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Chapitre 1

L’espace R" et sa topologie

1.1 Espaces vectoriels normés

On rappelle ici les notions générales d’espace vectoriel, norme, distance et produit
scalaire.

Définition 1.1 (Espace vectoriel réel). Un ensemble V' est un espace vectoriel réel si
les opérations de somme et multiplication par un scalaire (réel) sont définies sur V avec
les propriétés suivantes :

1. somme : VxV =V, (z,y) eVxVez=x4+yeV,
— Ve,yeV, z+y=y+=zx,
— Vx,y,z€V, (z+y)+z=x+ (y+2),
— délément nul 0: x+0==zx,
— Yz € V, 3 élément opposé —x: =+ (—x) =0,
2. multiplication par un scalaire : R xV =V, (ANz)ERxVisz= Xz eV,
— VA peR Ve eR, Aux)= Az,
— VeV, 1-xz=uz,
— VN peR VeV, (A p)x=Ax+ uzx,
— VAeR, Vz,y eV, Axz+y)=+\y.
Définition 1.2 (Norme). Soit V un espace vectoriel réel. Une norme sur V est une
application N : V. — Ry qui satisfait les propriétés suivantes :
1.VxeV, N(z)>0, e N(z)=0&z=0,
2. VxeV,ANeR, N(\x)=|\N(z),
3. Vzx,yeV, N(x+y) <N(x)+N(y) (inégalité triangulaire).
On note souvent une norme par || - || (N(z) = ||z]]).
Un espace vectoriel muni d’une norme est appelé espace vectoriel normé et souvent

noté (V,||-]]). On dit que deux normes N; et Ny sur un espace vectoriel V' sont équivalentes
s’ils existent deux constants ¢,¢ > 0 telles que c¢Nj(z) < Na(z) < €Ni(x) pour tout x € V.
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Définition 1.3 (distance). Soit X un ensemble. Une distance ou métrique sur X est
une application d : X x X — Ry qui satisfait les propriétés suivantes :

1. Ve,y e X, d(xz,y) >0, et dz,y=0&z=y,
2. Vo,y € X, d(z,y) =dy, ),
3. Vr,y,z € X, d(x,y) <d(x,z)+d(z,y) (inégalité triangulaire).

Un ensemble X muni d’une distance (X, d) est appelé espace métrique. Si (V.|| -|)
est un espace vectoriel normé, alors 'application

d:VxV =R, dxy) =|z-yl, Yr,yeV,

est une distance (vérifiez-le) appelée la distance induite par la norme ||-||. Donc (V,d(x,y) =
|z — y||) est un espace métrique.

Exercice 1.4. Soit V' un espace vectoriel, d(-,-) : V x V — Ry une distance sur V et
h :[0,00) — R4 une fonction différentiable telle que h(0) = 0, h'(x) > 0 pour = > 0 et
W (z) décroissante sur [0,00). Montrer que d = hod est aussi une distance sur V. Vérifier
que les hypothéses sont satisfaites par la fonction h(x) = x/(1 4+ ), mais que la distance
d = hod n'est pas induite par une norme lorsque V # {0}, méme si ceci est vrai pour d.

Définition 1.5 (Produit scalaire). Un produit scalaire sur un espace vectoriel réel V
est une application b:V XV — R qui satisfait les propriétés suivantes :

1. (symétrie) Nz,y €V, blx,y)=>bly,x),

2. (bi-linéarité) Vr,yeV, Va,f R, blax+ PBy,z) = ab(z,z)+ Bb(y,z),

3. (positivité) Vx eV, blx,z)>0, et blx,r)=0<z=0.

Un produit scalaire satisfait I'importante inégalité suivante :

Lemme 1.6 (Inégalité de Cauchy—Schwarz). Soit V un espace vectoriel réel et
b:V xV — R un produit scalaire sur V. Alors

N

Va,y €V, |b(z,y)| < bz, 2)2b(y,y)?.
Démonstration. Ya € R, Ve, y € V
0 <blaxr+y,ar+y) = azb(a:, x) + 2ab(z,y) + b(y,y) = p2(«)

ol p2(a) est un polyndéme de degré 2 en «. Par la positivité de b, on obtient la condition
suivante pour le discriminant : A < 0 ce qui implique b?(x,y) — b(z, )b(y,y) < 0, d’oi1 la
these. O

Gréce a cette propriété, un espace vectoriel réel muni d’un produit scalaire est toujours
un espace normeé.

Théoréeme 1.7. Solit b:V xV —= R un produit scalaire sur un espace vectoriel réel V.
Alors ||z]lp = b(x,x)2 : V = Ry est une norme et (V, || - ||») un espace vectoriel normé.
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Démonstration. 11 faut vérifier que || - ||, satisfait toutes les propriétés d’une norme selon
la Définition 1.2. Les propriétés 1. et 2. suivent directement de la positivité du produit
scalaire (propriété 3. de 1.5) et de sa bi-linéarité (propriété 2. de 1.5).

Quant a I'inégalité triangulaire (propriété 3.) elle est une conséquence de 'inégalité de
Cauchy—Schwarz :

2+ yll§ = b(z + y, 2 +y) = bz, z) + 2b(z,y) + by, y)
< b(w, x) + b(y,y) + 2b(x, 7)2b(y, y)?
= (lzllo + llylls)®
O
1.2 L’espace R"
n fois
On note R” =R x R x - - - X R ’ensemble des n-uples x = (z1,...,z,), avec z; € R,
pour ¢ = 1,...,n, muni des opérations de

— somme : pour tout X = (z1,...,%n), ¥ = (Y1,---,Yn), X+y = (z14+y1,...,Tn+Yn),
— multiplication par un scalaire : pour tout x = (z1,...,2,), A ER, Ax = (Az1,...,A\zy).

Ainsi, R™ a une structure d’espace vectoriel réel. Sur R", on peut introduire plusieurs

normes. Voici les plus communes :
n
Xz = |27,
i=1

Y
uxnpz(zw) Cpel
=1

— Norme euclidienne :

— Norme p :

— Norme oo :
[%[[co = max [z;].

1<j<n
La norme euclidienne correspond & la norme p avec p = 2, i.e. ||x]|g = ||x[|2. On vérifie
(exercice) que toutes les applications || - ||, : R™ — R4, pour tout p > 1 et p = oo, sont

des normes. Par contre, ||x||, = (3Ji1; ]m,]p)% avec 0 < p < 1 n’est pas une norme lorsque
n > 2 (elle ne vérifie pas I'inégalité triangulaire).

Toutes les normes || - ||,, p > 1, sont équivalentes, c’est-a-dire, Vp,q > 1, il existe
0 <ci(p,q) <capsq) :

c(p Qxllp < [Ixllg < cap, @)lIxllp,  vx € R™.

Plus généralement, sur R", toutes les normes sont équivalentes, c’est-a-dire, si || - ||
et || - ||| sont deux normes sur R™, alors 30 < ¢; < ¢ tels que.

allx| < Il < e2llx]] vx € R™.



10 CHAPITRE 1. L’ESPACE R"™ ET SA TOPOLOGIE

La preuve de ce résultat sera proposée plus loin dans le cours.
1 .

Seule la norme euclidienne ||x||2 = (37 ; #?)2 parmi toutes les normes || - [|,, p > 1 est

une norme induite par un produit scalaire, nommément le produit scalaire euclidien :

n
xy)=Y zyi=y x=y' x
=1

Dans ces deux derniéres expressions, x et y sont des vecteurs colonnes, y " eslt la transposée
de y et le produit est la multiplication matricielle. En effet, ||x[|2 = (x,x)2 et 'inégalité
de Cauchy Schwarz sur R™ devient :

16y < [xl2llyll2-

1.3 Suites dans R"

Définition 1.8 (Suite convergente). Soit {x(*)}2°  C R" une suite d’éléments de R",
x(k) = (xgk), e ,$,(1k)) e R™. On dit que {x")}cn converge s'il existe x € R™ tel que
limy o0 [|[x — x®)|| = 0, c.-d-d. :

Ve>0, AIN>0: Vk>N, |[x—x®|<e

Dans ce cas, on note limy_, x(k) = x.

Puisque toutes les normes sont équivalentes sur R”, la convergence de la suite x(*)
ne dépend pas de la norme choisie. De méme que la valeur limite x (si elle existe) ne
dépend pas de la norme. En particulier, si on prend la norme || - ||o dans la définition de

limy,_,oo x*) = x, on en tire la propriété suivante.

Lemme 1.9. Une suite {x(k)}gozo C R"™ converge vers x € R" si et seulement si

{x§k)}z<>:0 C R converge vers x; € R pour toute composante j =1,...,n.

Démonstration. Soit limy_,. x¥) = x, et considérons la norme || - ||« dans la définition
de convergence d’une suite de R™. Alors,

Ye >0, IN>0: Vk>N, Hx—x(k)Hoo:nllax \a:j—xg-k)]ge,
=

=1,...,n

ce qui implique que limg_, 4, xg-k) =xj, Vj=1,...,n.

Réciproquement, supposons qu'il existe x = (z1,...,z,) € R™ tel que limg_, m§~k) = x5,
Vji=1,...,n. Alors,

We>0, 3N;>0: Vk>N;, |2V <e

En prenant N = max{Ny,..., Ny} on a maxj—i,_n|z; — x§k)| < e pour tout k > N, ce

qui implique limj_,o, x*) = x. ]
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Définition 1.10 (Suite de Cauchy). Une suite {x¥)} ey C R” est dite de Cauchy si
Ve>0,3N>0: Vk,j>N, |[x® —x0)|<e

En suivant la méme démonstration du lemme 1.9, on peut montrer qu’une suite
{x®)},en € R™ est de Cauchy si et seulement si chaque suite {xgk)}keN CR, j=1,....n
est de Cauchy.

Théoréme 1.11. Une suite {x*)} ey C R™ est convergente si et seulement si elle est de
Cauchy.

Démonstration. Ceci est vrai pour n = 1 (voir cours d’Analyse I). En utilisant la norme
| - |loo €t le lemme 1.9, on a : {xF)},cy converge <= {x,gk)}keN converge pour tout i
= {xgk)}keN est de Cauchy pour tout i <= {x®},cy est de Cauchy. O

Théoréme 1.12 (Bolzano Weierstrass sur R”). Soit {x*)} ey € R™ une suite bornée, c.-
d-d., IM €]0, +o0] tel que ||x || < M, Yk > 0. Alors il existe une sous-suite {x*)} ey C
{x")}en qui est convergente.

Démonstration. On utilise le théoreme de Bolzano-Weierstrass sur R : puisque {x*)} ey
(k) (k) (k)

’ . . k , N
est bornée, en particulier {:L'g )}keN est bornée ot x*) = (21" 25" ... x3"”). Donc on

peut extraire une sous-suite :135 2 qui converge vers 1 € R. Prenons maintenant la suite
() (kj) (Je)

Yy = x4’ . Puisqu’elle est bornée, on peut extraire une sous-suite y5 ~ qui converge

vers To € R. Ainsi limy_, o xé = 19 et limy_yoo asg i) _ x1. En itérant ce raisonnement
n fois, on peut extraire une sous-suite de x*) dont chaque composante converge vers
(1,22, .., Tp). O

Ce qui est important dans la preuve de ce théoreme est que 'on fait un nombre fini
d’itérations (n est fini). Si n était co la preuve ne porterait pas a conclusion.

1.4 Topologie de R"

1.4.1 Concepts de base

On s’intéresse ici a ’étude et classification des sous-ensembles de R™. On commence
par définir les boules.

Définition 1.13 (Boule de R™). Pour tout x € R™ et 6 > 0, on appelle
— B(x,0) ={y e R": ||x —y|| <0} : la boule ouverte centrée en x et de rayon 9,
— S(x,0) =0B(x,0) ={y e R": ||lx —y|| = 0} : la sphére centrée en x et de rayon J,
— B(x,0) = B(x,0) US(x,0) ={y € R" : ||x —y|| <6} : la boule fermée centrée en x
et de rayon ¢.
La Figure 1.1 montre la forme des boules de R? selon la norme qu’on choisit. On

travaille par la suite avec la norme euclidienne ||x|| = ||x||2 mais toutes les définitions ci

apres s’appliquent a n’importe quelle norme puisque toutes les normes sont équivalentes
sur R™.

On considere maintenant un sous-ensemble quelconque E de R™.
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- [l I+ lloo - Il

FIGURE 1.1 — Forme des boules de R? pour des normes différentes

Définition 1.14 (sous-ensembles ouverts, fermés, bornés). Soit E C R™. On dit que

— FE est ouvert siVx € E, 36 >0 tel que B(x,0) C E. En particulier E est ouvert
s’il est vide.

— FE est fermé si son complémentaire E = R"\E = {x € R",x ¢ E} est ouvert.
— E est borné s’il existe M >0 tel que ||x|| < M, Vx € E.
On vérifie facilement que si un sous-ensemble E est ouvert par rapport a une norme, il
est aussi ouvert par rapport a n’importe quelle autre norme puisque toutes les normes sont

équivalentes sur R™. La méme conclusion est vraie pour les ensembles fermé ou bornés.
L’ensemble des ouverts de R™ est appelé la topologie de R" (induite par une norme).

Remarque 1.15. On vérifie facilement que B(x,d) est ouvert et B(x,d) est fermé. En
effet, Vz € B(x,0), B(z,0 — ||z — x||) C B(x,9), donc B(x,d) est ouvert. De méme,
vz € R"\B(x,0), B(z, ||z —x|| — 6) C R"\B(x,6), donc B(x,d) est fermé.

Etant donné un sous-ensemble E C R™, on peut classifier les points x € R™ par rapport
a F de la fagon suivante :

Définition 1.16. Soit E C R" et x € R™. On dit que
— X est un point intérieur de E si

36>0: B(x,0) CE.

L’ensemble des points intérieurs de E est noté E ou int(E) et appelé l'intérieur
de E.

— x est un point frontiére si
V6 >0, B(x,0)NE=#0 et B(x,0)NE°#(.

L’ensemble des points fronticres de E est noté OF et appelé la frontiére ou le bord
de E.

— x est un point adhérent a E si
V6 >0, B(x,0)NE#0.

Un point adhérent est soit un point intérieur, soit un point frontiére. L’ensemble des
points adhérents a E est noté E, et appelé l’'adhérence ou la fermeture de E, et
coincide avec K = FUOE = EUOJF.
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— x est un point isolé de E si
30 >0: B(x,0)NE={x}

— x est un point d’accumulation de E si Vo > 0, B(x,0) contient au moins un
point de E autre que X, c.-d-d. B(x,0) N (E\{x}) # 0. (Rappel : E\{x} = E si
x¢E.)

Il s’ensuit que si x est un point d’accumulation de E, alors ¥§ > 0, B(x,0) contient
une infinité de points de E. Les points d’accumulation de E sont tous les points de
E = EUOE qui ne sont pas isolés.

On remarque que pour tout y € R® et § > 0, on a B(y,0) NE # 0 < B(y,§) N E # (.
En effet, I'implication = est claire car £ C E. Pour montrer 'implication <, soit
z € B(y,d) N E. Puisque z est point adhérent a E, il existe w € B(z,0 — |z —y||) N E C
B(y,d) N E. Donc B(y,d) N E # 0.

Exercice 1.17. Soit E = {(z,y) € R? : 22 +y* > 1}U{(0,0)} le sous-ensemble montré en
figure. Déterminer son intérieur F, sa frontiére OF, son complémentaire E°, son adhérence
FE, ainsi que tous ses points isolés et d’accumulation.

Définition 1.18. Soit x € R™. On dit qu’un ensemble V- C R™ est un voisinage de x s’il
existe § > 0 tel que B(x,d) C V. Autrement dit, tout ensemble V' qui a x comme point
intérieur est un voisinage de X.

Quelques remarques sur les ensemble ouverts

— E est ouvert.

Démonstration. En effet, si x € E, il existe § > 0 tel que B(x,§) C E. Vérifions
que B(x,6) C E, ce qui prouvera que E est ouvert. Pour tout z € B(x,6), on a
B(z,0 — ||z — x||) € B(x,6) C E, et donc z € E et B(x,8) C E. O

— E est ouvert si et seulement si £ = E.
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— Toute réunion quelconque (méme infinie, dénombrable ou non) de sous-ensembles
ouverts de R™ est un sous-ensemble ouvert.

Démonstration. Soit E =, Eq avec E, ouvert. Pour tout x € F, il existe av: x €
E,. Mais, E, étant ouvert, 30 > 0: B(x,d) C E, C E. Donc E est ouvert. O

— Toute intersection finie de sous-ensembles ouverts de R” est un sous-ensemble ouvert.

Démonstration. Soit E = (X, E;, avec E; ouvert. Si x € E, alors x € E; Vi =
1,...,met, puisque chaque E; est ouvert, 39; : B(x,d;) C E;. Soit § = min{dy, ..., 0}
alors B(x,0) C B(x,0;) C E;, Vi et donc B(x,0) C (i, E; = E. O

— RR™ est ouvert.

Quelques remarques sur les ensembles fermés
— R™\E = int(R"\ E) et R*\E = R"\ E.

— L’adhérence E d’un ensemble E C R" est toujours fermé.

Démonstration. La preuve est par “passage au complémentaire” : son complémentaire
R™\E = int(R"\ E) est en effet ouvert. O

— FE est fermé si et seulement si E = E. (Preuve : par passage aux complémentaires.)

— Toute intersection quelconque (méme infinie, dénombrable ou non) de sous-ensembles
fermés est fermée. (On passe aux complémentaires pour montrer cette propriété et
la suivante.)

— Toute union finie de sous-ensembles fermés est fermée.

— () et R™ sont fermés.

Une caractérisation importante des ensembles fermés est la suivante.

Lemme 1.19. Un ensemble E C R™ non vide est fermé si et seulement si toute suite
{X(k)}keN C FE convergente, converge vers un élément de E.

Démonstration. Soit E fermé et {x¥)},cny C E une suite convergente vers x € R™. Alors
x adhere a F et, puisque E est fermé, x € FE.

Réciproquement, supposons que F n’est pas fermé, autrement dit, que R™\ E' n’est pas
ouvert. Il existe donc X € R™\ E tel que V6 > 0 B(X,d) ¢ (R"\E). En choisissant § = 1/k
avec k € N*, on obtient x*) € B(X,1/k) N E. La suite {x(®},en- dans E converge alors
vers X ¢ E. O

On montre de méme que x € E ssi il existe une suite {x*)},cny € E qui converge
vers X.
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1.4.2 Ensembles compacts

On peut donner plusieurs définitions équivalentes d’'un ensemble compact en R™. On
présente ici la définition la plus “facile”, mais non pas celle qui caractérise le mieux la
notion de compacité.

Définition 1.20 (Compacité). Un ensemble E C R" est compact s’il est d la fois borné
et fermé. L’ensemble vide sera considéré comme compact.

Les deux autres caractérisations (équivalentes en R™) sont montrées dans les théoremes
suivants.

Théoréme 1.21 (Caractérisation de la compacité par sous-suites convergentes). Un
sous-ensemble non vide E C R™ est compact (fermé et borné) si et seulement si de toute
suite d’éléments de E on peut extraire une sous-suite qui converge vers un élément de E.

Démonstration.

1. Soit E compact (fermé et borné). Par le théoreme de Bolzano—Weierstrass, de toute suite
{x")} ey C E bornée (car E est borné), on peut extraire une sous-suite {x(%)} ;e C E
convergente telle que lim;_, x(k) = x € R™. Puisque F est fermé, x € F.

2. Supposons que FE n’est pas compact, autrement dit, qu’il n’est pas fermé ou qu’il n’est
pas borné (ou ni 'un ni 'autre). Si E n’est pas fermé, il existe X € R™\E et une
suite {y(k)}keN C F telle que limy_, o y(k) = X. Une telle suite n’a aucune sous-suite
qui converge vers un élément de E (car X ¢ E). Si E n’est pas borné, il existe une
suite {x*)} ey C E telle que ||x®)|| > &k pour tout k € N. Toute sous-suite {x*i)};cx
satisfait |x*%3)|| > k; > j et {x*1)};cn ne converge pas.

O]

Théoréme 1.22 (de Heine-Borel-Lebesgue — Caractérisation de la compacité par recou-
vrements finis). Un sous-ensemble non vide E C R™ est compact (fermé et borné) si et
seulement si de toute famille de sous-ensembles ouverts de R™ constituant un recouvrement
de E, c.-a-d. E C U, Uy, avec U, ouvert, on peut extraire une famille finie qui est encore
un recouvrement de E.

On dit qu’un ensemble E satisfait la propriété de Heine—Borel si de toute famille de
sous-ensembles ouverts de R™ constituant un recouvrement de E on peut extraire une
famille finie qui est encore un recouvrement de E. Le théoreme précédent affirme donc que
un ensemble F est compact si et seulement si il satisfait la propriété de Heine—Borel. On
montre deux exemples d’application de la propriété de Heine—Borel pour montrer qu’un
ensemble n’est pas compact.

