension 1, ∀𝑢 ∈ R,

e1+𝑢 = e × e𝑢 = e + e𝑢 + 1
2e𝑢2 + 1

6e𝑢3 + 𝑔(𝑢) (3.1)
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avec 𝑔(𝑢) = 𝑜(|𝑢|3) et 𝑔(0) = 0. Pour 𝑥, 𝑦 ∈ R, écrivons 𝑥 ≕ 1 + 𝑎 et 𝑦 ≕ 1 + 𝑏. Considérons la
norme euclidienne, et utilisons 𝑔(𝑢) = 𝑜(|𝑢|3). Soit 𝜖 > 0 ; si 𝑎 + 𝑏 + 𝑎𝑏 ≠ 0,

|𝑔(𝑎 + 𝑏 + 𝑎𝑏)|
‖(𝑎, 𝑏)‖3 =

|𝑔(𝑎 + 𝑏 + 𝑎𝑏)|
|𝑎 + 𝑏 + 𝑎𝑏|3 ×

|𝑎 + 𝑏 + 𝑎𝑏|3

‖(𝑎, 𝑏)‖3 ⩽
|𝑔(𝑎 + 𝑏 + 𝑎𝑏)|
|𝑎 + 𝑏 + 𝑎𝑏|3 (1 + 1 + ‖(𝑎, 𝑏)‖)3 ⩽ 𝜖, (3.2)

si ‖(𝑎, 𝑏)‖ est suffisamment petit. Cette conclusion reste valable si 𝑎+𝑏+𝑎𝑏 = 0, avec (𝑎, 𝑏) ≠ (0, 0).
Ainsi 𝑔(𝑎 + 𝑏 + 𝑎𝑏) = 𝑜(‖(𝑎, 𝑏)‖3) et on obtient

e𝑥𝑦 = e(1+𝑎)(1+𝑏) (3.3)
= e1+𝑎+𝑏+𝑎𝑏 (3.4)

= e + e(𝑎 + 𝑏 + 𝑎𝑏) + 1
2e(𝑎 + 𝑏 + 𝑎𝑏)2 + 1

6e(𝑎 + 𝑏 + 𝑎𝑏)3 + 𝑔(𝑎 + 𝑏 + 𝑎𝑏) (3.5)

= e + e(𝑎 + 𝑏 + 𝑎𝑏) + 1
2e(𝑎2 + 𝑏2 + 2𝑎𝑏 + 2𝑎2𝑏 + 2𝑎𝑏2)

+ 1
6e(𝑎3 + 3𝑎2𝑏 + 3𝑎𝑏2 + 𝑏3) + 𝑜(‖(𝑎, 𝑏)‖3)

(3.6)

= e + e(𝑎 + 𝑏) + 1
2e(𝑎2 + 𝑏2 + 4𝑎𝑏) + 1

6e(𝑎3 + 9𝑎2𝑏 + 9𝑎𝑏2 + 𝑏3) + 𝑜(‖(𝑎, 𝑏)‖3) (3.7)

= e + e(𝑥 − 1) + e(𝑦 − 1) + e
(𝑥 − 1)2

2 + e
(𝑦 − 1)2

2
+ 2e(𝑥 − 1)(𝑦 − 1) + e3

2(𝑥 − 1)2(𝑦 − 1) + e3
2(𝑦 − 1)2(𝑥 − 1)

+ e
(𝑥 − 1)3

6 + e
(𝑦 − 1)3

6 + 𝑜(‖(𝑥, 𝑦) − (1, 1)‖3).

(3.8)

Le polynôme de Taylor d’ordre 3 de 𝑓 au point (1, 1) est donc

e + e(𝑥 − 1) + e(𝑦 − 1) + e
(𝑥 − 1)2

2 + e
(𝑦 − 1)2

2 + 2e(𝑥 − 1)(𝑦 − 1)

+ e3
2(𝑥 − 1)2(𝑦 − 1) + e3

2(𝑦 − 1)2(𝑥 − 1) + e
(𝑥 − 1)3

6 + e
(𝑦 − 1)3

6 . (3.9)

Exercice 4.
Soit 𝑓 ∶ R3 → R la fonction donnée par

𝑓(𝒙) = 𝑓(𝑥1, 𝑥2, 𝑥3) = ((𝑥1 − 1)2 + (𝑥2 − 2)2 + (𝑥3 − 3)2)
1/2.