Exemple 1.23. R? n'est pas compact. En fait, on peut écrire R? = Uren= B(0, k) mais
de ce recouvrement, on ne peut pas extraire de sous-recouvrement fini.

Exemple 1.24. E = B(0,1)\{0} n’est pas compact. En fait, on peut écrire E C
— C

Uren- (B(O,%)) qui est un recouvrement de E mais duquel on ne peut pas extraire

un sous-recouvrement fini.
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Quelques remarques sur les ensembles compacts

— La caractérisation du théoreme 1.21, qui peut étre prise comme définition alternative
de compacité, dit qu’'un ensemble E est compact si et seulement si toute suite
{X(k)}keN de E admet une sous-suite qui converge vers un élément de F, c’est-a-dire
qu’il existe (au moins) un point x € E (point d’accumulation de la suite) tel que,
pour toute boule B(x,6), § > 0, 'ensemble d’indices {k € N : x*) € B(x,d)} est
infini. Donc E est suffisamment contraignant (compact) pour que toute suite de E
s’accumule quelque part dans F.

— La caractérisation du théoreme 1.22 est la définition la plus générale de compacité,
mais aussi la plus abstraite. Elle exprime le fait qu’on puisse décrire un ensemble
compact par un nombre fini de termes et est a la base de toute étape d’approximation.
Soit £ C R™ un sous-ensemble quelconque. Clairement, pour tout € > 0, Uycp B(x, €)
est un recouvrement de E. Si E est compact, on peut extraire un sous-recouvrement
fini, c.-a-d. il existe s = s(¢) € N* et {x(1), ..., x()} € E tels que E C J5_; B(x®, ¢).
Donc, E est bien approché par I’ensemble fini E= {x(l), - ,x(s)} au sens que pour
tout x € E, dist(x, £) = inf;—;,_, [|x — x?|| < . Le nombre s = s(¢) est appelé
nombre de recouvrement de E et est un indicateur de la difficulté d’approcher E par
un ensemble fini.

1.4.3 Ensembles connexes et connexes par arcs

Intuitivement, un ensemble £ C R™ est connexe s’il est fait “d’un seul morceau”. Plus
rigoureusement, on dit qu’un ensemble E ouvert est connexe si on ne peut pas le séparer
en deux parties ouvertes non vides et disjointes. La définition générale pour un ensemble
quelconque est la suivante :

Définition 1.25 (Connexité). Soit E C R"™. On dit que E est connexe s’il n’existe pas
deuz ouverts A, B C R™ disjoints (ANB =0) tels que ANE #0, BONE #0 et EC AUB.

En particulier () est connexe. Les ensembles connexes de R sont les intervalles, par
exemple 0, R, [0,1], ]0,1][, [0,1], ] — o0, 0] ,[0, 0], etc. Une notion un peu plus forte de
connexité est celle de connexité par arcs.

Définition 1.26. Soit E C R™ un ensemble non vide. On appelle chemin de E une
application vy : [0,1] — E, t — ~(t) = (71(t), ..., Wm(t)) € E, dont les fonctions ; : [0,1] —
R sont continues.

Définition 1.27 (Connexité par arcs). Un ensemble non vide E C R™ est conneze par
arcs si pour tout x,y € E, il existe un chemin v : [0,1] — E tel que v(0) = x,v(1) =y
(et v(t) € E,Vt € [0,1]). Nous considérerons () comme connexe par arcs.

On peut montrer que tout ensemble £ C R™ connexe par arcs est aussi connexe. Le
réciproque n’est toutefois pas vraie. On verra dans le chapitre suivant que les propriétés
de compacité, connexité et connexité par arcs sont des propriétés topologiques, préservées
par les applications continues. Autrement dit, si £ C R™ est un ensemble compact (resp.
connexe ou connexe par arcs) et f : R — R™ une fonction continue, alors f(E) C R™ est
compact (resp. connexe ou connexe par arcs).
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FIGURE 1.2 — Gauche : ensemble connexe par arcs. Droite : ensemble non connexe
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Chapitre 2

Fonctions de plusieurs variables
réelles ; limites et continuité

Soit £ C R™ un ensemble non vide. On appelle fonction sur E d valeurs réelles une
application f: E — R. Clest a dire, Vx = (z1,...,2,,) € E, f(x) = f(z1,...,2,) € Rest
I'image de x par f. La fonction f est donc une fonction de n variables réelles. On note :

— FE ou D(f) le domaine de f;
— Im(f) ={f(x) € R: x € E} I'image de f (notée aussi f(F));
— G(f) = {(x, f(x)) e R*™! : x € E} le graphe de f.
Une fonction de 2 variables réelles a valeurs réelles, (z,y) — f(z,y) € R, peut étre

visualisée par son graphe (surface de R?), ou par ces lignes de niveau Ny (c) = {(z,y) €
R2: f(x,y) = c}. La figure 2.1 montre le graphe et les lignes de niveau de la fonction

flz,y) =e Y, (z,y) € [-1,1]%

2.1 Notions de limite

Définition 2.1 (limite). Soit f : E — R et xg € R™ un point d’accumulation de E. On
dit que limx_,x, f(x) existe et est égale a l € R si

Ve>030>0: VxeFE (0<Hx—x0H§5 = ]f(x)—l]ﬁe).

On écrit alors limy_,x, f(x) =1

La propriété limx_.x, f(x) = [ ne dépend pas du choix de la norme || - || sur R™ car les
normes sur R” sont deux a deux équivalentes. On note que dans la définition de limite
ci dessus, on exclut le point x¢ de I'ensemble {x € FE, 0 < ||x — xg|| < §}. Cette limite
est parfois appelée limite épointée et notée aussi xlgilo f(x) ou XILIQO f(x). Dans ces notes

# X#X(
on entendra toujours par limy_,x, f(x) la limite épointée. Le fait que xg € F ou x9 ¢ E

n’intervient pas dans cette définition.
Le théoréme suivant donne une caractérisation équivalente de limite par les suites.
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FIGURE 2.1 - Graphe (gauche) et lignes de niveau (droite) de la fonction f(z,y) =
e—mQ—y27 (x,y) € [_171]2

Théoréme 2.2. Soit f : E — R et xg € R™ un point d’accumulation de E. Alors f admet
pour limite | lorsque x tend vers xq si et seulement si, pour toute suite {x*)}en € E\{x0}
telle que limy_,oo x%) = x¢, on a limy_,oo f(x*)) = 1. De plus la limite | est unique (si
elle existe).

Démonstration. Identique au cas d’une fonction f : R — R en remplacant la boule 1D
Jzo — 6,20 + d] par la boule de R", B(xg,d). Voici la démonstration compléte.

1. Supposons que f admet pour limite [ lorsque x tend vers xg et donc, pour tout € > 0,
il existe 6 > 0 tel que, pour tout x € E vérifiant 0 < ||[x — x¢|| < d, on a |f(x) — | <e.
Soit, maintenant, {x("},cy € F\ {x0} une suite telle que limy_, x¥) = x¢. Alors il
existe N € N tel que [|x*) — xq|| < & pour tout k > N et donc |f(x*) — 1| < ¢, ce qui
montre que limy_, o f(x(k)) =1.

2. Supposons que limy_,o f(x*)) = [ pour toute suite {x*)},cn qui converge vers x.
En raisonnant par ’absurde, supposons que f n’admet pas pour limite [ lorsque x tend
vers Xg. Alors il existe ¢ > 0 tel que pour tout § > 0 on a 'existence de xg # x € E,
|x —xo|| < ¢ (puisque x¢ est un point d’accumulation de E) tel que |f(x) —I| > €. Prenons
§ = 1, k € N*. Alors il existe une suite {xB)}en- telle que |[x*) — x| < % (et donc
limy 00 X% = x0) et | f(x*)) = 1] > ¢, ce qui est contradictoire.

O

Bien que la définition de limite soit la méme pour des fonctions d’une seule ou de
plusieurs variables réelles, le calcul des limites pour des fonctions de plusieurs variables
réelles est bien plus compliqué. Prenons la caractérisation de limite par les suites :

V{x®}en € E\{x0}, lim x® =x,
lim f(x)=1 <— hoo
X—rXo0 on a klim f(x(k)) =1
—00

Pour affirmer que limy sy, f(x) = [ existe, il faut s’assurer que f(x*)) LEENy/ pour

n’importe quelle suite s’approchant de xg.
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FIGURE 2.2 — Exemples de chemins possibles qu’on peut suivre pour atteindre xg.

Exemple 2.3. Considérons la fonction f : E =R2?\ {(0,0)} = R, f(z,y) = \/% et
a2ty

xo = (0,0), qui est un point d’accumulation de E. Est-ce que limx_,x, f(X) existe ¢
Prenons la suite

X(k) _ (%’0) k e N* X(k) ’H_Oo> (0,0).
On a que

1
f®)y =t -1 vk = klim fx®)y =1.
—00

(<,-\
=z
I
—
=
\

1 oo
D) kel y®) 2% (0, 0).
On a que
fy™) =0 vk = lim f(y")=o0.
— 00
On a donc trowvé deuz suites différentes {(%,0)}ren+ et {(0, 1)} ken+ qui donnent des

limites différentes. On conclut donc que limy_,x, f(x) n'existe pas.

Exemple 2.4. Considérons la fonction f: E=R?\{(0,0)} = R, f(z,y) = ﬂmifyl, et
x9 = (0,0), qui est un point d’accumulation de E. Est-ce que limyx_,x, f(Xx) existe ?

Prenons la suite x%) = (% %), k> 1, avec a, B € R non nuls en méme temps. On a
que
Lﬁ2 2k
Py = = TR e g via,8) £ (0,0).

%ﬁ + %: a’k? + 52
Donc si on se rapproche de xqo par un chemin “droit” la limite est 0. Toutefois, si on prend

la suite x®) = (k%, ) koo, (0,0), on a que

1
s 1 1

(k) — k4 = — >1 — 1 (k) - —=.
F) %Jrk% 2 Vk 2 kg{olof(x ) 2

Donc limyx_x, f(x) n'existe pas!
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2.1.1 Propriétés de 'opération de limite

L’opération de limite limy_,x, f(x) pour des fonctions f : E C R” — R de plusieurs
variables réelles a les mémes propriétés que pour des fonctions f : R — R d’une seule
variable réelle.

Théoréeme 2.5. Soit £ C R", xqg un point d’accumulation de E et f,g: E — R tels que
limy_yx, f(x) =11 et limx_,x, g(x) = la. Alors
- VO(,,B S R7 th—>X0 (Oéf(X) + 5g(X)) = Oéll + 512
— hmx%xo f(X)g(X) = lilo
— Sily #0, limy , 2 = 11
Comme pour les fonctions f : R — R d’une seule variable réelle, on a un critere de
comparaison qui peut étre trés utile pour établir I’existence d’une limite.

Théoréme 2.6 (des deux gendarmes). Soient f,g,h : E C R — R, x¢ un point
d’accumulation de E et limy_,x, h(x) = limx_,x, g(x) = I. S’il existe o > 0 tel que

h(x) < f(x) <g(x) VxeFE, 0<|x—x0| <«
alors limy_,x, f(x) = (.

Remarque 2.7. Dans le théoréme des deux gendarmes, on utilise souvent des fonctions h
et g qui dépendent uniquement de la distance |x — xol|. Soit par exemple g : E — R avec
E =R" ou E =R"\{x0}, et supposons que

vx € E\{xo} g(x) = g(llx = xoll),
ot § :]0,00[— R. Alors limx_x, g(x) =1 si et seulement si lim,_,o+ §(r) = 1. En effet
Ve>030>0: Vx € B(xo,0)\{xo} |g(x) =] = |3(llx = xol) = 1| <

st et seulement si
Ve>030>0: Vre€l0,d] |g(r) -1 <e

Exemple 2.8. Soit f: E =R\ {(1,0)} = R, f(x,y) =yIn((z — 1)?> +y?). Calculer si
elle existe lim ;) _,(1,0y f(2,9)-

Prenons la suite xF) = (1, %) Alors limy,_yoo f(x(k)) = limp_y00 %ln k% = 0. Donc si la
limite existe elle doit étre égale a l = 0. On a de plus

0 < [f(z.y)] = |yl n((z —1)* +y?)]

<\/(z =12+ 92| In((z — 1) + 7).

Notons p = +/(x — 1) + y? = ||(z,y) — (1,0)||. Puisque
li 1242 In((z - 12 +9%)| = 1 Inp?| = li ~Inp*) =0
o) V (= 1)* +y*/In((z — 1)" + y7)| Jim, plln p| Jim, p(—1Inp)

(par la remarque appliquée da la norme euclidienne), on conclut par le théoréme des deux
gendarmes que im, ) 1.0y [f(2,9)| = 0 et lim )10y f(7,y) = 0.
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Théoréme 2.9 (Critére de Cauchy). Soit f: E C R" — R et xg un point d’accumulation
de E. Alors limyx_x, f(x) existe (dans R) si et seulement si

Ve>035>0: Vx,y € B(x0,0) N (E\{x0}) |f(x)— f(y)] <e.

Démonstration. Le sens = est clair. Montrons le sens <. 1l existe d; > 0 tel que

Vx,y € B(xo,01) N (E\{x0}) [f(x)—f(y)l <L

Pour 6 €]0, d;], soit les nombres réels
o(6) = nf{f(x) : x € B(xo, )N (E\{x0})}, B(8) = sup{(x) : x € B(xo,8)N (E\{x0})}
(deux fonctions monotones en ). Il en résulte que

Ve >0 36 €]0,01] 0<B(0) —af0) <e

et donc, comme 3 — « est croissante en 4, lim,_,o+(8(r) — a(r)) = 0. Posons ¢ =
lim, o+ B(r) = lim,_,o+ a(r). Comme

Vx € B(xo,01) N (E\{x0}) a(llx —xoll) < f(x) < B(llx —xol]),

le théoréme des deux gendarmes assure que limy_,x, f(x) = £. O

2.1.2 Limite de fonctions a valeurs dans R™

La définition de limite s’étend sans difficultés aux fonctions a valeurs dans R™. Soit
f: ECR"— R™, c’est-a-dire,

Vxe B f(x)="f(z1,...,2n) = (fi(z1,. - 2n), -, f(z1, ..., Tn))

ou f; : E — R. Donc une fonction f : F — R™ est une collection de m fonctions f; : £ — R.
Lorsque n = m, la norme dans ’espace de départ n’est pas nécessairement la méme que
celle dans ’espace d’arrivée.

Dans ce qui suit, nous choisirons la norme euclidienne, sauf mention du
contraire.

Définition 2.10. Soit f: E C R®™ — R™ et xg un point d’accumulation de E. On dit que
limy_,x, f(x) =1€ R™ si

Ve>0,30>0: VxeFE, 0<|x—x0| <d [f(x)—1]|<e

Comme pour les fonctions a valeurs dans R, limy_,x, f(x) = 1 existe si et seulement
si pour toute suite {x*)}reny € E\ {xo} telle que x*) E220 %o on a limp_y e f(x*)) =1
(limite dans R™). Il est aussi facile de montrer que limy_,x, f(x) = 1 si et seulement si
toutes les limites limx_,x, fi(x) =1;, i = 1,..., m existent.
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2.2 Fonctions continues
Soit £ C R™ un ensemble non vide et f : £ — R.

Définition 2.11 (fonction continue en un point). Soit xg € E.
— Si xq est un point isolé, on admettra (par définition) que f est continue en Xq.

— Si xg n’est pas isolé (il est donc un point d’accumulation de E) on dit que f est
continue en Xo st limx_,x, f(X) existe et limx_,x, f(x) = f(x0).

De la définition 2.1 de limite d’une fonction ainsi que du théoreéme 2.2, caractérisant
les limites par les suites, il s’ensuit que, pour tout xo € FE, les trois affirmations suivantes
sont équivalentes :

i. f: E — R est continue en Xg;
ii. Ye > 030 =d(e,x0) >0: Vy e E (Hy—xOH <o=|f(y) — f(x0)| < e) ;
1. limg oo f(x(k)) = f(x0) pour toute suite {x(k)}keN C FE qui converge vers Xg.

Définition 2.12 (fonction continue sur un ensemble). On dit que f : E — R est continue
sur E si elle est continue en tout point x € E. Dans ce cas, on note f € C°(E) (ou
feCE,R)).

Il en résulte que f est continue en tout x € F si et seulement si
Ve>0Vx € E3d=0(e,x) >0: Vye E (Hx—yH <§=f(x)— f(y) ge).

Définition 2.13 (fonction uniformément continue). On dit que f : E — R est uniformé-
ment continue sur I si

Ye>030=0(e)>0: Vx,yeE ([x—y|<d=|fx) - fly)<e).

On note que ici § peut étre choisi de maniére qui ne dépend pas de x, contrairement a la
caractérisation précédente de continuité sur E.

On remarque qu’une fonction f : E — R uniformément continue sur E est aussi
continue sur F. Le contraire n’est pas nécessairement vrai.

Exemple 2.14. La fonction x — ||x|| € Ry est uniformément continue sur R™ (et donc
continue) car, pour tous X,y € R",

[l = Iyl < Ix = v
megaite triangulalre 1Verse, quil aecoute ae L ineqgatite irianguialre).
i e

Exemple 2.15. Toute fonction constante x — C € R™ et, pour i € {1,...,n} fizé, la
i-éme projection X — x; € R sont des fonctions uniformément continues sur R™. En effet
|zi — yi| < ||x —y|| (norme euclidienne) pour tous x,y € R".
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Les définitions de continuité et continuité uniforme s’étendent sans difficultés & des
fonctions f : £ C R® — R™,

Définition 2.16. Soit xg € E.
— Si xg est un point isolé, on admettra (par définition) que f est continue en xg.

— Si xg n'est pas isolé, on dit que f est continue en xq si limx_,x, f(x) existe et
limy_,x, f(x) = f(x0).

Il s’ensuit que, pour tout xg € F, les quatre affirmations suivantes sont équivalentes :
i. £=(f1,...,fm): E — R™ est continue en X ;

ii. Ye > 030 = (e, x9) >0: Vy € E (Hy — x| <6 = |If(y) — f(x0)| < e) ;

1. limp oo f(x(k)) = f(xg) pour toute suite {x(k)}keN C E qui converge vers Xg ;

iv. pour chaque i € {1,...,m} la fonction f; : E — R est continue en xq.

Il en résulte aussi que f est continue en tout x € F si et seulement si
Ye>0Vx € B35 =0(x)>0: Ve E (x—y| <d= [[f(x) - )] <e).

Dans ce cas, on note f € C°(E,R™) (ou simplement f € CY(E)).

Définition 2.17. On dira que f : E — R™ est uniformément continue sur E si
Ye>030=0(e)>0: ¥,yeE (|x—y|<d=[fx)—fy)| <e). (21)

Remarque 2.18. Soit ) # A C E et la restriction f : A — R™ de f a A (notée aussi
fla). Sif: E— R™ est continue sur E, alors f : A — R™ est continue sur A.

2.2.1 Propriétés des fonctions continues

Théoréme 2.19. Soient f et g deux fonctions de E C R™ dans R continues en xg € E.
— Va, B € R, af + Bg est continue en Xq ;
— f-g,1fl, |g| sont continues en xq ;
— i g(x0) # 0, alors 5 est continue en Xg.

Théoréme 2.20 (Composition de fonctions continues). Soit f : E C R™ — R™ continue

enxg € F etg: ACRP = R" continue en yg € A et telle que x9 = g(yo). Alors
h=fog:B={yc A:g(y) € E} — R™ est continue en yy.

Démonstration. Pour toute suite {y('“)}keN C B telle que limj 0o y*) = yo, on a
par la continuité de g que g(y(k)) LN g(yo) = x¢ et par la continuité de f en xg,

k—o00

£(g(y™®)) 2= £(xo). Done, h(y®) 222 £(xg) = f(g(yo)) = h(yo) ce qui montre la
continuité de h en yy. O
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2.3 Prolongement de fonctions par continuité

Définition 2.21. Soit f : E C R® — R™ et xg € E\E. Une fonction f : EU {x¢} — R™
est appelée un prolongement par continuité de f en xqg si f=f sur E et f est continue en
X0-

Il est facile de vérifier qu'un prolongement f existe si et seulement si limy_, f(x)
existe (dans R™), auquel cas f est uniquement déterminée par f(x) = f(x), Vx € F et

f(x0) = limy_x, £(x).

Théoreme 2.22. Soit E C R™ un ensemble non vide et f : E — R™ une fonction continue
sur E. Supposons que, pour tout x € E\ E, la limite limy_,x f(y) existe. Alors la fonction
f: E — R™ définie par f(x) = f(x) si x € E et f(x) = limy_xf(y) si x € E\ E est
continue et appelée le prolongement de £ par continuité sur E.

Démonstration. Soit x € E et prouvons la continuité de f en x & I’aide de suites. Soit donc
une suite {x)},cny C E qui converge vers x. Remplacons-la par une suite {y®}en € E
qui converge aussi vers x et telle que limy_, o [|f(y®)) — f(x¥)|| =0 : si x¥) € E, on
pose yF) = x(b) et si x(®) E\E, on choisit y(¥) € E tel que

Iy —xO <27 e ey ™) — Fx®)| <27,

Par définition de f(x), on a limj_, ;o f(y*)) = f'(zc) s en effet, si x € E, alors f(x) = f(x) et
ceci découle de la continuité de f en x et, si x € F\ E, ceci découle de la définition de f(x).
Donc limy_, o0 f(x*)) = limy_ 4 oo (f’(x(k)) — f(y(k))> + limy_ 400 F(y™®)) = £(x). O

Le prochain théoréme est un résultat important. Il montre que sous 'hypothese que la
fonction soit uniformément continue sur £, on n’a pas besoin de vérifier 'existence des
limites au bord pour pouvoir prolonger la fonction par continuité. L’hypothése d’uniforme
continuité est bien plus facile a vérifier que I'existence de la limite en chaque point du
bord. On verra, par exemple, dans le chapitre suivant, que si la fonction est dérivable
sur un ensemble E convexe avec dérivées partielles bornées, alors elle est uniformément
continue sur F.

Théoréme 2.23 (Prolongement de fonctions uniformément continues). Soit E C R™ un
ensemble non vide et f : E — R™ une fonction uniformément continue sur E. Alors f
peut étre prolongée par continuité sur E et son prolongement continu f:F > R™ est
uniformément continu.

Démonstration. Vérification que f peut étre prolongée par continuité sur E. Il faut vérifier
que limy_,x f(x) existe en tout x € F'\ E (la limite en x € E existe car f est continue sur
E). Par hypothese, la fonction f est uniformément continue sur E. Pour tout € > 0, soit
d > 0 la valeur correspondante dans la définition (2.1) de continuité uniforme.

Pour chaque a € E \ E, choisissons une suite {a*)},cny € E qui converge vers a. Pour
a € E\F fixé, la suite choisie {a(*) },.cy est une suite de Cauchy. Il existe donc N = N () tel
que Vj, k> N [|ab) —a®)|| < 4. Il s’ensuit que, pour tous j, k > N, [|[f(a?)) —f(a®)|| <.
D’ott {f(a®))},en est une suite de Cauchy dans R™, qui admet pour limite un certain
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1 = limy_ o f(a(k)) € R™. Cette limite ne dépend pas de la suite choisie. En effet, soit
{b(k)}keN C E une autre suite telle que limy_,oo b®) = a et m = limy,_, f(b(k)). Alors
il existe N> N: Yk > N, |[m — f(b®)| <e, I - f(a®))|| <e¢, [[a® —b®)|| < 5. Par
conséquent,

1 —m[| < 1= £@")] + [f@®) — £BM)] + m — £(b®)| < 3¢

ce qui implique 1 = m par Parbitrarité de € et donc la limite limx_,5 f(xX) existe en tout
a € E et f peut étre prolongée par continuité. On dénote f le prolongement par continuité
de f.

Vérification que £ est uniformément continue sur E. Soit € > 0 et x,y € E tels que llx—
yl < ¢, 018 = §(e) est comme ci-dessus. Introduisons deux suites {x*) e, {y® }ren € E
qui convergent & X et y, respectivement. Alors, il existe M > 0 tel que, pour tout k > M,
e —x®| < et ly—y® < 5, don [x®) —y® || < [|x® —x||+|x—y|+ |y —y¥)| < 6.

Puisque f est continue sur E on a limj_,o f(x®)) = £(x), limj_,o f(y®) = f(y) et il
existe M > M tel que, pour tout k > M, ||f(x) — £(x®))|| < e et ||f(y) — f(y*))| <e. On
a alors

I1E() — £l < 1E(x) = £+ £ x™) — £y ™) + £y ™) — £ ()| < 3e.

Ainsi, si x,y € E satisfont ||x — y|| < 2, on a ||f(x) — f(y)|| < 3¢, ce qui prouve que f est
uniformément continue sur E. O

2.4 Fonctions continues sur un compact

On commence par introduire la notion de fonction bornée et de borne supérieure et
inférieure.

Définition 2.24 (fonction bornée). On dit que f : E C R™ — R est bornée s’il existe
C >0 tel que |f(x)] < C, Vx € E.

Définition 2.25 (bornes supérieure et inférieure). Soit E C R"™ non vide et f : E — R.

— Soit M = supycp f(x). Si M < 400, alors on a f(x) < M, Vx € E et il existe

une suite {x(k)}keN C E telle que limj,_,o f(x*)) = M. On dit que M est la borne
supérieure ou le supremum de [ sur E.

— S’il existe xpr € E tel que f(xpr) = M, alors on dit que M est le maximum de f
sur B, M = maxxep f(x) et f atteint son maximum au point xpr. On dit aussi que
xpr (pas nécessairement unique) est un point de maximum de f.

— Si M = 400, on dit que f n’est pas bornée supérieurement.

— On a des définitions du méme type pour la borne inférieure ou l'infimum m =
infxep f(x), le minimum m = mingep f(X) et un point de minimum x,, € E tel que
f(xm) =m.

Théoréme 2.26. Soit E C R™ un ensemble non vide et compact, et f : E — R une
fonction continue. Alors f est bornée et atteint ses bornes, c’est-a-dire, il existe Xpr, Xm € E

tels que f(xpr) = supyep f(X) = maxxep f(X) et f(Xm) = infycp f(x) = mingeg f(%).
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Démonstration. Similaire au cas des fonctions f : [a,b] — R sur un intervalle fermé et
borné. Montrons d’abord que f est bornée. Ab absurdo, si f n’était pas bornée, alors
Vi e N, 3x®) € E: |f(x*))| > k. Puisque E est compact, on peut extraire une sous-suite
{x(kf)}jeN qui converge vers un certain x € E. Mais, f étant continue en x, pour tout
e > 0 il existe K. € N tel que |f(x*))| < |f(x)| + € pour tout j > K., ce qui contredit
)| >y >, 5.

Soit maintenant M = supycp f(x). Il existe une suite {xF}cny C E telle que
limg oo f (x(k)) = M. A nouveau, on peut extraire une sous-suite {X(kj)}jeN qui converge
vers un certain x); € E et, par continuité de f, on a f(xp;) = M, ce qui prouve que
M = supycp f(x) = f(xpm) = maxxep f(x). Idem pour le minimum. O

Théoreme 2.27. Soit E C R™ un ensemble non vide, compact ef connexe par arcs,
et f: E — R une fonction continue sur E. Alors f atteint toutes les valeurs entre son
minimum m et maximum M sur E, et Im(f) = [m, M].

Démonstration. Puisque E est compact et f : E — R continue, il existe x,, et x)s t.q.
f(xm) = mingep f(x) et f(xpr) = maxxep f(x). Puisque E est connexe par arcs, il existe
un chemin ~(t) = (71(t),...,(t)) avec 7; : [0,1] — R continues et ~4(t) € E, Vt €
[07 1]7 7(0) = Xm, 7(1) = x). Soit g : [07 1] - R, g(t) = f(’Y(t)) = f(’)’l(t)v s 77n(t))7
qui est continue sur [0, 1] puisqu’elle est la composition de fonctions continues. D’apres
le théoréeme de la valeur intermédiaire d’Analyse I, Im(g) est un intervalle, et il contient

g(0) =m et g(1) = M, et donc tout [m, M]. D’ou
[m, M] C Im(g) C Im(f) C [m, M]
et Im(f) = [m, M]. O

Les deux théoremes précédents montrent deux propriétés importantes des fonctions
continues, qui se généralisent comme suit aux fonctions a valeurs dans R™.
Soit f: E — R™ continue et ) # A C E C R™.

— Si A est compact, alors f(A) C R™ est aussi compact.

— Si A est connexe (resp. connexe par arcs), alors f(A) est connexe (resp. connexe par
arcs).

On conclut par une propriété importante des fonctions continues sur un compact.

Théoréme 2.28 (Cantor-Heine). Soit E C R"™ un ensemble non vide et compact, et
f: E — R™ une fonction continue. Alors f est uniformément continue sur E (théoréme
de Cantor-Heine), c-a-d :

Ye>030=0()>0: VyeE ([x-y|<d=[fx) - f@)<e).

Plus généralement, soit E C R™ un ensemble quelconque, K C E un sous-ensemble
non vide et compact, et f : E — R"™ une fonction continue. Alors

Ye>035=0(c) >0: ¥xe K ¥y e B (|x—y| <d=[lf(x) —£(y)] <)

(théoréme de Cantor-Heine généralisé).
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Démonstration. Donnons la preuve de la version générale, le cas particulier K = F non
vide et compact du théoreme de Cantor-Heine en découlant. Ab absurdo supposons qu’il
n’est pas vrai que

Ve>030>0: ¥xe KWy e B ([x—yll <8 = [fx)— )l <e).
Ainsi
Je>0: V6>0IxeKIyeh (|x—y|<d et [[f(x)—£(y)]>e).
Pour un tel € > 0, considérons 6 = 1/k avec k € N* : il existe x) e K, y¥) € E tels que

1
Ix® — y®)|| < oot [£(x®) — £y ™) > e.

La suite {x®)},cn+ étant bornée (puisque K est borné), il existe une sous-suite {x )}y
qui converge vers un certain x € K puisque K est fermé. On a alors

1
Iy = < [ly® = x4 ) — x| < = 4 x5 x| 0, si i co.

Ainsi lim;_ oo y(ki) = x. Puisque f est continue sur F on a

tim £(x() = £(x) = lim £(y*),

i—00 i—00

ce qui contredit ||f(x*)) — £(y*)|| > € pour tout k. O
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Chapitre 3
Dérivabilité

On commence ce chapitre en rappelant la notion de dérivée d’une fonction réelle d’une
seule variable réelle, f: E C R — R, en un point xg € F :

f'(x0) = lim f(zo+h) — f(zo)

si la limite existe.
h—0 h

Elle représente le taux d’accroissement de la fonction en xg. De la définition, il suit
immédiatement qu’il existe § > 0 tel que Jxg — 6,z + 0[C E et

Vh €] =8,0[ f(zo+h) = f(zo) + f'(xo)h + o(|h])

c’est-a-dire,
f(zo +h) = f(xo) = f'(x0)h +o(|h])
———

application linéaire en h

et Vincrément f(xo+h)— f(zo) est bien approché par une application linéaire en h. Ici o(|h|)

dénote une fonction g définie sur un voisinage de 0 et telle que limy,_. % = 0 (voir plus loin
pour une définition plus générale). En fait il suffit de poser g(h) = f(xo+h)—f(zo)—f'(zo)h

pour |h| < 4.

On a donc une double interprétation de la notion de dérivée : comme limite du taux
d’accroissement en xg, ainsi que comme application linéaire approchant localement la
fonction dans un voisinage de x¢ En particulier, f dérivable en xg implique que f est aussi
continue en xg. Dans ce chapitre, on va généraliser ces deux notions pour des fonctions
f:R" > Rouf:R"” — R™ de plusieurs variables réelles.

3.1 Dérivées partielles, dérivées directionnelles, différentielle

Définition 3.1. Soit f : E C R™ — R une fonction de n variables réelles, xg € E un
point intérieur de E et v un vecteur arbitraire de R™. On dit que f est dérivable dans la

. . . . . . . tv)— .
direction v au point Xg st la limite limy_,q M existe. Dans ce cas on pose

— lim f(xo0 +tv) — f(x0)
t—0 t

va(XO)

31
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Si ||v|| =1 pour la norme euclidienne, on appelle Dy f(x0) la dérivée directionnelle de
f dans la direction v au point xg.

Si on définit la fonction f(t) = f(xg + tv) dans un voisinage de 0 (ce qui est toujours
possible car xg est un point intérieur de F), alors Dy f(xo) = f/(0). On peut donc
interpréter la dérivée directionnelle Dy f(xo) comme la limite du taux d’accroissement
en suivant la direction v. En particulier, si on prend v = e;, le i-eéme vecteur de la base

z = f(z,y)

/ x) V

X

FIGURE 3.1 — Interprétation géométrique de dérivée directionnelle pour une fonction f(z,y) de
deux variables réelles

canonique de R™, alors la dérivée directionnelle correspondante est appelée i-éme dérivée
partielle et est notée

of _ o f(xo +tei) — f(xo0)
oz, (x0) = De; f(x0) = lim ; :
Autrement dit, pour x = (x1,...,2,) € E point intérieur,
af (x) = lim flag, oo i+t .0 x) —f(ml,...,:Ui,...,a:n)7
Oxi t—0 t

ce qui revient & calculer la dérivée de la fonction x; — f(-, z;,-) pensée comme une fonction
uniquement de la variable x;, en traitant les autres variables zi,...,2;—1,%i41,...,2Zn
comme des parametres. Pour cela, on peut donc utiliser les regles de dérivation des fonctions
d’une seule variable réelle.

Définition 3.2 (vecteur gradient). Soit f : E C R" — R et xo un point intérieur de
E. Si toutes les dérivées partielles de f existent en Xg, on appelle matrice jacobienne
Df(xq) € RY™" (vecteur ligne) le vecteur

Df(xo) = |#£(x0), - b (x0)| = (2h(x0) .. #(x0))
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et vecteur gradient, noté V f(xg) € R™*1, son transposé

a%(xo) (%fl(xo)
Vixo)=Df(xo)' =| + |=|
2L (x0) 2L (x0)
Exemple 3.3. Soit f(x,y) = 2 cosy. Alors
of B af g | 2zcosy
5p @ Y) = 2z cosy, afy(x,y) =—z’siny, Vf(z,y)= l_xz siny |

Une fonction peut avoir des dérivées partielles ou directionnelles en un point xg sans
pour autant étre continue en ce point, comme les exemples suivants le montrent.

Exemple 3.4. Soit f : R? = R donnée par

flz,y) = {fy (z,y) # (0,0)

0, (.’E,y) - (070)
Alors,
8f BT f(t,O)—f(0,0)_ % T f(07t)_f<070)_
A - I B

mais [ n’est pas continue en (0,0). En effet, on a limy_,o f(t,t) = lim;_ % = % # 0.
Pour cette fonction, les autres dérivées directionnelles n’existent pas :

_ f(tog,teg) = £(0,0) . o : V1V
lim =lim —————5- = lim —5——-
0 t t=0 t3(v¥ +v3)  t=0 t(v] + v3)
n’existe pas si vivy # 0 (ici v = (v1,v2) € R%, ||v|| = 1 pour la norme euclidienne)

Exemple 3.5. Soit f: R?> = R donnée par

AL, si(z,y) # (0,0)
x,y) =< 1Y
F@3) {0, si (z,y) = (0,0).

Toutes les dérivées directionnelles existent. En effet,

2 2
. V1V 2 siv #0,
Dyf(0,0) = lim 5—2— = ¢ o’ 7~ f
t—=0 V] + t4v5 0, sivy =0.

Toutefois, f n’est pas continue en (0,0) car limg o f(t?,t) = % # £(0,0).



34 CHAPITRE 3. DERIVABILITE

Comme 'exemple précédent le montre, la notion de dérivée partielle est trop faible et
n’implique pas la continuité de la fonction. Si on veut introduire une notion de dérivabilité
qui permet d’approcher une fonction au voisinage de xg par une fonction affine, on a besoin
d’une définition de dérivée plus forte. On rappelle qu’une application linéaire L : R™ — R™
est telle que L(ax + fy) = aL(x) + SL(y), Vx,y € R" et Va,3 € R. Elle peut étre
représentée par la matrice A € R™*" (m lignes et n colonnes) telle que L(e;) est la i®™®
colonne de A, ou {e;}7 est la base canonique de R", de telle sorte que L(x) = A-x = Ax,
Vx € R™ (produit matriciel entre une matrice m x n et un vecteur colonne dans R™). Le
produit matriciel Ax € R™ donne dans cette formule un vecteur colonne.

Définition 3.6 (Dérivabilité et différentielle). Soit f : E C R™ — R et x¢ un point
intérieur de E. On dit que f est différentiable (ou dérivable) en xqo s’il existe une application
linéaire L : R™ — R et une fonction g : E — R tels que
Vx € E f(x)= f(xo0) + L(x —x0) +¢g(x), et lim _9x) =0.
X% [|x — x|
L’application linéaire L est alors appelée la différentielle de f en xq.
On remarque que la fonction g satisfait nécessairement g(xg) = 0 et est continue en xg.

Notation. Pour p > 0, on utilise souvent la notation g(x) = o(||x — x¢||?) pour indiquer

une fonction g définie au moins sur B(xo,0)\{xo} pour un certain 6 > 0 et telle que
hmx_»(O % = O

Avec la notation o(-), dans la définition 3.6 on peut ainsi écrire f(x) = f(xo) + L(x —
x0) + o(]|x — xo||) sur E (ici p =1 et g est définie sur E).

Le théoréme suivant met en relation I'application linéaire L de la définition précédente
avec la matrice jacobienne (ou bien le gradient) de f en xo et montre aussi que la
différentielle de f en xg, si elle existe, est unique.

Théoréme 3.7. Soit f : E — R différentiable en xo € E. Alors, toutes les dérivées
partielles de f existent en Xq et la différentielle de f en xq est unique, donnée par

L(x —x0) = Df(x0) - (x — x0) = D f(x0)(x — %)

(produit matriciel entre un vecteur ligne et un vecteur colonne), ce qui s’écrit aussi
L(x —x0) = Vf(x0)" - (x —x0) = Vf(x0)" (x —Xq) (produit matriciel). On peut aussi
utiliser le produit scalaire usuel entre deux vecteurs colonnes : L(x —xg) = V f(x0) - (x —xXg)
(produit scalaire). De plus, f est continue en Xg.

Démonstration. On note a; = L(e;) de sorte que L(x — xo) = > i a;(x; — xp,). Par
définition de la différentiabilité en xg, on a f(xo + te;) = f(xo) + tL(e;) + g(xo + te;) et,
si on note x; = xg + te;,

of o f(xo +tei) — f(xo0)
ox; (x0) = %51(1) t
= L(e;) + lim 9(x0 ;r te:)
_ L(ez) + 1 Slgn(t)g(xt) = a;
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donc toutes les dérivées partielles existent et L(x — xg) = D f(xo) - (x — Xp). De plus, on a

lim f(x) = f(xo) +Z lim gi(xo)( — x0,) + lim g(x) = f(xo),

X—X0 X—X0 X—X0

=0 =0

ce qui montre que f est continue en xg.

O]

Une conséquence immédiate du théoréeme précédent est que, si f: F C R” — R est
différentiable en xg € E, alors toutes les dérivées directionnelles existent et Dy f(xg) =
Df(x0)-v = Vf(x0) v (produit matriciel). En effet,

D f(x0) = Tim 20 F tvt) — X0 _ 1) 4 tim g(x(’t“") — L(v) = V/(x0) V.
t—0 t—0 ~-

En particulier, Dy f(x() est dans ce cas une application linéaire en v. On a de plus, pour
la norme euclidienne,

IV f(xo0)l| = {}%?g Vf(xo) v = ﬁrlf%%g Dy f(x0),
[[v||=1 v||=1

le maximum étant atteint en v = % si Vf(xg) n’est pas nul. S’il n’est pas nul, le

vecteur gradient donne donc la direction de croissance maximale au point xy pour la
fonction f. On a aussi que toute direction w L V f(xg) est une direction de croissance
nulle au point xg.

Exemple 3.8. Considérons la fonction f : R? = R, f(x,y) = 22 + y%. Son gradient
est donné par Vf(z,y) = (22,2y)". En (z,y) € R2\{(0,0)}, la direction de croissance

T
) . _ Vi) y o
mazimale au point (x,y) est v = TSFE = (\/ac2+y \/$2+y2> (norme euclidienne
normalisée a 1 ici), la direction de croissance minimale au point (x,y) est v = —% =

tandis que la direction de croissance nulle au point (z,y) est

-
(= y
(\/ﬂv2+y2’\/x2+y2> ’
.
SR — x .
v ( \/x2+yz’\/w2+92>

Enfin, si f est différentiable en xg, on peut construir I’hyperplan tangent au graphe de
f en (x¢, f(X0)), ainsi qu'un vecteur normal au graphe de f en (xq, f(xg)).
Définition 3.9. Soit f : E C R™ — R différentiable en xo € E et notons yy = f(xo) et
Gr={(x,y) e R"™: x € E, y= f(x)} le graphe de f. On définit ’hyperplan tangent
a Gy en (xo,y0) comme le sous-ensemble de R" !

Wixgy0) (95) = {(x,9) € R™: y = yo + Vf(x0) " (x = x0)}

Le vecteur

1 ) T U L
1+HVf(X())H2< aZL‘l(XO)’ ’ al,n(XO)a]-) CR

est un vecteur normal au graphe de f en (Xxo,Yo)-
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En effet, on vérifie facilement que le vecteur n est normal a I'hyperplan tangent
Hixo0)(G7) en (Xo,%0), c’est-a-dire, il satisfait

n- ((va) - (XO, yo)) =0, V(X’y) € H(Xo,yo)(gf)'

De plus n est de norme euclidienne 1, comme d’ailleurs —n.
Les définitions de différentiabilité et dérivées partielles/directionnelles s’étendent sans
difficultés aux fonctions a valeurs dans R™.