Écrire le polynôme de Taylor de degré 2 de 𝑓 en (0, 0, 0).

Solution
La fonction 𝑓 est de classe C2 sur un ouvert contenant 𝟎. Par exemple 𝑓 ∈ C2(B(𝟎, 𝑟)) avec

𝑟 ∈ ]0,
√

14[ puisque ‖𝟎 − (1, 2, 3)‖ =
√

14. En fait, elle est même infiniment dérivable sur cette
boule. D’après le cours, le polynôme demandé est donc

𝑝 ∶ 𝒙 ↦ ∑
0⩽|𝜶|⩽2

1
𝜶!

∂|𝜶|𝑓
∂𝒙𝜶 (𝟎)𝒙𝜶. (4.1)
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Cette somme inclut les termes suivants :

|𝜶| = 0, 𝜶 = (0, 0, 0), 𝜶! = 1 ; (4.2)
|𝜶| = 1, 𝜶 = (1, 0, 0), (0, 1, 0), (0, 0, 1), 𝜶! = 1 ; (4.3)
|𝜶| = 2, 𝜶 = (2, 0, 0), (0, 2, 0), (0, 0, 2), 𝜶! = 2 ; (4.4)
|𝜶| = 2, 𝜶 = (0, 1, 1), (1, 0, 1), (1, 1, 0), 𝜶! = 1. (4.5)

Soit 𝒙 ∈ B(𝟎, 𝑟). Calculons les dérivées partielles de 𝑓 en 𝒙 jusqu’à l’ordre 2. Pour tout
𝑖, 𝑗 ∈ {1, 2, 3},

∂𝑓
∂𝑥𝑖

(𝒙) = (𝑥𝑖 − 𝑖) 1
𝑓(𝒙) ; (4.6)

∂2𝑓
∂𝑥𝑖∂𝑥𝑗

(𝒙) =
𝛿𝑖𝑗

𝑓(𝒙) − (𝑥𝑖 − 𝑖)(𝑥𝑗 − 𝑗) 1
𝑓3(𝒙) . (4.7)

Évaluons ces dérivées partielles au point 𝟎 : 𝑓(𝟎) =
√

14 et, pour tout 𝑖, 𝑗 ∈ {1, 2, 3},

∂𝑓
∂𝑥𝑖

(𝟎) = −𝑖
√

14
; (4.8)

∂2𝑓
∂𝑥𝑖∂𝑥𝑗

(𝟎) =
𝛿𝑖𝑗√
14

− 𝑖𝑗
14

√
14

. (4.9)

On obtient alors l’expression de 𝑝 :

𝑝(𝒙) = 𝑓(𝟎) + ∂𝑓
∂𝑥1

(𝟎)𝑥1 + ∂𝑓
∂𝑥2

(𝟎)𝑥2 + ∂𝑓
∂𝑥3

(𝟎)𝑥3

+ ( ∂2𝑓
∂𝑥1∂𝑥2

(𝟎)𝑥1𝑥2 + ∂2𝑓
∂𝑥1∂𝑥3

(𝟎)𝑥1𝑥3 + ∂2𝑓
∂𝑥2∂𝑥3

(𝟎)𝑥2𝑥3)

+ 1
2( ∂2𝑓

∂𝑥2
1
(𝟎)𝑥2

1 + ∂2𝑓
∂𝑥2

2
(𝟎)𝑥2

2 + ∂2𝑓
∂𝑥2

3
(𝟎)𝑥2

3)

(4.10)

=
√

14 − 1
√

14
(𝑥1 + 2𝑥2 + 3𝑥3) − 1

14
√

14
(2𝑥1𝑥2 + 3𝑥1𝑥3 + 6𝑥2𝑥3)

+ 1
28

√
14

(13𝑥2
1 + 10𝑥2

2 + 5𝑥2
3).

(4.11)
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