Définition 3.10. Soit f: E C R" — R™,

i) A(x)
f(X):(fl(X),...,fm(X))T: : = s

Jm(x) fm(x)

noté aussi sous forme ligne (nous préciserons si nécessaire)

£(x) = (A1), () = [1(0) o fu()] = (1) oo ful())

et soit xg € E. On appelle dérivée partielle de la i-éme composante de f par rapport a la

j-eme variable en xq, notée g{f}_ (x0), la quantité
J

o Jilxo +tey) — fi(xo)
al’j (XO) - tgl(l] i ’

st la limite existe, et matrice jacobienne de f en xg la matrice Df(xg) € R™*" de

composantes (Df(x¢))i; = ngj_(xo), autrement dit,

) o 0 ] 0 0 2]
(o) (ko) o FlGo)]  (FiGx0) G0 e f(x0)
P2 (x0) : 5L (xo) :
0 : X0 :
Df(Xo): 8901. | _ 8901. . ,
0 m 0 m 2] m 2 m
_8%1(}(0) %ﬂ(xo)_ 8%1()(0) %ﬂ(xo)

st toutes les dérivées partielles existent.
De fagon similaire, on introduit la notion de différentiabilité.

Définition 3.11. On dit que f : E C R" — R™ est différentiable (ou dérivable) en xo € E
s’il existe une application linéaire L : R™ — R™ et une fonction g : E — R™ telles que

Vx € B f(x)=f(x0) + L(x — x¢) + g(x)

et g(x) = O(HX - XO”); c.-d-d. lirnx~>x0 % =0.



3.1. DERIVEES PARTIELLES ET DIRECTIONNELLES ; DIFFERENTIELLE 37

Si plus généralement [|g(x)| = o(||x — x¢||”) dans le sens déja introduit, on notera
simplement g(x) = o(||x — x¢||P). Si f est différentiable en xg, alors toutes les dérivées
partielles et directionnelles existent, et f est continue en xg. De plus, 'application linéaire
L est unique et donnée par

Lix—x0) =YY gf (x0)(a; — 20, )e:

ou e; est le i°™° vecteur de la base canonique de R™. Ceci s’écrit aussi

L(x —xg) = Df(x¢) - (x —x0) = Df(x0)(x — X0),

ou intervient ici le produit matriciel entre une matrice R™*™ et un vecteur colonne dans
R"™, ce qui donne un vecteur colonne dans R™. La dérivée de f dans la direction v au point
x0, v +— Dyf(x0) = L(v) = Df(xg)v, est linéaire en v € R” (si f est différentiable en xg).

La condition de différentiabilité d’une fonction f : E C R” — R (ou f : R* — R™)
n’est pas immédiate a vérifier. Heureusement, on a une condition suffisante, facile a vérifier,
qui nous permet de conclure si f est différentiable en x¢ € £. On donne ici la version du
résultat pour une fonction a valeurs dans R mais le résultat se généralise sans difficulté au
cas d’une fonction a valeurs dans R™.

Théoréme 3.12. Soit f: E CR" — R et xo € E. S’il existe § > 0 tel que B(xq,0) C E
et les dérivées partielles %(X) existent pour tout x € B(xg,0) et sont continues en X,

alors f est différentiable en xq.

Démonstration. On utilise la norme euclidienne et, pour alléger la notation, on renomme

xp =a=(ay,...,ay). Pour un x = (z1,...,2,) € B(a,d) donné, on introduit la notation
xF = (21,...,%%, Ghy1,...,0,) de sorte que x” = x et x° = a. Alors, la différence
f(x) — f(a) peut étre écrite comme somme télescopique
n
k k—1
fx) = fla) =D (F(x") = fx*1)
k=1
Par le théoréme des accroissements finis on a que Vk = 1,...,n, il existe un 0y €]0, 1] tel
que
f(Xk) - f(inl) - f($17 oo 7xk717xk7ak+17 e 7aTL) - f(x17 seey xk‘*l) a’k7ak‘+17 LU 7an)
of
= 87%(1‘1, o Tp—1, g + O (T — ag), a1, - an) (TR — ag)
_of

= T%(Xk_l + 0 (x" — xF1) (2 — a).

Puisque les dérivées partielles sont continues en a, on a que

= aa—f(xk_1 + O (xF — xF71)) of (a) =& 0.
z,

gr(x) : - 87%
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En effet, la continuité de en a implique que
~ ‘ ~ | Of af
Ve >0 36 €]0,0/2] : Yy € B(a,290) Tm(y) 8xk( a)| <e,
et de plus, pour y(x) = x* 1 + 0, (xF —xF 1) avec 1 <k <n,ona
ly(x) —al = [[(1 = 65)(x"" —a) + 0(x" —a)|| < |x"" —a| +[x" —a| < 2|x —a]
et donc
N _ of of
Ve 035 €0.6/2): V€ Ba) lono)l = |5 (v00) — 2 (@) < e
ce qui montre que limx_,5 gx(x) = 0 pour tout k =1,...,n. Ainsi,
Fx) = fla) =D (F(x") = F(x*1)
k=1
n ) B
=3 Iy ) e a)
k=1 "k
" /0
=> <af(a)($k —ag) + gr(x)(zp — ak))
k=1 \OTk

(produit matriciel entre un vecteur ligne et un vecteur colonne), avec g(x) = > 7_; gr(x)(zr—

1
ar). Par I'inégalité de Cauchy-Schwarz, on a |g(x)| < (X7—1 gx(x)?)? ||x — a|| et donc

. |g(x)]
A T —a] = ng

ce qui montre que g(x) = o(||x — al|). O

3.1.1 L’espace C!

Le théoreme 3.12 montre que si toutes les dérivées partielles existent dans un voisinage
d’un point intérieur xo et sont continues en xg, alors la fonction est différentiable (et
continue) en xg et donc toutes les dérivées directionnelles existent en xg.

Définition 3.13 (Espace C'). Soit E C R" ouvert non vide. On dit que f : E — R est
continument différentiable sur E si toutes les dérivées partielles gTi pouri=1,...,n,
existent et sont continues en tout point x € E. Dans ce cas on note f € C*(E) (f est de
classe C1). De méme, on dit que £ : E — R™ est de classe C', f € CY(E,R™), si chaque

composante de £ = (f1,..., fm) satisfait fp € CH(E), k=1,...,m
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Grace au théoréme 3.12; si f € C1(E) alors f est différentiable en tout point xg € F
(E étant ouvert) et donc elle est aussi continue, c’est-a-dire f € CY(E) = f € C°(E);
de méme, on a C'(E,R™) Cc C°(E,R™). De plus, toutes les dérivées directionnelles Dy f
existent et sont continues sur F.

On vérifie facilement que C''(E) a une structure d’espace vectoriel réel. En effet, pour
tous f,g € C1(E) et toutes constantes \,u € R on a Af + pug € C'(E). On vérifie aussi
facilement les reégles de dérivation suivantes : Soit E C R™ ouvert, f,g € C*(E) et des
constantes A\, u € R. Alors

i) A +upgeCYE), D+ pug)(x) = ADf(x)+ pnDg(x), Vx€E,
i)  fgeCHE), D(fg)(x) = Df(x)g(x) + f(x)Dg(x), Vx € E.

3.2 Dérivation de fonctions composées

Soit f: ECR" - R™etg: F CR™ — RP avec E, F ouverts non vides. Si Im(f) C F,
on peut définir la fonction composée

p=gof: E—>RP ¢okx)=gf(x), VxeE.
Par composantes :

X = (21,...,2n), f(x)=(fi(z1,...,2n),. ., fm(T1,...,2p)),

Y=t Um);, 8Y) = (91(y1,- - Ym)- 5 Gp(Y1, - Ym)),
‘P(X) = (gl(fl(x)v"'7fm(x))v 7gp(f1(x)7"'7fm(x)))'

Théoréme 3.14. Soient f : E C R*" - R, g : F C R™ — RP; E F des ouverts
contenant respectivement xg et yo ; Im(f) C F et yo = f(xq). Si f est différentiable en xq
et g est différentiable en yqo, alors p = gof : E — RP est différentiable en xq et

Dep(x) = Dg(f(x0)) - Df(x0) = Dg(f(x0))Df (xo).

(produit matriciel des matrices jacobiennes). Par composantes on a :

. . i — Jgi Ifk
Vie{l,....,p}Vje{l,....n Xg) = Xg)) = (x
(o sph ¥ € (1) G G0) = 32 G0 5
Si de plus £ € C1(E,R™) et g € CY(F,RP) alors ¢ € C*(E,RP).
Démonstration. Par hypothese on a
_ - Re(x)
f(x) = £(xo) + Df(x0) - (x — x0) + Re(x),  lim % — %o 0,
. R
B(y) = &(v0) + De(yo)- (v ~ o) + Rg(y). Jim =) g,

y=yo [ly —yol
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On écrit
Re(x) = ||x — xo|re(x) avec lim re(x) = 0 et re(xp) := 0,

¢(y) = lly —yolrg(y) avec ygnb}org() et rg(yo)

On veut montrer qu’il existe une application linéaire L, : R" — RP et une fonction
Ry : E — RP telles que

p(x) = p(x0) + Ly(x —x0) + Rp(x) et lim Ry (x)

x=%0 [|x — xo|

=0.

h(x)
p(x) = g(f(x)) = g(£(x0) + Df(x0) - (x — x0) + [[x — xoIre(x) )

=8(yo) + Dg(yo) - h(x) + [[h(x)[[rg(f(x))
=8(yo) + Dg(yo) - Df(x0) - (x —x0) + [[x — %0/ Dg(yo) - re(x) + [|h(x)[rg(f(x)).
A(x) B(x)
Il faut montrer que Ry, (x) := A(x) + B(x) satisfait limy_,x, ”1}(7522“ = 0. Pour A(x) on a
tim T2 iy | Dg(yo) - re()) < IDE(yo) it fee(x)] = 0
X—X0 HX —_ XOH X—X| - X—X0 !
ou on a noté [|C|| la norme matricielle ||C|| = supyezm % < 400 pour C' € RP*™ (et
y#0

on utilise finalement le théoréme des deux gendarmes).
Pour B(x) on a pour tout xg #x € E

IBGIIL _ RGO, (e
Ix = xoll — fIx — xo
. | Df (x0) - (x — ﬁc}i)ﬂ :O|’|’X — Xo|[Jre (x)]] rg (£(x))]|

< (IPF o)l + [les )N [[eg (£ ()]

Puisque f est continue en xg et rg en yo = f(x¢), la composée rg o f est continue en xg.
Dot limy_,x, rg(f(x)) = rg(f(x0)) = rg(yo) = 0. D’autre part limy_,x, r¢(x) = 0 (par
hypothese) et on conclut que

i 1B < (IDFGxo)ll + Jim [fre(x) ) Jim [frg(£(x))]| = 0.

X—X0 Hx X0 ” - X—X0

On a donc montré que

(%) = lx0) + Dg(E(x0)) - DE(x0) - (x — %0) + Ry(x) on  Jim 20 g,

X0 [|x — x|
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On conclut donc que ¢ est différentiable en xqg et
Dep(x) = Dg(f(x0)) - DE(xo).

Si maintenant f € C'(E,R™) et g € C'(F,RP), alors chaque composante des matrices
Df(x) et Dg(y) est une fonction continue de x (resp. y) et Dp(x) = Dg(f(x)) - Df(x) est

continue en x pour tout x € E. Donc ¢ € C1(E,RP). O
Remarque 3.15. Dans cette preuve, on a utilisé la norme matricielle ||C|| = supyerm % <
y#0

400 pour C € RP*™, (Cest effectivement une norme sur l’espace vectoriel des matrices
RP*™ " appelée plus spécifiquement la norme “spectrale”. Il y a d’autres normes matricielles
possibles sur RP*™,

Exemple 3.16. Soient f: R? = R3 et g : R? — R? donnés par

Y
U+ w
f(.'lj‘7y) = |T + 2y ’ g(u,v,w) = ’U2 ’
sin
avec matrices jacobiennes
AN I 10 1] _ poxs
Df(z,y)=| 1 2| eR”™*, Dg(u,v,w)= e R*"7.
0 2v 0
cosz 0
Alors,
in+Sin.T 2 2
= f = :R* —> R
et
Y T
Y+ cosx T 1 0 1
Dyp(x,y) = = Dg(f(x,y)) Df(x,y) = 1 2

Un cas particulier du théoreme 3.14 est celui de la composition d’une fonction f: E C
R"” — R, de classe C' sur 'ouvert non vide E et un chemin dans E,v: I CR = E, I
ouvert non vide et t > vy(t) = (y1(t),...,1(t)), avec 45 € C*(I), Vi = 1,...,n. Dans ce
cas, la fonction composée p = fovy: I = R, t— @(t) = f(71(t),...,7(t)) est dérivable
sur I, p € CY(I) et

9 o(t) = Df((t)) - D(t)

dt
J1(t)
= [, .. Zaw)]|
0
= s,
i=1 "t

La quantité %(p(t) = %f(qq (t),...,m(t)) est appelée la dérivée totale de f le long du
chemin ~(t).
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3.3 Théoréme des accroissements finis

On rappelle d’abord le théoréme des accroissements finis pour une fonction réelle d’'une
seule variable réelle : soit f : [a,b] — R continue et dérivable sur |a, b[, alors il existe
¢ € Ja,b] tel que f(b) — f(a) = f'(¢)(b —a). On vise & généraliser ce résultat pour des
fonctions f: E CR® - Rou f: E C R® — R™ de plusieurs variables réelles.

On introduit la notation suivante : pour x,y € R”, x # y, on note [x,y] le segment
fermé d’origine x et d'extrémité y : [x,y] ={z € R" :z=x+t(y — x), t € [0,1]} et par
|x,y[ le segment “ouvert” |x,y[={ze€R":z=x+1t(y —x), t € ]0,1[} (sin > 2, |x,¥y]
n’est ni ouvert ni fermé). Lorsque x =y, on pose [x,x]| = {x}.

Théoréeme 3.17. Soit E C R™ un ouvert non vide et f : E — R une fonction dérivable
sur E. Six,y € E distincts sont tels que [x,y] C E, alors il existe z € |x,y|, tel que

fy) = f(x) = Df(z)(y —x)
(produit matriciel entre un vecteur ligne et un vecteur colonne).

Démonstration. On pose g(t) = f(x + t(y — x)) avec t € [0,1]. Alors g est continue sur
[0,1] et dérivable sur ]0,1[, car composée de fonctions dérivables : g(t) = f(v(t)), ou
v(t) = x + t(y — x). Par la régle de dérivation d’une composée, ¢'(t) = Df(v(t))Vv'(t) =
Df(x+t(y — x))(y — x) . Par le théoréme des accroissements finis pour des fonctions
d’une seule variable, il existe 6 € ]0,1[ t.q. g(1) — g(0) = ¢’(#) ce qui équivaut a

fy) = f(x)=Df(x+0(y —x))(y —x), 0€]0,1]
=Df(z)(y —x), z=x+0(y—x)€xyl

O]

Dans la démonstration ci-dessus on a ¢'(t) = Df(x + t(y — x))(y — x). Si on suppose,
maintenant, que f est de classe C1, on a g € C1(]0,1]) et g(1) — g(0) = 01 g (t)dt. On en
déduit .

F) = £ = [ DGt tly =)y = %) (31)

Considérons maintenant une fonction f : £ C R"™ — R™ avec E ouvert non vide et f
dérivable sur E. L’analogue du théoreme des accroissements finis pour une telle fonction
vectorielle est en défaut! En fait, on peut appliquer le théoréme a chaque composante
fe, k=1,...,m de f. Donc il existe z; € |x,y[, k=1,...,m tels que

Te(y) = Je(x) = D fi(zx)(y — %).

Toutefois, on n’a aucune garantie que les z; coincident. On ne peut donc pas trouver, en
général, un seul z pour lequel f(y) — f(x) = Df(z)(y — x) (produit matriciel entre une
matrice m x n et un vecteur colonne dans R", ce qui donne un vecteur colonne dans R™).
Néanmoins, la formule (3.1) se généralise pour toute fonction vectorielle f : E C R™ — R™
de classe C.
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Lemme 3.18. Soit f : E C R — R™ de classe C' sur E ouvert non vide et x,y € E
tels que [x,y] C E. Alors

1
(y) ) = [ DEGx+tly = x)(y = %)

Ici lintégrale d’une fonction continue [0, 1] — R™ est comprise comme le vecteur dans
R™ obtenu en prenant l'intégrale de chaque composante (chaque composante étant une
fonction continue [0,1] — R).

Le Lemme précédent, demande que la fonction f soit de classe C! sur E. On peut
obtenir une version faible du théoreéme des accroissements finis qui demande uniquement
que les dérivées partielles existent et soient bornées sur le segment [x, y].

Lemme 3.19. Soit f : £ C R® — R™ dérivable sur E ouvert non vide et x,y € E
distincts tels que [x,y] € E. S’il existe M > 0 tel que ||Df(z)|| < M, Vz €]x,y][, alors

1£(y) = £ < Mlly — x.

Démonstration. Le résultat est évident si f(y) —f(x) = 0. Supposons donc f(y) —f(x) # 0
et considérons f(u) comme un vecteur colonne, u € E. Soit un vecteur ligne w € R fixé
et considérons la fonction fy, : E — R définie par fy(u) = wf(u) pour u € E, ou apparait
le produit matriciel entre w et f(u). On sait alors qu’il existe z €]x,y| (qui peut dépendre
de w) tel que fw(y) — fw(x) = Dfw(z)(y — x), c’est-a-dire

w(f(y) — f(x)) = wDE(2)(y — ).
Choisissons w = (f(y) — f(x)) ", ce qui donne
I1£(y) — £(x)|I* = wDE(2)(y — x) < |w| || DE(z)(y — x)]|

< |l [IDE)Illy — x| < [£(y) — £(x)| M [}y — ]|
et done [f(y) — £()]| < My — x|. 0
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Chapitre 4

Dérivées d’ordres supérieurs

4.1 Dérivées secondes

Soit E C R™ ouvert, une fonction f: E — R et un indice j € {1,...,n} fixé, tels que
%(x) existe en tout x € E. On considere maintenant la fonction % : E — R et soit
J

ke {l,...,n} fixé. Si cette fonction admet une dérivée partielle par rapport a xj en tout

%)
()

T E — R. On utilise la notation

021 o(#) : o2 (#)
(x) == —5;7%(x). Pour k = j on utilise la notation 7-5(x) = Tj(x)
i

Oz, 0x; oxy,

x € F, on peut définir la dérivée partielle seconde

Définition 4.1 (matrice hessienne). Soit E C R™ ouvert non vide et f : E — R telle que

toutes les dérivées partielles secondes %g;j cE—= R, i,j=1,...,n existent. On appelle
matrice hessienne de f en x € E la matrice Hy(x) € R™" :
92f 92f 92 f
Tm%(x) 011012 ( ) T 0x10Tn ( )
Hy(x) = : :
92 9?2
&Tngxl (x) . . ﬁ(x)
OB e CI PP Y Y
8:):% X Ox10x2 2 e 0x10xn X
9?2 : 9?2 .
8%5;1 (x) e . mg (x)

Définition 4.2 (espace C?(E)). Soit E C R™ ouvert non vide. On dit que f : E — R est
de classe C?, f € C*(E), si toutes les dérivées partielles secondes 8228’[% FE—R,i,j=

1,...,n existent et sont continues sur E.

On peut aussi définir les dérivées directionnelles mixtes : soit f : FF — R différentiable
sur E et Dy f(x) = Vf(x) v la dérivée directionnelle de f dans la direction fixée v €
R™, ||v|| = 1 (norme euclidienne). Si Dy f : E — R admet une dérivée directionnelle dans
la direction fixée w en tout point x € F, on note

Dy f(x) = Dw(Dv f)(x)

45
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la dérivée directionnelle mixte.

Lemme 4.3. Soit f € C*(E), E C R" ouvert non vide et v,w € R, |v|| = |w]| = 1.
Alors

ngvf(x) = WTHf(X)V,

ot il y a deuz produits matriciels, et v et w sont des vecteurs colonnes. Ceci s’écrit aussi

JW;

;1 (9:61833] Kl
Démonstration. Puisque f € C?(E), toutes les dérivées partielles 3 —f ,7=1,...,n sont
continues sur E et f est différentiable sur E. Donc Dy f(x) = Df(x) - v = ;-‘_1 aanj(X)Uj
et Dy f: E — R est continue. De plus, ses dérivées partielles (é)Vf ) = 1,...,n existent

et sont continues sur E car

o(Df) _ 0 (Si1 ) 5o
ox; o0x; et 6@8%

et 62_28]; € C°E) pour tout i,j = 1,...,n puisque f € C*(E). Donc Dy f € C1(E) et

9Dy f) N 0f

Du(Duf)() = 3 =5 (we = 3 g (g = wTHy (v,
i=1 ¢ i,j=1 ¢

O]

Exemple 4.4. Soit f : R? = R, (x,y) — f(x,y) = 2%y, et considérons les deux directions
v= (L, Lyetw= (L L) Ona

V2 V2
8f _ of 2
f B 2f _ 2f _ Pf
Donc
2y 2z
Df(z,y) = 2xy,2%),  Hy(z,y) = l% 0]
et

1
Dief(a,y) = w Hy(w,y)v = [}~ Bﬁ 25”] M = (a1 VE) +y).
2

V2

On remarque de plus que D% f(x,y) = D2 f(z,y) puisque Hy est symétrique.

, L 02f  9%f - (o
Dans 'exemple précédent on a a0y = oydT Sous des conditions assez générales, on
. 9%f _  9*f .o . . ye ,
aura toujours Beide; — o0z W = 1,...,n. Ceci est garanti par 'important résultat

suivant :
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Théoréme 4.5 (de Schwarz). Soit deuz indices fizés 1,5 € {1,...,n}, E C R"™ ouvert non
af of _9*f o? f ;
vide 62wec n j 2, x€EFE fizéet f: E— R telle que 3 ’8%7 Ox,01; * Oz, 07 existent dans E
o~ f o f

0% f _ 82f
el a0, Bu,0m; SO continues en cet X € E. Alors Tei0z; (x) = T 057 (x)

Démonstration. Soient s,t > 0 fixés suffisamment petits de sorte que le rectangle rempli
fermé de sommets x,x + se;, x + te;, X + se; + te; est contenu dans F. Ceci est toujours
possible car x est un point intérieur de E. On considere la quantité

A(s,t) = f(x+ se; +tej) — f(x + se;) — f(x +te;) + f(x)
et les deux fonctions auxiliaires
9(§) = f(x+Ee;+te;)—f(x+Ee;), £ €[0,s],  h(§) = f(x+sei+lej)—f(x+ej), £ €0,1].

La fonction g est dérivable dans ]0, s[ par hypothese (57 f existe dans F) et donc, par le
théoréme des accroissements finis, il existe § € ]0, s] tel que

g(s) — g(0) = ¢'(3)s = (g;: (x + 3e; + te;) — g;:(x + §ei)> s.

Soit maintenant
of
81’2'

p(n) =

(x + 3e; +ne;), n €0t

La fonction ¢ est dérivable dans |0, ¢[ car 882df existe dans F, et donc il existe # € |0, ¢

tel que
(t) — p(0) = ' (D)t = 't (x + 3e; + te;)t
14 v = ¢ N 8%8% ! I
On a finalement
1= ok . -
A(s,t) =g(s) —g(0) =g¢'(5)s = (gp(t) - cp(O))s = ¢ (t)st = d2,0m; (x + 3e; + te;)st

On répete maintenant les mémes arguments pour la fonction h :

3t €]0,t[ :  A(s,t) = h(t) — h(0) = B/ ({)t = (g(x + se; + te;) — %(x + fej)> t

Soit (n) = %(x%— ne; + te;), n € [0, s], alors

0 0?2 .
f( —{—t ) 6$éf (x+§ei—|—tej)s

35€]0,s[ = w(s)—(0) = oz

gjj(x + se; + fej)

et donc

0? - 0? -
A(s,t) = ax-afm(x + Se; + tej)st = ﬁ(x + Se; + tej)st
1 J 2 1
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A~ 2
Si on prend maintenant s =t — 0%, on obtient 5,5 — 0" et ¢, — 07. Puisque 89?-8];- et
i0T;

02 f .
2,0z, sont continues en X, on a

0% f
8332'an

0% f
8%8@

lim iA(s,s) = (x) = (x).

Corollaire 4.6. Soit E C R" ouvert non vide avec n > 2 et f € C?(E). Alors

0% f
8$ia$j

0% f
= 1,7 =1,...,n.
X) Bz0m; (x), VxeE, Vij N O

Le résultat du théoréme de Schwarz n’est pas forcément vrai sans ’hypothese de
continuité des dérivées partielles secondes, comme ’exemple suivant le montre.

Exercice 4.7. Considérons la fonction f : R? — R définie par

f(x,y) =

Ao, (wy) # (0,0),
0, (z,y) = (0,0).

On vérifie que aajgy (0,0), 881126/;(07 0) existent mais elles ne sont pas égales.

Grace au théoreme de Schwarz on a que si f : E — R admet toutes les dérivées
2
partielles secondes az ng :E—Ri,5=1,...,n et qu'elles sont continues en x € F, alors

H¢(x) est une matrice symétrique. Donc, en fait, il suffit de calculer seulement %

dérivées partielles secondes au lieu de n?. Si de plus f est de classe C?(FE), il s’ensuit aussi
que les dérivées directionnelles secondes Dy, f(x) existent pour tout v,w € R™ de norme

1 et que Dyw f(X) = Dwv f(%).

4.2 Dérivées partielles d’ordres supérieurs a 2

Soit f : E — R, avec E C R™ ouvert non vide, et (i1,...,%,) € {1,...,n}’. On
généralise facilement la notion de dérivée partielle d’ordre p de f par rapport aux variables

) (8(a<faf_)))
(

Liys-eos Ty -

1

Lt E——
0z;,0x;, , ...0x; N 0z,

X).

Définition 4.8 (espace CP(E)). Soit E C R™ ouvert non vide et f : E — R. On dit que f
est de classe CP, f € CP(E), si toutes les dérivées partielles d’ordre p, # : F— R,

0z
1 p
existent pour tout (i1,...,ip) € {1,...,n}P et sont continues sur E.
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Gréace au théoreme de Schwarz, si f € CP(E), alors

orf B orf
8:@-1 s axip N 8$Z c axl

o(1) o (p)

ouo(l),...,0(p) est une permutation arbitraire des indices 1, ..., p. Autrement dit, 'ordre
de dérivation n’est pas importante si f € CP(E).

On remarque que si f € CP(E), alors f € CY(E), V0 < ¢ < p, c.-a-d., CP(E) C
cri(E)c..-cCYE) c CUE).

Notation par multi-entiers. Considérons une dérivée partielle d’ordre p, %laf%fa%.
Soit v = (a1, ..., ) ol I'entier a; > 0 est le nombre de fois que 'indice j € {1,...,n}
apparait dans la suite iy, ...,4,. On note || = 3°7_; a; (dans ce cas [a| = p). On utilise
souvent la notation

olel f ol f orf

ox®  Qx{t--- Owp™  Oxyy -+ 0wy,

ou ax?j signifie qu’on dérive a; fois par rapport a z;. Cette notation ne distingue pas
I'ordre de dérivation.

Exemple 4.9. f(x) = z12323. Calculons olelf pour o = (1,2,0) et @ = (1,1,1).

Ox™
0°f o*f 0°f o*f 3
= (20 = G ™ 90100sdns  Owa0w10m;  Dmadasday L3
3 3 3 3
a(i)s_—20f . oF _ oFf _ OF
6m16x28x3 8:n36:x16:c2 8x28:536m1 8:1318%’331’2
o°f 0°f 2
= 6x2x3

- 81‘281’18]}3 - 81’381‘261’1

Remarquons que le nombre de dérivées partielles d’ordre |a| qui correspondent & un

multi-entier @ € N, est
el _  laf!
« ar! - ay!”

4.3 Développement limité et Formule de Taylor

Rappelons d’abord la formule de Taylor pour une fonction d’une seule variable réelle
définie sur un intervalle ouvert I =|a, b|C R et p fois continiment dérivable sur I, f € CP(I) :
Ve,y el

e @ (g
1) = 1@) + @)y -0+ T —ap o LD a4 i)
P ) (g
=3 Pt e

=T7(y)
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N (k) N ,
on TE(y) = > h_, fT,(m)(y—x)k est le polynome de Taylor de degré p et R, (y) est le reste de
la formule de Taylor t.q. lim,,_,, 6{%& = 0 (ou avec notation “petit 0”, R,(y) = o(|y —x[P)).
La formule de Taylor donne donc le développement limité d’ordre p de la fonction f autour
de x. Si, de plus, la dérivée d’ordre p + 1 existe sur I et est continue, alors le reste de la

formule peut étre caractérisé par

_ @+ 6y - 2))

Reste de Lagrange : R — )P pour un 0 €0, 1],
grang p(Y) CE] (y—x)"™ p 10,1]
1 (p+1) _
Reste (sous forme d’) intégrale : R,(y) = / (1- s)pf (= —l—'s(y z) (y — )P ds.
0 p!
Considérons maintenant le cas n > 2. Pour un multi-entier & = (a,...,a,) € N?,
on utilise les notations suivantes :
n n
al = H a;!, x* = Hmf‘l
i=1 i=1
Un polynéme de degré p dans les variables x = (x1,. .., z,) s’écrit

q(x) = Z caX?, ca €R.

aeNn
la|<p

Définition 4.10. Soit f : F >R et x € E. S’il existe un polynome 'y = (yi,...,Yn)
q(y) = Y acnn ca(y —x) de degré p en'y et une fonction R, : E — R tels que
le|<p

fy)=a(y) + Rp(y), Vy€ekE (4.1)

et limy % =0, alors on dit que (4.1) est un développement limité d’ordre p de f

autour de X.

Observons que R,(y) est défini & partrir de f(y) et ¢(y) pour tout y € E par R,(y) =

f(y) — q(y) mais la propriété qui le caractérise est limy_,x % = 0; nous verrons, sous

certaines conditions, des formules plus explicites pour R,(y) si y est suffisamment proche
de x. Comme pour les fonctions d’une seule variable réelle, si un développement limité
d’ordre p de f autour d’un point existe, alors il est unique et peut étre construit en utilisant
la formule de Taylor. On va détailler sa dérivation pour une fonction f € CP*1(E), avec
E C R" ouvert non vide.

Soit x,y € E tels que le segment [x,y] = {z=x+t(y —x), t € [0,1]} C E. On note
g(t) = f(x +t(y — x)), qui est bien définie et de classe CP*! sur un intervalle ouvert
I =] — 0,1+ J[ qui contient [0,1], grace au fait que x,y € E sont des points intérieurs.
L’idée pour dériver une formule de Taylor pour f est d’utiliser la formule de Taylor pour
g: I —-R:

o) = g(0)+ g0yt + L W2y . 970

> TR, te o
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ou
_ (p+1)
RI(t) = /01 (1p'8) g PV (st) P+ ds = g(pt:l()e)tpﬂ pour un 6 € ]0,¢[.
Or, si on note x; = x + t(y — x) :
9(t) = f(xt)
iy N~ Of oy ol f a
0= 3 gty = ) = 30 Gl =

0= 5 (Z . ) —xh)) T

1
= Z 3:6 ax (yll xi1)(yi2 - xiz)
21 glalf o
SR al oxe (xe)(y =)

Finalement, on peut écrire la formule de Taylor
P
fly)=g(1) = Z k,g(’“)(o) + Ry(1)

k! alalf

- Z k! |r§:k ol axa )y = %)%+ Ry(y)
1 ol f
= |§<:p o 8X°‘ Wy —x) +RP(Y)7
=TX(y)
ou on identifie :
T?(y) = Z ialO(|f(x)(y —x) (polynéme de Taylor de degré p)
) o] <p al oxe
et
1 9wty o

R,(y) = a_ZpH o oxa (x+0(y —x))(y —x)* pour un 0 €]0,1] (reste de Lagrange),

1 ||
- a%;“ (p;!l) /0 (1—1s) %xf(x +s(y — x))(y — x)%ds (reste intégrale).
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4.3.1 Formule de Taylor pour des fonctions vectorielles

Soit £ C R™ ouvert non vide, f € CPT(E,R™) et x,y € F t.q. [x,y] C E. On peut
appliquer la formule de Taylor & chaque composante fi de f = (f1,..., fm) : il existe
01,0o,...,0, € ]O, 1[ t.q.

1 9lel 1 9t £,
i) =D — X -+ Y e (X ky —x))(y - %)~
al Ox& al 0x©
la|<p |a|=p+1
Toutefois, en général, les 61, ..., 0, ne sont pas égaux entre eux et on ne peut pas trouver
un seul § €]0, 1] tel que Ry(y) = 32 |aj=pt1 i%(x%—@(y—x))(y—x)a. D’un autre coté,
la formule de Taylor avec reste intégrale est valable aussi pour des fonctions vectorielles :
1 glelf p+1 1 otLf
la|<p la|=p+1

et fournit le développement limité d’ordre p de f autour de x.



Chapitre 5

Intégrales qui dépendent de
parametres

Soit I C R un intervalle avec une infinité de points et £ C R un ensemble non vide.
On considére une fonction f : I x E — R, (¢t,x) — f(t,x) telle que, pour tout x € E,
I'intégrale (éventuellement généralisée)

_ /1 F(t,x)dt

existe. On se pose la question si certaines propriétés de la fonction g : £ — R comme, par
exemple, la continuité ou la dérivabilité, peuvent se déduire de celles de f et si on peut
passer les opérations de limite et dérivation sous le signe de I'intégrale :

lim g /hmftx 8g(x); of

x%xo X—X( 63;1 I al‘z

(t,x)dt.

Que ceci ne soit pas toujours le cas est illustré par 'exemple suivant.

Exemple 5.1. Soit f : Rx R — R, f(t,z) = 22e=%"t. On considére Uintégrale généralisée

:/ f(t,x)dt:/ 22e " dt, Vo € R.
0 0

Clairement, f est continue sur R x R et intégrale généralisée g(x) existe pour tout x € R.
Toutefois, par calcul direct, on trouve

- 22!

ce qui montre que la fonction g n'est pas continue sur R et limg o [° f(t,2)dt #
I F(t, 0)dt.

Exemple 5.2. Soit f:]0,1[ x [0,1] — R,
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On vérifie que f est contine sur]0,1[ x [0,1]. L’intégrale généralisée g(x) = fol ft,x)dt
existe pour tout x € [0,1] et vaut

o(z) = {1—e_m, x €]0,1]

0, z =0.

On a donc lim,_, o+ fol ft, x)dt = lim,_,g+ g(x) =1 # ¢g(0) = fol lim, o f(t, z)dt.

5.1 Intégrales sur un intervalle fermé et borné

Le fait que dans I'exemple 5.2 la continuité de la fonction f n’implique pas la continuité
de la fonction g est dii & un manque d’uniformité dans la continuité de f.

On va d’abord se restreindre au cas ou le domaine d’intégration est un intervalle fermé
et borné (compact).

Théoréme 5.3. Soient a,b € R, a < b et E C R"™ non vide. Si f : [a,b] x E — R est
continue, alors la fonction g(x) = f;)f(t,x)dt est bien définie Vx € E et continue sur E.
En particulier, pour tout xg € E qut n’est pas isolé :

b b
lim g(x) = g(xo) :/a f(t,xo)dt:/ lim f(¢,x)dt.

X—X0 a X—X0
Démonstration. Fixons d’abord x¢ dans F et ensuite € > 0. D’apres le théoreme de Cantor-
Heine généralisé 2.28 appliqué au sous-ensemble compact K = [a,b] X {x¢} C [a,b] X E, il
existe 0 > 0 tel que,

Vio € [a,8] V(%) € [a,]) x B (It = tol + [lx = x0ll <8 = [7(t:) = f(to, x0)] < ;-—)-

En choisissant ¢t = to € [a, b], ceci donne

v(tx) € a8 x B ([x—xoll <8 = |f(t,%) = f(t.x0)| £ )

Pour tout x € E, la fonction ¢t — f(¢,x) est continue sur 'intervalle fermé [a, b], donc
l'intégrale g(x) = f: f(t,x)dt existe. De plus, pour tout x € B(x¢,d) N E,

[0 1o

b €
< dt =
< [ ;=

ce qui prouve la continuité de g en xg € E. Puisque xq est arbitraire, g est continue
sur F. O

l9(x) — g(x0)| =

. , @? 1
Exercice 5.4. Soit f : R? = R, (z,y) — f(z,y) = ﬁyfﬂ, et g(y) = [, f(z,y)dz.
Calculer limy_,o g(y).
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On considére maintenant la dérivabilité de la fonction g(x) = [ f f(t,x
Théoréme 5.5. Soient a,b € R, a < b, E C R" ouvert non vide, f : [a,b] x E — R
continue et g(x) = fa f(t,x)dt, Vx € E. Soit encorei € {1,.. n} firé. Si 2L [a,b]x E —

R existe et est continue, alors % existe pour tout x € E et 8% I (x) = fb gg{ (t,x)dt est

a
continue en tout x € E.

Démonstration. Comme dans la démonstration du Théoreéme 5.3, soit xg € F arbitraire,
e>0et K =la,b] x {xo}. Alors, il existe § > 0 tel que

of of

97 (X)_(‘vai <

=)
“b—a/’

Quitte & diminuer § > 0, on peut encore supposer que B(xg,d) C E, car E est ouvert. On
a alors pour tout 0 < |s| <4,

g(xo +se;)) —g(xo) [° Of B
s —/a aimi(t,Xo)dt =

(t, Xo)

V(t,x) € [a,b] x E <||x—x0H <6 =

brf(t,xo+ se;) — f(t,xo) Of
A ( B — 8% (t,Xo)) dt

/abi (/OS (885{1 (t,x0 +oe€;) — gg{i(t,xo)> da) dt

0 =
ml 8:c,~
g(x0+sei)—g(xo)

do

t,x0)| do| dt <e,

ce qui montre que g I (xg) = limg_, existe et vaut f (t X)dt. Puisque

af est continue sur [a,b] X E, ag est continue sur E. O

5.2 Intégrales avec des bornes variables

Considérons maintenant le cas ou les bornes d’intégration dépendent aussi de x :
b(x)
o) = [ rexde
a(x)
avec a,b: E C R" —]a, B[C R et f:|a, B[XE — R.

Théoréme 5.6. Soit —0o < a < 3 < +o00, E C R" ouvert non vide, a,b € C1(E) tels que
Im(a),Im(b) Cla, B[ et f :Ja, B[xE — R continue, avec dérivées partielles % Jo, BIXE —
R, i=1,...,n continues. Alors g € C1(E) et

Jdg ob da
) = o0 %) — a0+ [ S (e

Démonstration. Soit ¢ €]a, 8] et définissons la fonction G(s,x) = [7 f(t,x)dt, (s,x) €
Ja, B[x E. Alors

b(x)
909 = [ e+ / F(t,x)dt = G(b(x), x) — G(a(x), ).
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Montrons que la fonction G(s,x) a toutes les dérivées partielles en tout (s, x) €]a, f[X E.
Par un résultat fondamental d’analyse I, BG ~(s,x) existe et vaut f(s,x).

Pour s €]c, ], le Théoréme 5.5 assure que 8G < (s,%) existe et vaut [ 7 of o (t,x)dt.

La méme conclusion est vraie pour s €|a,c| car la fonction x — 7 f(t, X)dt admet
une dérivée partielle en z; et qu’elle vaut [; 3 of o-(t,x)dt. Ainsi g—G(s X) existe et vaut

N gf (t,x)dt. Enfin, pour s = c on a G(¢,x) = () sur E et donc 2 e G (¢,x) existe et est nul

c

et B—G( x)=0=[° 889{1- (t,x)dt. En résumé, pour tout s €|a, Bl et x € E, gf (s,x) existe

C
et vaut [’ 5 oL -(t, x)dt.
Montrons que les dérivées partielles sont continues sur ]a, [x E. Ceci est vrai pour

%(s,x) = f(s,x). Pour i € {1,...,n} fixé, on a
oG s of _[tof
oz, (s,x) = o (t,x)dt = /0 o1, (c+ (s —c)m,x)(s — c)dr.

Cette derniére expression est continue en (s,x) en tant qu’intégrale sur 7 dans le compact
[0, 1] d’une fonction continue en (7, s,x). Voir le théoréme 5.3.

A ce stade, nous avons donc prouvé que G est de classe C! sur Ja, B[xE. Par les
propriétés de dérivation de fonctions composées on a que g(x) = G(b(x),x) — G(a(x),x)
est de classe C! sur E et

dg _0G 0b oG oG da oG
S0 = S0 %) 5 (00)+ 5L (b)) = 500, X) 5 (%) = 5 (alx), %)

0 bx) 9 0 Z az(x) 0
SO0 560+ [ e fat)x) g0~ [ 2L wxgar

= 10,0 5200 = a5+ [ L exa

Exercice 5.7. Soit g(y) = fl\/g e dx, y>0. Calculer g'(y) si elle existe.

xT

5.3 Intégrales généralisées dépendant de parametres

On considere maintenant le cas ou l'intégrale est définie sur un intervalle non compact.
On se limite & discuter le cas d’un intervalle de la forme [a,b] ou b pourrait étre +o0o mais
tous les autres cas se traitent de fagon similaire.

Soit donc E C R™ un ensemble non vide, et f : [a,b[x E — R une fonction continue

telle que 'intégrale généralisée
b
_ / £t x)dt
a
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converge pour tout x € E, c-a-d, lim, ;- [ f(¢,x)dt existe pour tout x € E. Comme
dans la section précédente, pour pouvoir établir la continuité de la fonction g, on a besoin
de quelque forme d’uniformité en x pour la convergence de 'intégrale.

Définition 5.8. Soit E C R™ un sous-ensemble non vide et f : [a,b[x E — R une fonction
continue. On dit que ’intégrale f;’f(t,x)dt converge uniformément sur E si elle converge
pour tout x € E et st

b
Ve > 03¢ €la,b: Vee [e,b]Vx € E / £t x)dt| < e.

Avec cette définition, on peut établir le résultat suivant.

Théoréme 5.9. Soient —oo < a < b < 400 et E C R™ non vide. Si f : [a,b|xE — R
est continue et l'intégrale fff(t,x)dt converge uniformément sur E, alors la fonction
g(x) = fab f(t,x)dt est continue sur E.

Démonstration. Soit xg € E quelconque et € > 0. Alors, il existe ¢ €a, b| t.q. | fab ft,x)dt] <
€, Vx € F, grace a la convergence uniforme de 'intégrale. En utilisant le théoréme de
Cantor-Heine généralisé 2.28, il existe 6 > 0 t.q. | f(t,x) — f(t,%0)| < 25, Vt € [a,¢], x €
B(x¢,0) N E. Donc, pour tout x € B(xp,d) N E,

b b
ﬁf(t,x)dt 4 / F(t,x0)dt] < 3e,

96) ol < | [ (70630 - et +

ce qui montre la continuité de g en tout xg € E. O
On a un résultat similaire pour la dérivabilité de g qu’on énonce sans démonstration.

Théoréme 5.10. Soit —0o < a < b < +oo et E C R™ ouvert non vide. Si f € C([a,b[xE)

et les intégrales ff ft,x)dt, f;’ %(t,x)dt, i=1,...,n, convergent uniformément sur E,
alors la fonction g(x) = f; f(t,x)dt est de classe C* sur E et %(x) = ff %(t,x)dt.

Vérifier la condition de convergence uniforme de l'intégrale n’est parfois pas immédiat.
Voici un critere de majoration qui est souvent plus simple a vérifier.

Théoréme 5.11. Soit —oo < a < b < +oo et E C R™ ouvert non vide. St f : [a,b[xE —
R est continue et il existe une fonction h : [a,b[— Ry telle que ff h(t)dt converge et
|f(t,x)] < h(t), Y(t,x) € [a,b[xXE, alors la fonction g(x) = f; f(t,x)dt est continue sur
E.

Si en plus f est de classe C* et il existe hy, ..., hy : [a,b[— R t.q. pour touti=1,...,n,
f;’ hi(t)dt existe et |%(t,x)| < hi(t), Y(t,x) € [a,b[xE, alors g € C}(E).

Démonstration. Il suffit de remarquer que la condition de majoration du théoréme implique
que lintégrale [, f f(t,x)dt converge uniformément. En effet, puisque | f h(t)dt converge,
pour tout € > 0 il existe ¢ €]a, b] t.q. fcb h(t)dt <€, ¥c € [¢,b], et donc | fcb ft,x)dt] <e, ce
qui implique que l'intégrale [ f f(t,x)dt converge uniformément. Une remarque analogue
est valable pour chacune des intégrales [ 2L (¢, x)dt. O

a Ox;
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Remarque 5.12. Dans les théoremes 5.9 et 5.10, la condition d’intégrabilité uniforme de
f; f(t,x)dt et ff g—é(t, x)dt, 1 <1i < n, sur tout ’ensemble E est parfois trop contraignante.
Elle peut étre affaiblie de la fagon suivante :

Il existe un recouvrement {U,}, de E, avec U, ouverts et E C |, Uy, tel que, pour

tout «, les intégrales [ ; f(t,x)dt et [ f %(t’ x)dt, 1 < i < n, convergent uniformément sur
U,NE.

Alors, les conclusions des théorémes 5.9, 5.10 sont encore valables. Pour généraliser
leur démonstration il suffit de remarquer que, pour tout xg € F, il existe a tel que xg € U,
(puisque {Uq } o est un recouvrement de E). Les intégrales f; f(t,x)dt et ff %(t,x)dt étant
uniformément convergentes sur U, N E, on conclut que g(x) est continue / différentiable
sur Uy N E pour tout o et donc sur E =J,(UsNE).

Le méme raisonnement s’applique au théoréme 5.11 ot on peut remplacer la condition
de majoration par la suivante :

11 existe un recouvrement {U, }, de E, avec U, ouverts et E C |J,, Ua, et, pour chaque
a, des fonctions h; o : [a,b[— Ry, i =0,...,n, telles que f: hi o(t)dt converge et

o |f(t,x)| < hoa(t) pour tout (t,x) € [a,b[x(Uy N E),
. |g—£(t,x)| < hio(t) pour tout (¢,x) € [a,b[x(Uy NE) et tout i € {1,...,n}.



Chapitre 6

Difféomorphismes locaux et
fonctions implicites

6.1 Fonctions bijectives et difféomorphismes locaux

Considérons une fonction f : £ C R” — F C R” bijective. Alors on peut définir
lapplication inverse (ou “réciproque”) g : F' — E telle que

gof=idp : VxeE g(f(x)=x
fog=idp : VyeF f(gly)=y.

Un premier intérét a étudier la bijectivité d’une fonction est de pouvoir garantir
I'existence d’une solution unique x = g(y) du systeme d’équations non-linéaires

fl(xlw"axn) =
fx)=y, <=

Ja(@1,. o an) = yn

pour tout y = (y1,...,yn) € F. Souvent, on souhaite avoir aussi de bonnes propriétés de
stabilité aux petites perturbations, i.e. si X = g(¥) et ¥ — y on souhaite que X — x ce
qui revient & demander la continuité de la fonction inverse (en plus de la continuité de f).
On parle d’homéomorphisme lorsque f est une bijection continue avec inverse continu.

Définition 6.1 (Homéomorphisme). Soient E, F C R™ ouverts non vides. Une application
f: E — F est un homéomorphisme si elle est bijective et si f et son inverse g sont
continues.

Un autre intérét d’étudier des bijections est pour introduire un changement de variables.
Soit f : E'— F une bijection et ¢ : F' — R, y — ¢(y) = ¢(y1,. .., yn), une fonction réelle.

59
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Gréace a l'application f, on peut exprimer ¢ en fonction des variables x = (x1,...,2,) € E :
dp=¢of: E—=R, ¢x)=09¢(f(x)), x€E
et vice versa, étant donné ¢ : E — R, on peut exprimer en fonction des variables y :

p=dog:F =R, o(y)=0dgly), yeF

ou g: ' — F est I'inverse de f. Dans ce cas, si ¢ est une fonction réguliere, par exemple de
classe C*, on souhaite que la fonction transformée ¢ soit aussi de classe C*, et vice-versa.
Ceci est garanti si le changement de variables f et son inverse sont de classe C*.

Exemple 6.2. Transformation en coordonnées polaires :

T pcosf 9 9
= = : — . < == .
<y) £(p,0) <psin9> £:]0,+00] x |=m, 7 = B2\ {(2y) € R?: 2 < 0,y = 0}
Cette transformation est continue, méme de classe C°, et inversible. De plus, l'application
inverse est continue, méme de classe C®, sur R?\ {(z,y) € R? : < 0,y = 0} —
]Oa +OO[ X ]_ﬂ-v 77['

On va étudier dans ce chapitre des bijections continiiment différentiables avec applica-
tion inverse contintiment différentiable. Ces applications sont appelées difféomorphismes.

Définition 6.3 (Difféomorphisme). Soient E, F' C R™ ouverts non vides. Une application
f: E — F inversible de classe Ct, f € C1(E,R"), est un difféomorphisme si 'application
inverse g : ' — E (t.q. gof =idg et fog =idp) est de classe C' sur F, g € C1(F,R").
De plus, on dit que f est un k-difféomorphisme si f € C*(E,R™) et Uapplication inverse
g € CF(F,R").

Remarque 6.4. A strictement parler, £ : E — F est un difféomorphisme (E et F étant
des ouverts non vides) si f est différentiable en tout point de E, bijective et son inverse
g: F — E est différentiable en tout point de F. Dans ce cours, sauf mention contraire,
nous rajouterons Uhypothése que f et g sont de classe C1.

Etablir si une application f : E — F est un difféomorphisme est souvent compliqué.
On introduit une définition plus faible qui est plus facile a vérifier :

Définition 6.5 (Difféomorphisme local). Soit E C R™ ouvert non vide, xo € E et
f: E — R" une application de classe C*. On dit que f est un difféomorphisme local en
xq 8’il existe un ouwvert U C E contenant xg et un ouvert V.C R™ contenant f(xg) tels
que £ : U — V est un difféomorphisme (fonction bijective avec inverse g : V.— U de
classe C'). Si f et g sont de classe C* sur U et V respectivement, on dit que f est un
k-difféomorphisme local. (Nous appellerons g un inverse local de f restreinte & un voisinage
de Xo.)

Soient E, F,G C R™ ouverts non vides. Il est facile de montrer (exercice!) que si
f: F — F est un difféomorphisme local en xg € ' et h : F' — G est un difféomorphisme
local en yo = f(x¢) € F, alors h o f est un difféomorphisme local en xg.

On pourrait penser que si f : E — F, avec E, F' C R" ouvert, est un difféfomorphisme
local en tout point xg € F, alors elle est un difféomorphisme global entre E et F. Ceci
n’est en général pas vrai, comme ’exemple suivant le montre.
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Exemple 6.6. Soit f : R2 — R? donnée par

v\ _[e*t cosma
<y2> - f(xlal?) - (ezl SiD.IQ) :

On verra par la suite que £ est un difféomorphisme local en tout point xg € R?. Toutefois,
elle n’est pas un difféomorphisme global car elle n’est pas une bijection : £(0,0) = £(0, 2k7),
Vk € Z.

Toutefois, si on ajoute I’hypothese que f est une bijection, alors le difféomorphisme est
global.

Lemme 6.7. Soient E, F' C R™ ouverts non vides et £ : E — F un difféomorphisme local
en tout point x € E. Si f est une bijection entre E et F, alors elle est un difféomorphisme
global.

La démonstration de ce théoreéme est laissée comme exercice.

6.2 Théoreme d’inversion locale

On s’intéresse a comprendre sous quelles conditions une application f : £ — R", avec
E C R” ouvert, est un difféomorphisme local en xg € E. Pour cela, on va d’abord étudier
le cas d’une application affine f : R™ — R™,

f(x) =Ax+b, AeR"™" beR"

qui est clairement de classe C' (méme C*°). Cette transformation est une bijection si et
seulement si la matrice A est inversible, c.-a-d. si et seulement si det(A) # 0. Dans ce cas,
I'application inverse est donnée par x = g(y) = A7 1(y — b) et g est de classe C! (méme
C*°). Donc f(x) = Ax + b est un difféomorphisme (global) si et seulement si det(A) # 0.

On considére maintenant le cas d’une application non linéaire f : £ — R™ de classe C*

sur £ C R” ouvert. La différentiabilité de f en xg € E assure que ’on peut écrire

f(x) = f(x0) + Df(x0)(x — x0) + Rg(x), XILH)}O |”><Ri()32)|||| =0,
pour tout x € E. Donc, localement autour de xg, f(x) est bien approchée par la fonction
affine T (x) = f(x0) + Df (x0)(x — x0). On soupgonne alors que f est un difféomorphisme
local en xg si et seulement si det(Df(xg)) # 0.

On remarque que la condition det(Df(xg)) # 0 n’est pas nécessaire pour que f soit
localement inversible. Par exemple, la fonction f : R? — R2, (z,7) — f(z,y) = (23,y) est
localement inversible autour de (z,y) = (0,0) (et méme globalement sur tout R?) méme
00
01
fonction f soit un difféomorphisme local, comme le lemme suivant le montre.

si det(Df(0,0)) = det [ = 0. Toutefois, cette condition est nécessaire pour que la

Lemme 6.8. Soit f: E — R", avec E C R™ ouvert, un diffcomorphisme local autour de
xp € E. Alors det(Df(xq)) # 0.
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Démonstration. Puisque f : E — R™ est un difféomorphisme local en xg € FE, il existe un
ouvert U C E contenant xo et un ouvert V' C R™ contenant f(xg) =yo t.q. f: U — V est
bijective et la fonction inverse g : V — U est de classe C!. Puisque g(f(x)) = x, ¥x € U,
f(g(y)) =y, Vy € V et f et g sont différentiables en xg et yp, on a :

Df(x0)Dg(yo) = Dg(yo)Df(x0) = 1
ce qui implique que Df(xg) est inversible et det(Df(xg)) # 0. O

La condition det(Df(xg)) # 0 est aussi suffisante pour que f soit un difféomorphisme
local autour de x, comme le théoréme suivant le montre.

Théoréme 6.9 (d’inversion locale). Soit E C R™ ouvert, f € C'(E,R") et xo € E.
Si det(Df(xg)) # 0, alors f est un difféeomorphisme local en Xq, c.-a-d. qu’il existe un
owvert U C E contenant xo et un ouvert V. C Im(f) contenant f(xg) = yo tels que
f:U — V est une bijection et la fonction inverse g : V. — U est de classe C'. De plus
Dg(f(x)) = (Df(x))~! pour tout x € U.

Avant de démontrer ce théoréme, nous allons prouver des résultats intermédiaires.
Commencons par le théoréme du point fixe de Banach.

Théoréme 6.10 (du point fixe de Banach). Soit un fermé non vide K C R" et une
fonction ¢ : K — R"™ telle que

e ¢(K)CK,
o il existe p €]0,1] tel que Vv, w € K ||¢p(v) — dp(w)|| < pllv —w|.

Alors il existe un unique v, € K tel que ¢(vy) = vy .

Démonstration.
Ezistence. Fixons v(0) dans K et définissons {v(®)},cn € K par récurrence comme
suit :
vt — p(v0) e K, k> 0.

Vérifions que {v(®)},cn est de Cauchy. Pour k € N,
VD — v B = [|p(v?) = p(vF D) | < pl[v) —vETI | << pF v = VO,
Soit € > 0. Alors pour k > m > 0,

[V v < v =y ED) e D -y < () v O

< Pm (Z ,0‘7) Hv(l) o V(O)H _ ,Om(l N p)—lHV(l) — v(O)H <€
=0

si m (et donc k) est suffisamment grand.
Soit v, € R™ la limite de {v(®)},ey. Alors v, € K car K est fermé, et

Ve = (vl < [[ve = vEV 4 [vFD — (v = [[ve = vV 4 [[g(v?)) — p(v.)
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< Jve = vEI 4 pl v — v = 0

lorsque k — 400. D’olt (Vi) = V.
Unicité. Supposons qu'il existe un autre u, € K tel que ¢p(u,) = u,. Alors

[u = vill = l[(us) — d(vi)l| < pllus — vi]
avec p €]0,1[. D’ou ||u, — vi|| = 0 et u, = v,. O

Définition 6.11. Avec les notations du théoréme 6.10, puisque p < 1, on dit que appli-
cation ¢ : K — R" est contractante ou une contraction.

Pour la démonstration du théoreme 6.9 nous avons encore besoin de deux lemmes
suivants.

Lemme 6.12. Soit A € R™ ™. On note par ||A|| la norme spectrale de A, ||A| =

sup eexn ||AE||, ot || - || denote la norme euclidienne, et par ||A||r la norme de Frobenius
igl=1

de A, | Allp = /371 X1 A Alors, on a [|A]] < [|A] .

Démonstration. Grace a I'inégalité de Cauchy-Schwarz,

2
A = sup - (ZAU-@) < swp Y (Z Afj) (Zsf) = |4l
€Rm €Rm =

lel=1 =1 =1 lel=1 =1 =1
O
Lemme 6.13. Soit —oo < a <b< oo etf:[ab] = R™, ¢t f(t) = (fi(t),..., fm(t))
une fonction continue. Alors
b
/ £(t)dt

b
< [ Ifar

ot || - || est la norme euclidienne.

Démonstration. Chaque fonction f; : [a,b] — R, i =1,...,m est intégrale, ainsi que la
fonction g = [|f|| : [a,b] — R4, étant une composition de fonctions continues sur [a, b].
Notons v € R™ le vecteur de composantes v; = ff fil)ydt, 1 =1,...,m. Alors

b 2 m b m b
H [ gt =IvIE =Y v =[S wifide < [ IvllE@)de.
a i=1 @ =1 @

d’ou le résultat. O

Démonstration du théoréme 6.9 d’inversion locale. On va couper la preuve en trois étapes :

(i) On montre qu’il existe r,7 > 0 tel que Yy € B(yo,7) I’équation f(x) = y pour
x € B(xg,r) a une solution unique x € B(xq, ) (on utilise le théoréme du point fixe
de Banach).
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(i) Soit V = B(yo,7) et U = B(xo,7) Nf~1(V) = {x € B(x¢,7) : f(x) € V}, on montre
que f: U — V est une bijection et la fonction inverse g : V' — U est continue.

(iii) On montre que g : V — U est de classe C1(V,R") et Dg(f(x)) = (Df(x))~! pour
tout x € U.

Premiére étape. On étudie I'équation f(x) = y avec y € R" fixé dans un voisinage
convenable de yo. En notant par I € R™" la matrice identité, observons d’abord que
I'application x +— I — Df(x¢) ! Df(x) € R"*" est continue sur E (c.-a-d. chaque compo-
sante de la matrice I — Df(xo) "' Df est une fonction continue sur E) et s’annule en xq.
De méme l'application x — det Df(x) € R est continue et, par hypothese, ne s’annule pas
en xo. 1l existe donc r > 0 tel que, pour tout x € B(xg,7),

e xc F,

e chaque composante de la matrice I — Df(xq) ' Df(x) est dans {—ﬁ, ﬁ},

e det Df(x) # 0 et donc la matrice jacobienne Df(x) est inversible.
L’équation f(x) = y est équivalente & x = ¢Y(x) ou ¢Y(x) = x — Df(x0) ' (f(x) — y),
grace au fait que Df(xg) est inversible. On remarque, en particulier, que ¢ € C'(E,R").

Alors f(x) = y a une solution dans B(xg,7) si et seulement si ¢¥ a un point fixe dans
B(x¢,r). Mais, pour tout x € B(xq,r),

D¢ (x) = I — Df(xq) ' Df(x)

¢ donc |29 (x)| < L. Ceci impl;
et donc |5t (x)| < 55 Ceci implique

n

1D ) < [P (%) = (Z

ij=1

o6
5,9

57

2\ 2 1
) < ¥x € B(x0,7).

Par le théoréme des accroissements finis (version intégrale, ou apparait le produit matricielle
d’une matrice et d’un vecteur colonne, donnant un vecteur colonne) et les lemmes 6.12-6.13,
on a pour x1,Xz2 € B(xg,r),

1
19 (co) = 9 )| = | [ D s+ e = x0) - G = xa)t
< [ 1D 60+t~ x1)) - (2 — )l

1 1
< /0 1D (x1 + t(x2 — x0)) |2 = 3}t < 5|2 = xa
\—7\/—’

€B(xo,r)

et ¢ est contractante sur B(xg,r) pour tout y € R™. De plus, pour tout x € B(xq,r) et

y € B(yo,7), avec 7 = =T7j> on a

2D (o)

@Y (x) — %ol < [|@Y(x) — @Y (x0)]| + ||@¥ (x0) — Xo|

1

e = ol + D€ xo) (30~ ¥ < & + 1D Geo) o — v < 7.

A
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Donc, si on prend y € B(yo,7), on a ¢¥(B(xo,r)) C B(xg,r). Par conséquent, ¢¥ :
B(x0,7) — B(xp,r) a un point fixe unique x € B(xg,r). Mais puisque ¢¥(B(xo,r)) C
B(xg, 1), ce point fixe est dans la boule ouverte B(xg,7). On a donc montré que Vy €
B(yo,T), il existe un unique x € B(xp,r) t.q. x = ¢¥(x), c.-a-d. t.q. f(x) =y.
Deuziéme étape. Soit V = B(yo,7) et U = B(xo,7) Nf~1(V) = {x € B(x¢,7) : f(x) €
B(yo,7)}. On remarque que f~1(V) est ouvert (f est continue sur 'ouvert E, donc la
pré-image d’un ouvert est un ouvert), donc U est ouvert. Par I’étape précédente, f : U — V
est une bijection donc on peut définir la fonction inverse g : V' — U. On montre que g est
continue. Soit € > 0 et § = m, alors, pour tous yi,y2 € V tels que |ly1 —y2| <4,
et en notant x; = g(y1) et x2 = g(y2), on a

[x1 = x| = [|¢"* (x1) — &2 (x2) |
< [l@" (x1) — ¥ (x2)[| + (|67 (x2) — &2 (x2)

1 -
< S lx1 = xoll + 1Df(x0) (v = ¥2)l,

A

et donc
Ix1 — %2 = [lg(y1) — &(y2)ll < 2/|Df(x0) I ly2 — y1ll < e

ce qui montre la continuité (uniforme) de g : V' — U. Méme plus, le calcul précédent
montre que g est Lipschitz.

Troisieme étape. 11 reste & montrer que g : V — U est de classe C! et Dg(y) = (Df(x))7},
Vy € V, ou x = g(y). Par le choix de r, Df(x) est inversible pour tout x € B(xg, ). Soit
maintenant y; € V et x; = g(y1). Puisque f € C'(E,R"), on a

[Re(x1)]l
f —f(x) = Df — lim ———— :
(Xl) (X> (X) (Xl X) + Rf(xl) avec xllgx HXI — XH =0
Ceci implique
x1 —x = g(y1) — 8(y) = DE(x) "' (y1 —y) ~DFf(x) 'R (x1)
Rg(y1)
On va montrer que limy, _,y ﬁq(iyl)l = 0. En effet,
Rg(yDll _ . 1DEx) " Re(x1)] [Re(x1)]]

|
— < lim || DF(x) 5=
iy lyi —yll  yioy lyr =yl yi=y ly1 =yl

[Re(x1)]| [[x1 — x|
= || Df(x) M| lim :
iy [x1 —x|| [[y1 — ¥l

D’un autre coté, comme on I’a vu au point précédent
Ix1 = x| < 2|Df(x0) I lly1 — vl

et donc

tim, IRYOL < o) )1 D ) ) im0

= 0.
yi=y [y =yl x1% [|x; — x|
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On conclut que g : V — U est différentiable en tout y € V et Dg(y) = Df(x)~!, avec
x = g(y). Enfin, puisque Df(x) est continue en tout x € B(xq,r), Df(x)~! est continue
pourvu que det(Df(x)) # 0, ce qui est vrai dans B(xg,r). Ceci montre que g € C*(V,R").

O

6.3 Hypersurfaces et fonctions implicites

Considérons une fonction continue ¢ : U C R? — R. Le graphe de la fonction ¢, qu’on
appellera 3 par la suite, donné par ¥ = G(¢) = {z = (x,y) € U xR : y = ¢(x)} représente
une surface de R3. Plus généralement, si on a une fonction continue ¢ : U C R” — R, le
graphe ¥ = G(¢) C R"! sera une (hyper)surface de R™+1.

Le fait d’avoir une représentation explicite de I’hypersurface ¥ C R**! comme graphe
d’une fonction ¢ : U C R™ — R nous permet de définir facilement certaines quantités
locales comme, par exemple, I’hyperplan tangent ou un vecteur normal a '’hypersurface en
un point zg = (xg, #(%0)) € %, si la fonction ¢ est de classe C!. En effet, la fonction ¢ est
bien approchée, dans un voisinage de xg, par 'application affine

Té (x) = @4‘ Z gf (x0) (s — T04)
i=1 Y

=Yo

dont le graphe est '’hyperplan Il (X) = {z € R"™ : (=D¢(xo),1) - (z — z9) = 0}
appelé 'hyperplan tangent d la surface ¥ au point zg = (Xxo, $(x0)). Le vecteur n =
(—=Dg¢(x0),1) € R**! est un vecteur normal d la surface ¥ au point zg, étant un vecteur
normal & 'hyperplan tangent a ¥ en zg (voir la définition 3.9 du Chapitre 3). On parle,
alors, d’'une surface différentiable ou bien d’'une variété différentiable. De plus, si ¢ est de
classe C?, on peut introduire des notions de courbure de la surface au point zg € ¥, liées &
la matrice hessienne de la fonction ¢ en xg. On ne va pas détailler plus ces notions dans
ce cours.

Considérons maintenant un ensemble ¥ C R™*!. On peut se poser la question si, autour
d’un point zg € X, 'ensemble peut étre représenté localement comme le graphe d’une
fonction continue ¢ : U C R™ — R. Si ceci est le cas, on dit que X est une hypersurface de
R™ 1 localement autour de zg.

Définition 6.14. Soit ¥ C R™""!, 25 € ¥ et k € N. On dit que X est une hypersurface de
classe C* autour de zq si elle est le graphe d’une fonction de classe C* localement autour
de zg, c.-d-d., s’il existe un voisinage V' de zg, un indice i € {1,...,n+ 1}, un ouvert
U C R" et une fonction ¢ : U — R de classe C tels que

YNV = Q(¢) = {X S Rn+1 X = (Z)(Xwi), Xei = (1'1, N A I o7 BT B ,.I‘n+1) € U}

On dit que ¥ est une hypersurface de classe C* si elle est le graphe d’une fonction de
classe C* localement autour de chacun de ses points.

On s’intéresse par la suite a des ensembles définis par

Y={x€FE:f(x)=0}, avecf:ECR" R régulicre (4 préciser),
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c.-a-d. que ¥ est la courbe de niveau zéro de la fonction f définie sur 'ouvert £ C R*H1.
Si ¥ est une hypersurface, localement autour d’un point zy € X, alors elle peut étre
représentée comme le graphe d’une fonction ¢ : U C R" — R localement autour de zg,
c’est-a-dire il existe un ouvert V.C R™*! contenant zg, un ouvert U C R” et un indice
ie{l,...,n+1} tels que
YAV ={xeR": z; = ¢(x), xu; €U}
={xeV: f(z1,...,2p41) = 0}.

On dit dans ce cas que I"équation f(x) = 0 définit implicitement une fonction x; = ¢(x~;)
localement autour du point zy. Autrement dit, la relation

f(a:l,...,xn+1) =0 (61)

permet d’exprimer la variable z; en fonction des autres variables, z; = ¢(x~;), et le graphe
de ¢ coincide avec I’ensemble des zéros de f dans un voisinage de zg. On se pose alors
la question de savoir quand ’équation (6.1) peut étre explicitée par rapport & une des
variables.

6.4 Théoréme des fonctions implicites — cas scalaire

Regardons plus en détail le cas d’une fonction f : R? — R de deux variables réelles.

Exemple 6.15. Soit ¥ = {(z,y) € R? : f(x,y) = 2% —y = 0}. L’équation f(z,y) =0
définit implicitement la fonction y = ¢(x) = 22, Yo € R. C’est a dire, pour tout v € R,
flw, ¢(x)) = 2% — d(x) = 0 et G(¢) = 2.

Exemple 6.16. Soit ¥ = {(z,y) € R? : f(z,y) = 22 +y*>—1 = 0}. Clairement, ’ensemble
> correspond au cercle unitaire.

Y Y
y=+vV1— a2

(Y . N
N NI

Y

CY
N

.
v

V1= 22

AR

Les quatre fonctions y = +£v1 — 122 et v = ++/1 — y? sont définies implicitement par
f(x,y) =0, Toutefois, on ne peut pas trouver une seule fonction y = ¢(x) ou x = ¢(y)
qui décrit tout ’ensemble X. En revanche, soit zg € X arbitraire. Alors, autour de zg, on
peut définir une fonction y = ¢(x) ou x = ¢(y). Par exemple, soit zg = (xo,y0) € .
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— Siyp > 0, alors on peut prendre y = ¢p(x) = V1 — a2 et on a f(z,p(x)) =0 dans un
voisinage de xo et G(¢) coincide avec ¥ dans un voisinage de zg.

— Siyo < 0 alors on peut prendre y = ¢(x) = —v/1 — 22 et on a f(z,¢(x)) =0 dans
un voisinage de xo et G(P) coincide avec ¥ dans un voisinage de z.

— Siyo = 0, par exemple zy = (1,0), alors on peut expliciter x en fonction de vy,
x = ¢(y) = /1 — y? mais non pas y en fonction de .
Exemple 6.17. Soit ¥ = {(z,y) € R? : f(z,y) = 22 — 3?> = 0}. Clairement, ’équation

f(x,y) = 0 est satisfaite si et seulement si x =y ou x = —y.
Y Y Y

‘~ '0 AN '0 ~~ v

- N -

L4 2 L4 y = 7’
x x x

. AR P N . ~~y = —x

o' - o' N // A

Soit zg = (x0,Yyp) € X.

— St zoyo > 0 alors f(x,y) = 0 définit implicitement la fonction y = ¢(x) = x (ou bien
la fonction x = ¢(y) = y) et G(¢p) coincide avec X dans un voisinage de zg.

— Pareillement, si xoyo < 0 alors f(x,y) = 0 définit implicitement la fonction y =
¢(x) = —x (ou bien la fonction x = ¢(y) = —y) et G(¢) coincide avec ¥ dans un
voisinage de zg.

— En revanche, si (xo,y0) = (0,0), il n’est pas possible de trouver ni une fonction
y = ¢(x) ni une fonction x = ¢(y) définies implicitement par ’équation f(x,y) =0
qui décrivent ¥ dans un voisinage de zo = (0,0). On dit dans ce cas que (0,0) est
un point singulier de . On remarque que V f(0,0) = (0,0).

Exemple 6.18. Soit ¥ = {(z,y) € R? : f(z,y) = xe¥ + ye® = 0}. L’équation f(x,y) =
xe¥ 4+ ye® = 0 ne peut pas étre explicitée sous forme simple ni par rapport a x ni par
rapport a y. Est-ce que Uéquation f(x,y) = 0 définit implicitement une fonction y = ¢(x)
ou x = ¢(y) au moins localement autour de chaque point zy € X, dont le graphe coincide
avec Y dans un voisinage de zg ? On verra que la réponse a cette question est positive.

Soit f : R? — R et zg = (z0,y0) tel que f(xg,70) = 0. Supposons que f(z,y) = 0
définit implicitement une fonction y = ¢(z) autour de zg, c’est-a-dire 36 > 0 et ¢ :
Jzo — 0,20 4+ 6] — R tels que yo = ¢(z0) et f(x,Pp(x)) =0, Vo € |z — 0, 29 + I[. Supposons
de plus que f et ¢ sont de classe C'! et notons f(x) = f(x, ¢(x)). Alors, par la formule de
dérivation de fonctions composées, on a :

_of of

d = d /
0= @) = 4 @, 0(0)) = 9L (00D + T (0,6 @), Ve € o — 6,0+ 0.

On en tire que si g—i(m‘o, yo) # 0, alors

P

o o)
¢'(z0) = =57, —
@(m(hy(])
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Plus généralement, si g—g(xo,yo) # 0, alors g—;(x,dx)) # 0 pour tout x suffisamment
proche de xg et

Méme si on ne connait pas ¢, on peut quand méme évaluer sa dérivée ¢'(xq) si g—; (xo,y0) # 0.
De plus, si f et ¢ sont de classe C?, on peut itérer le raisonnement :

d2
0= Wf(ac #())

— o (ol + G @ ol @)

_0*f o*f

Ui
= Gua (. 0(2) + 25 (. 6(@)0! (&) +

7 (7, ¢(z ))(¢’($))2+8fy($, (2))¢" (x).

Lo
Oy?
Par conséquent,

2 2 2
#'(w0) = g —— (af@o, o) + 25 3o g0)o ) + gy§<xo,yg><¢'<xo>>2> .

0 2
376(930, yo) \ 97
et, pour tout x suffisamment proche de x,

2 2 2
#'(a) = M (f)x{@w)) 20w o) d @) + ‘;yﬁ(x,(b(x))(qs’(x))?) .

Plus généralement, si f est de classe C¥, alors ¢ sera aussi de classe C* et on peut calculer
explicitement qﬁ(k) (x0). Tous les calculs précédents sont valables sous I’hypothése qu’'une
fonction implicite ¢ de classe C* existe et que %(mo, yo) # 0. Cette derniére condition

s’avere étre suffisante pour 'existence d’une fonction implicite.

Théoréme 6.19 (des fonctions implicites — cas n = 2). Soit f : E C R? - R, E
ouvert non vide, de classe C1, ¥ = {(x,y) € E: f(x,y) = 0} et zo = (z0,%) € T t.q.
%(3307.@0) # 0. Alors il eziste un voisinage U = |zg — §,z9 + [ de xo, un ouvert VC E

contenant zg et une unique fonction ¢ : U — R de classe C' tels que

— Yo = ¢(x0) ;
— (z,¢(z)) €V et f(z,9(x)) =0,V €U ;
— G(p)=XnNnV.
De plus, pour tout x € U, ay( ,o(x)) #0 et
o]
R 1 G C)))
T = o)

et si f € CH(E), alors ¢ € CF(U).
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Démonstration. Supposons %(fﬂo,yo) > 0 (le cas %(an yo) < 0 est identique). Puisque
% est continue sur E (f étant de classe C'), il existe 01,82 > 0 tels que, pour tout
(z,y) € W = [20 — 61,70 + 1] X [yo — J2,%0 + 2], on a

(x,y) € £ et g‘g(ﬂs,y)>0.

Pour tout = € [xg — 01,z + 01], la fonction y — gz (y) = f(z,y) est strictement croissante

dans lintervalle [yo — 2, yo + d2] car ¢, (y) = g—i(x, y) > 0. En particulier

Gzo (Yo — 62) < gzo (o) = f(20,%0) = 0 < gy (yo + d2).

Puisque f est continue, il existe 0 < § < §7 tel que
9o (yo—02) = f(@,y0—0d2) <0 et  ga(yo+d2) = f(z,yo+d2) >0, Va €U :=]zo—4, zo+0]

comme illustré dans la figure ci dessous.

'+ + o
! ; oy > 0
B ' e
Yr---pi--e
T

Pour x € U, g,(y) est continue et strictement croissante sur 'intervalle [yo — d2, yo + d2],
et donc il existe un unique y = ¢(x) € Jyo — 92, yo + d2[ tel que g, (y) = f(x,y) = 0. Cette
procédure permet de définir de fagon unique une fonction ¢ : U — R telle que

d(xo) =yo et f(x,¢(x))=0 Vrel.

De plus, si on note V' = |zg — 6,20 + 0] X Jyo — 02,90 + 2, on a G(¢) = {(z,y) € V :
flz,y) =0} =2XnNV.

Continuité de ¢. Soit & € U et y = ¢(x). Pour tout € €]0,2 — |y — yo| ], considérons
We = [xg — 01,20 + 01] X [§ — €,y + €]. Puisque W, C W on a que % > 0 sur W.. En
raisonnant comme auparavant, mais sur W, au lieu de W, il existe J. > 0 et une fonction
¢ : 17 —6c, 7+ 0 [NU — R tels que § = ¢(z) et f(x,p(x)) =0,V € ]2 — e, 4+ [NU. Par
I'unicité de la fonction implicite sur W et le choix de W, on a ¢(z) = ¢(x) € [j — €, 5 + €],
Va €]z — 6, + 0 NU. On a donc montré que pour tout € > 0 il existe 6. > 0 tel que
|p(x) — ¢(z)| < € pour tout x € | — ¢, T + 0[N U ce qui montre la continuité de ¢ en
tout point x € U.
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Continuité de ¢'. Soient x1 # x5 dans U, y1 = é(w1) et yo = ¢(x2). Puisque f € C1(E),
on a

0= flaa,t) — o) = G0 (€ m)(aa — 1) + 50 () = )

avec (§,m) = (x1 +0(z2 — x1),y1 + 0(y2 —y1)) et 0 € ]0, 1]. Alors

v -y o) —d(z) (&)

L R ore.m)

et %(fﬂ?) >0 car (&,n) € V. .C W. 1l s’ensuit

2]
o) — q Q@2 —0@) G u)
¢'(z1) = lim — = =37 ,
To—T1 To — T @($1,y1)
af
donc ¢ est dérivable en tout x € U. De plus, ¢'(z) = —% est continue grace au
ny )
fait que %v % et ¢ sont continues et g—]yc(x,d)(x)) # 0, Vo € U. La démonstration que
¢ € C*(U) si f € CF(E) se fait par récurrence sur k > 1. O

On a montré le théoréme des fonctions implicites pour une fonction de deux variables
réelles (x,y) — f(x,y) : R? — R. Toutefois, la démonstration de ce théoréme se généralise
sans difficulté au cas d’une fonction de n variables f : R" — R.

Théoréme 6.20 (des fonctions implicites & plusieurs variables). Soit E C R™™! ouvert
non vide, f : E — R de classe C', ¥ = {(x,y) € E,x € R", y € R : f(x,y) = 0} et
zo = (X0,Y0) € X tel que %(Xo,yo) # 0. Alors, il existe un ouvert U = B(xg,d) C R™ de
Xg, un owvert V.C E contenant zg et une unique application ¢ : U — R de classe C telle
que :

— Yo = ¢(X0) 5

— (x,0(x)) €V et f(x,0(x)) =0, VxeU;

— G(¢) =NV, (ie. le graphe de ¢ décrit ¥ dans un voisinage de z).
De plus, pour tout x € U, g—i(x, d(x)) #0 et

00— _ 5% 90)
oz, 9L (x, 9(x))

et si f € CH(E) alors ¢ € C*(U).

Le théoréeme précédent montre que si %(ZO) # 0, ’ensemble X coincide avec le graphe

d’une fonction y = ¢(x) dans un voisinage de zg. Ceci permet de définir ’hyperplan
tangent a 3 en zg, noté I, (), comme 'hyperplan tangent au graphe de ¢ en xg, qui est
donné par

I,,(¥) = {(x, y) € R y = ¢(x0) + 2”: gj (x0)(z; — azoJ)} )
i—1 9t
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En se rappelant de 'expression des dérivées partielles de ¢ en xg, 'hyperplan tangent peut
s’écrire de facon équivalente comme

By =)0 =) + 3 )i =00 =0,

qui conduit a I’expression simple

I, (X) = {z € R"" : Vf(zo) - (z — z9) = 0}. (6.2)
Cette équation montre que le vecteur V f(zg) est un vecteur normal a ¥ en zg.
Enfin, on remarque que si %(Zo) = 0 mais Vf(zg) # 0, alors il existe un i € {1,...,n}

tel que %(ZO) # 0 et on peut encore appliquer le théoreme des fonctions implicites en
exprimant la variable x; en fonction des autres variables. L’expression de ’hyperplan
tangent (6.2) et du vecteur normal sont inchangées.

6.5 Théoréme des fonctions implicites — cas vectoriel

Les idées présentées dans la section précédente se généralisent au cas d’une fonction
continue & valeurs vectorielles f : E C R"™™ — R™ (x,y) — f(x,y), x € R", y € R™,
ou E est ouvert non vide. Soit ¥ = {(x,y) € E: f(x,y) = 0} ’ensemble des solutions
de I'équation f(x,y) = 0. Cette équation correspond au systéme sous-déterminé des m
équations

fi(zy,o T, Y1, Ym) =0
: (6.3)

fm(xlv---uxnaylv"'vym) =0

des n + m inconnues (z1,...,Zn, Y1, .., Ym). Du point de vue géométrique,
m
Y= ﬂEi, ounY; ={(x,y) € E: fi(x,y)=0}.
i=1

Si chaque ensemble Y; est une surface de R alors 3 est I'intersection de m surfaces. Par
exemple, si f1(x,y,2) =0 et fo(x,y,z) = 0 définissent des surfaces en R3, leur intersection
Y ={(z,y,2) €R3: fi(z,y,2) =0 et fo(z,y,z) = 0} sera en générale une courbe de R3
(voir Figure 6.1). On peut se poser de nouveau la question de savoir si I’ensemble ¥ peut
étre représenté comme le graphe d’une fonction continue, au moins localement autour de
chaque point zy € . De fagon équivalente, on veut savoir si pour 1’équation f(x,y) = 0 on
peut exprimer m variables, disons (y1, ..., ym), comme fonctions continues des n variables
restantes (z1,...,y), dans un voisinage de zyg = (xg,yo) ; autrement dit, si le systéme
(6.3) définit implicitement une fonction continue ¢ : U C R™ — R™ autour de xg telle que
f(x,¢(x)) =0, Vx € U et ¥ = G(¢p) dans un voisinage de zy.

Avant de donner le résultat d’existence générale, il est utile de considérer le cas d’une
fonction f, affine :

fa(x,y) = A1x+ Asy + b, A € Rmxn, Ay € Rmxm, b e R™.
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filz,y,z) =zxtanz+y—2=0

\‘ y

FIGURE 6.1 — Courbe ¥ = {(z,y,2) € R® : fi(x,y,2) = Oet fao(x,y,2) = 0} obtenue par
Iintersection des deux surfaces fi(z,y,2) = atanz +y — z = 0 et fo(z,y,2) =
H—y—32+3=0.

L’équation f, = 0 équivaut a Asy = —(A4;1x + b). Donc on peut écrire de fagon unique y
en fonction de x si et seulement si la matrice Ay est inversible, c.-a-d. det(Az) # 0. Dans
ce cas on a
y = Ay A1x — Ay 'b.
Considérons maintenant une fonction non-linéaire f : E C R*™ — R™ de classe C!
et zo = (x0,y0) € £ ={(x,y) e R" xR™: (x,y) € E, f(x,y) = 0}. La différentiablilité
de f en zy € E assure que ’on peut écrire pour tout z € £

f(z) :Mﬂ Df(z0)(z — 20) + Re(2), im &)

2o ||z — zof|

Il est pratique d’écrire la matrice jacobienne Df(zg) € R™*("t™) par blocs comme

Gi(zo) - S(z0) | §l(z0) - $(20)
Df(zg) = : = | Duf(20) | Dyf(z0) |-
8 (z0) o G2(20) | H2(20) o G2 (20)

Donc, dans un voisinage de zg, la fonction f est bien approchée par la fonction affine
fa(z) = Df(20)(z — z0) = Dxf(20)(x — x0) + Dyf(20)(y — yo)

et on s’attend & pouvoir exprimer y en fonction de x si det(Dyf(zg)) # 0. Le théoreme
suivant rend ce raisonnement rigoureux.

Théoréme 6.21. Soit E C R™™™ ouwvert non vide, f € C1(E,R™), ¥ = {(x,y) € E :
f(x,y) = 0} et zp = (X0,y0) € X tel que det(Dyf(zg)) # 0. Alors il existe une boule
owverte U = B(x0,9) C R", un ouvert V. C E contenant zy et une unique fonction
¢ :U — R™ de classe C' tels que
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1. yo= ¢(XO) ’

2. pour tout x € U, (x,¢(x)) € V et f(x,¢(x)) =0;

3. SNV =G(¢);

4. Vx € U, det(Dyf(x,p(x)) # 0 et Dep(x) = —(Dyf(x, p(x))) L Dxf(x, d(x)), (dans

cette derniére formule, il y a un produit matriciel).

De plus, pour tout entier k > 1, si f est de classe C*, alors ¢ Uest aussi.

Démonstration. On utilise le théoréme d’inversion locale. Soit F : E — R"T™ F(x,y) =
(x,f(x,y)). On a F(x0,y0) = (x0,0) et

DF(x0,y0) = lDﬁ?ZO) Dny(ZO)] . det(DF(x0,y0)) = det(Dy£(zo)) # 0.

Donc il existe un ouvert V/ C E contenant (xg,yo) et un ouvert U’ contenant (xg,0) tels
que F est un difffomorphisme de V' a U’. Soit G la fonction inverse. On peut toujours
trouver une boule ouverte U = B(x¢,d) C R" et un ouvert W C R™ contenant 0 tels
que U x W C U’. On considére alors la restriction F: V. — U x W ou V = G(U x W).
La fonction inverse a la forme G(x,w) = (X, ¢(x,w)) avec ¢(xg,0) = yo. On note, en
particulier, que si (x,y) € ¥ NV, alors F(x,y) = (x,0) et x € U. En prenant la fonction
inverse on a G(x,0) = (x,¢(x,0)) = (x,y). La fonction implicite cherchée est alors
¢(x) = p(x,0) : U — R™. En effet :

Uk €U,  (x,0)=TFoG(x,0) = F(x,p(x,0)) = F(x, ¢(x)) = (x, £(x, p(x))),
donc f(x,¢(x)) =0, Vx € U, et

Viy) XNV, (xy) = GoF(xy) = G(xf(x,y)) = (x,¢(x,0)) = (x, $(x)),
=0

donc XNV =G(o).
Montrons l'unicité de ¢ : si ¢* : U — R™ satisfait aussi X NV = G(¢*), alors

G(¢*) = G(¢) et donc ¢* = ¢.

Finalement, ¢ est de classe C'! puisque G est de classe C', F étant un difféomorphisme.
De plus, 0 # det(DF(x,y)) = det(Dyf(x,y)) V(x,y) € V, donc Dyf est inversible sur V.
Par la formule de dérivation des fonctions composées, on a

0= D(f(x, ¢(x))) = Dxf(x, ¢(x)) + Dyf(x, $(x)) - Dp(x).

d’ou
D¢ (x) = —(Dyf(x, p(x))) ' Dxf(x, p(x)).

La démonstration que ¢ € C*(U) si f € C*(E) se fait par récurrence sur k > 1. O

Remarque 6.22. Dans le théoréme 6.21, la décomposition du vecteur z € R™™™ en
z = (x,y) est arbitraire. Le théoréme reste valable sous la condition plus générale :

Rang(Df(z¢)) = m.
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En effet, dans ce cas on sait qu’il existe m colonnes de Df(zg) linéairement indépendantes.
Notons ces colonnes ii,...,im. On peut alors définir (y1,...,ym) = (Ziys---,%i,) et
(21,...,2n) les variables restantes. On aura donc det(Dyf(zg)) # 0 et on peut appliquer
le théoreme pour exprimer ces m variables y en fonction des autres n variables X.

Sous les hypotheses du théoreme 6.21, grace a I’existence d’une fonction implicite on
peut définir 'hyperplan tangent a > en zg :
I (2) = {(x,y) CR"™™ 1y —yo — Dep(x0)(x — x0) = 0}
={(x,y) C R"™™™ : Df(z0)(z — z9) = 0}
On remarque que I1,,(X) est I'ensemble des points de R qui satisfont m équations
linéaires. Puisque Df(zg) a rang maximal, I1,,(3) est un sous-espace affine de R"*" de
dimension n.
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Chapitre 7

Extrema de fonctions réelles

Soit £ C R™ pas forcément ouvert pour le moment. On consideére ici une fonction
f: E — R a valeurs dans R (fonction scalaire) et on se pose la question de trouver le
maximum et le minimum de f sur E s’ils existent. Ceci est un probleme d’optimisation.
On commence par donner la définition de minimum et maximum local ou global, ainsi que
de point de minimum/maximum local/global.

Définition 7.1 (Minima et maxima locaux et globaux). Soit E C R" et x* € E.

— On dit que f admet un maximum local (ou relatif) au point x* € E s’il existe 6 > 0 :
f(x) < f(x*), Vxe B(x"J)NE.

Si linégalité est stricte (i.e. f(x) < f(x*), Vx € B(x*,0) N E, x # x*) alors le
maximum local est strict. Le point x* est appelé point de mazimum local (strict)
pour f.

— On dit que f admet un minimum local (ou relatif) au point x* € E s’il existe 6 > 0 :

f(x) > f(x*), Vx € B(x*8)NE.

Le minimum est strict si ’inégalité est stricte. Le point X* est appelé point de
minimum local (strict) pour f.

— Par extremum local (strict) on entend un minimum ou maximum local (strict).

— On dit que f admet un maximum (global ou absolu), resp. minimum (global ou
absolu) au point x* € E si f(x) < f(x*), Vx € E, resp. f(x) > f(x*), Vx € E. Le
mazimum/minimum est strict si l'inégalité est stricte

7.1 Extrema libres

On considere d’abord le cas ou 'ensemble E est ouvert et la fonction f : F — R
différentiable (une ou plusieurs fois) sur E.

Rappelons ce qu’on sait dire sur la caractérisation des extrema locaux pour une fonction
d’une seule variable réelle f : I — R, définie sur un ouvert I C R. Soit z* € I.

77
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— Si f est dérivable en z* et x* est un point d’extremum local de f, alors f/'(z*) =0

(condition nécessaire du premier ordre).

— Si f est deux fois dérivable sur I et z* est un point de minimum (resp. maximum)

local, alors f/(z*) = 0 et f”(z*) > 0 (resp. f”(z*) < 0) (condition nécessaire du
second ordre).

Soit f deux fois dérivable sur I et * un point stationnaire de f, c.-a-d. que f’'(z*) = 0.
Si f(x*) > 0 (resp. f”(z*) < 0) alors z* est un point de minimum (resp. maximum)
local strict (condition suffisante).

Si f/(z*) = f”(x*) = 0, on ne peut rien conclure. Pour décider si x* est un point de
minimum / maximum / inflexion, il faut regarder les dérivées d’ordres supérieurs
(si elles existent) en x*, ou bien étudier le signe de la fonction g(z) = f(z) — f(x*)
autour de z*. Par exemple, si on peut montrer que g est non négative dans un
voisinage de x*, alors £* est un point de minimum local de f. Par contre, si g change
de signe en z*, alors z* est un point d’inflexion (sous ’hypothése f'(xz*) = 0).

Considérons maintenant le cas d’une fonction de plusieurs variables f : £ — R, avec

E C R™ ouvert non vide. Soit x* € F (point intérieur car E est ouvert). On peut regarder
le comportement de f le long des droites : soit v € R”, |[v| =1 et gv(t) = f(x* + tv).
Si f est différentiable sur E et x* est un point d’extremum local de f, alors pour tout
v € R, la fonction gy est dérivable et admet un extremum local en t = 0 (voir Figure
7.1). 11 s’ensuit

4‘,
el —

FIGURE 7.1 - Si x* est point de maximum, alors la fonction gy (t) = f(x* 4+ tv) & maximum en

t = 0 pour tout v € R™.

WERY 0=g,(0) = Dyf(x) = VF(x') v

(produit scalaire entre deux vecteurs colonnes) ce qui implique V f(x*) = 0. On s’attend
alors a ce que V f(x*) = 0 soit une condition nécessaire pour que f admette un extremum
local en x*. Le théoreme suivant formalise cette idée.
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Définition 7.2 (Point stationnaire). Soit E C R™ ouvert non vide, x* € E et f: E — R
différentiable en x*. On dit que x* est un point stationnaire de f si Vf(x*) = 0 (i.e.
g—i(x*) =0,i=1,...,n ou, de fagon équivalente, D f(x*) =0).

Théoréme 7.3 (condition nécessaire de premier ordre). Soit E C R™ un ouvert non vide,
et f: E — R différentiable en x* € E et admettant un extremum local en x*. Alors x* est
un point stationnaire de f, c.-a-d. que V f(x*) = 0.

Démonstration. Puisque E est ouvert, 36 > 0 : B(x*,0) C E. Alors x* + te; € E pour
tout t € |—0,9] et gj(t) = f(x* + te;) : |=9,0[ — R est dérivable en ¢ = 0. Puisque
x* est un point d’extremum local pour f, 0 est un point d’extremum local pour g; et

g;(0) = 2L (x") = 0. O

On considére maintenant le cas f € C?(E), qui assure que la matrice hessienne H f(x*)
est symétrique. Soit x* un point de minimum local de f. Alors ¢ = 0 est un point de
minimum local de g, pour tout v € R" de norme 1. Il s’ensuit que

0<gy(0)= D%,Vf(x*) = vTHf(X*)V

et ainsi v H;(x*)v > 0 pour tout v € R™. Donc, la condition v Hy(x*)v > 0, Vv € R,
est aussi nécessaire pour que f admette un minimum local en x*, pourvu que f soit de
classe C? sur E. De méme, la condition v H #(x*)v <0, Vv € R", est nécessaire pour que
f admette un maximum local en x*, pourvu que f soit de classe C? sur E. On a donc
démontré

Théoréme 7.4 (condition nécessaire du second ordre). Soit E C R™ un ouvert non vide et
f: E = R de classe C? sur E, admettant un minimum (resp. mazimum) local en x* € E.
Alors x* est un point stationnaire de f et v H;(x*)v > 0 (resp. v Hp(x*)v < 0) pour
tout v e R".

Si I'inégalité dans la condition précédente est stricte, i.e. si v H f(x*)v >0, Vv €
R™\{0}, la condition devient suffisante pour que f admette un minimum en x*, pourvu
que x* soit un point stationnaire. Ceci est montré dans le théoréme 7.8 ci-dessous. Avant
de présenter le théoreme, on rappelle quelques notions d’algebre linéaire sur les matrices
définies positives ou négatives.

Définition 7.5. On dit qu’une matrice A € R™*™ est
— définie positive (ou simplement « positive ») si x' Ax >0, Y0 #x € R";
— semi-définie positive si x' Ax >0, Vx € R";
— définie négative (ou simplement « négative ») si x' Ax <0, VO #x € R";
— semi-définie négative si x' Ax <0, Vx € R" ;

— 4ndéfinie s’il existe x,y € R": x' Ax >0 ety' Ay < 0.

A toute matrice A € R™ " on peut associer une forme quadratique

QA(X) = XTAX = Z Aijl'il‘j, vx € R".
i,j=1
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Lemme 7.6. Une matrice A € R™™"™ est définie positive si et seulement si
Je>0: x"Ax > ¢|x]?, VxeR"

(On peut prendre n’importe quelle norme || - || sur R™; la constante ¢ dépendra de la norme
choisie.)

Démonstration. Soit A définie positive et () 4 la forme quadratique associée a A. Clairement
Q4 est une fonction continue sur R™. De plus, Vt € R, Qa(tx) = t?Q (x). Considérons
I'ensemble compact S = {x € R" : [|x]| = 1}. Q4 admet un maximum et un minimum sur
S. Soit ¢ = minges Qa(x). Clairement, ¢ > 0 car Q4(x) > 0, Vx € S, et

X

xT Ax = Qa(x) = |[x[2Q4 ( ) > lx|2, Vx € R™.

x|
Inversement, s’il existe ¢ > 0 tel que x' Ax > ¢[|x||?, ¥x € R™, on conclut immédiatement
que A est définie positive. O

Dans ce cours on appliquera toujours la Définition 7.5 et le Lemme 7.6 a des matrices
symétriques. Le Lemme suivant donne une caractérisation alternative de matrice définie
positive sous hypothese de symétrie.

Lemme 7.7. Soit A € R™"™ une matrice symétrique. A est définie positive si et seulement
si toutes les valeurs propres Ay, ..., \p, de A sont positives. De plus x| AX > \pin||x||3, ot
Amin = min{A; : 1 <i <n}.

Démonstration. On sait de I'algébre linéaire qu’une matrice A € R™*" symétrique est
toujours diagonalisable avec valeurs propres réelles A1,..., A\, et n vecteurs propres ortho-
normés vy, ..., v, (de norme euclidienne 1 et deux & deux orthogonaux ; chacun est écrit
sous forme colonne dans ce qui suit) :

A1
AV =VD, D= CMER, V=[vy,...,vp]: VIV=VV=1I
An

Si A est définie positive, c’est-a-dire x " Ax > 0, V0 # x € R, en particulier I'inégalité de
I’énoncé est vraie pour x = v; et

V;»FAV]' = AjV;-er = )‘j >0, Vj=1,...,n.

Inversement, supposons A\; > 0, Vj = 1,...,n. Puisque {v;}"_; forme une base orthonor-
J J Jtj=1

mée de R™, on peut écrire de fagon unique tout vecteur x € R” comme x = Z?:l Bivi=VpB

(B étant un vecteur colonne) et ||x||2 = ||B|l2. Donc x'Ax = BTV'AVBE = 8'DB =

) AJ-BJZ > Aminll B3 = Amin||x||3, avec égalité si X = Viuin, le vecteur propre correspon-

dant a A\pin. ]

Le Lemme précédent montre que la plus grande constante ¢ possible du Lemme 7.6
est ¢ = Amin si la matrice A est symétrique et si on utilise la norme euclidienne. On
revient maintenant a la question de caractériser les points d’extremum local d’une fonction

f:E—=>R
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Théoréme 7.8 (condition suffisante pour extrema locaux). Soit E C R ouvert non
vide, f : E — R une fonction de classe C? sur E et x* € E un point stationnaire de f,
c’est-a-dire V f(x*) = 0. Si Hy(x*) est définie positive (resp. définie négative) alors f a
un minimum (resp. mazximum) local strict en x*.

Démonstration. Considérons le cas Hy(x*) définie positive (la démonstration pour Hy(x*)
définie négative est la méme). Puisque f est de classe C? sur E on peut écrire un
développement limité d’ordre 2 de f au point x* :

ﬂ@:f@3+vﬂf%@—Xﬂ+gx—ffﬂﬂfﬂx—fHJﬁ@%\WGE

=0

ou on a utilisé que Vf(x*) = 0 (x* est un point stationnaire) et ot Ry(x) est tel que

limyyx % = 0. Puisque H(x*) est définie positive, Ie > 0: v Hp(x*)v > c||v|?
pour tout v € R™. De plus, puisque limy_,x= % =0, il existe d > 0 tel que, pour tout
x € B(x*,8)\ {x*},onax € E et |Rs(x)| < £|lx — x*||?. Donc
* *k * 1 * * *
e BN 00 = SO+ (= x) ) =X+ Ry(x)
>cflx—x*||? > lx—x*||?
* & * *
2f@)+jkfxw>f@%
ce qui montre que x* est un point de minimum local strict de f. ]

D’apres ce théoréme, si la matrice hessienne est définie (positive ou négative) en un
point stationnaire, on peut conclure que ce point stationnaire est un point d’extremum
local. On se pose alors la question de savoir la nature d’'un point stationnaire lorsque la
matrice hessienne en ce point est semi-définie ou indéfinie. On donne d’abord la définition
suivante.

Définition 7.9 (Point selle). Soit f: E— R, ot E C R" est ouvert non vide et f est
différentiable en un certain point stationnaire x* € E. On dit que x* est un point selle de
f st

¥ >0 3x,y € B,O)NE  (f(x)> f(x") et fy) < f(x")).

Avec cette définition et le résultat du théoréme 7.8, on a la classification suivante des
points stationnaires {x* € F': Vf(x*) = 0}, ot les \;(H¢(x*)) sont les valeurs propres de
Hf(X*) (t=1,...,n).

— Si Hy(x*) est définie positive (i.e. x" Hp(x*)x > 0, VO # x € R" ou, de fagon
équivalente, \;(H¢(x*)) >0, Vi =1,...,n), alors x* est un point de minimum local
strict. Lorsque n = 2, Hy(x*) est définie positive ssi a la fois la trace de Hy(x*) est
> 0 et det(Hg(x*)) > 0.

— Si Hy(x*) est définie négative (i.e. x' Hy(x*)x < 0, VO # x € R ou, de fagon
équivalente, A\;(Hy(x*)) <0, Vi =1,...,n), alors x* est un point de maximum local
strict. Lorsque n = 2, Hy(x*) est définie négative ssi a la fois la trace de Hy(x*) est
< 0 et det(Hy(x*)) > 0.
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— Si Hy(x*) est indéfinie (i.e. 3x,y € R™: XTHf(X*)X >0, y Hi(x*)y <0 ou, de
facon équivalente, 3,7 = 1,...,n: \j(Hf(x*)) > 0 et \j(Hf(x*)) < 0) alors x* est
un point selle. Lorsque n = 2, une condition suffisante pour que H¢(x*) soit indéfinie
est que det(H(x*)) < 0.

— Si Hy(x*) est seulement semi-définie positive (ou négative), on ne peut pas conclure
sur la nature du point stationnaire a partir des résultats précédents.

Exemple 7.10. Considérons les trois fonctions fi, fa, f3 : R2 = R
f1($7y):$2+y25 f2($’y):1_x2_y2a fg(x,y):x2—y2.

Pour toutes les trois fonctions, le seul point stationnaire est x* = (0,0). Etudions sa nature
dans les trois cas.

Fonction f1 :  Hy (0,0) = [2 O] définie positive

0 2

Fonction fo :  Hy,(0,0) = [_2 O] définie négative

0 -2

Fonction f3 :  Hy,(0,0) = B _02] indéfinie

Exercice 7.11. Trouver les extrema locauz de la fonction f(z,y) = 3 +y° — 3z — 12y +1
et les caractériser. Est-ce que cette fonction admet un mazimum / minimum global ?

Exercice 7.12. Montrer que la fonction f(x,y) = 322 +3y? — 22y —8(x +y — 1) a un
seul point de minimum local qui est aussi un minimum global.
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Si Hy(x*) est seulement semi-définie positive (ou négative), on ne peut pas conclure que
x* est un point de minimum local (ou maximum local). De plus, méme si gy () = f(x*+tv)
a un minimum local en ¢ = 0 pour tout v € R", on ne peut pas conclure que f admet un
minimum local en x* comme ’exemple suivant le montre.

Exemple 7.13. Considérons la fonction f(x,y) = y? — 3z%y +22*. On a

| =6y + 83 | =6y + 2422 —6x
Vf(l',y) - [ 2y—3a:2 ) Hf(.%',y) - [ — 6z 9 :
Donc
0 —6zy + 823 =0
Vf(wy) = M e {y 5 = (@) =00
-2

et P = (0,0) est le seul point stationnaire. De plus H¢(0,0) = est semi-définie

00
0 2
positive. Pour toute droite x = (z,y) =tv, t € R, v # (1,0), on a

VT H{(0,0)v = (vr, v2) Hy(0,0) (Zl) =203 >0,
2

donc la fonction gv(t) = f(tv) a un minimum local strict en t = 0. De plus pour v = (1,0),
gv(t) = f(t(1,0)) = 2t* a un minimum local strict en t =0, donc Vv € R?, gy (t) = f(tv)
a un minimum local strict t = 0. Toutefois, si on prend x =1t et y = %t2 on a

32 94 94 4 14
f _ — Z4x_ = P e —
(t’zt) L t I

qui a un mazimum local strict en t = 0! Donc (0,0) n’est pas un point d’extremum local
de f.

7.2 Extrema liés

I1 est souvent le cas dans les applications, qu'on cherche a trouver le minimum (ou
maximum) d’une fonction min,cg f(z) mais les variables z = (z1, ..., z,) ne peuvent pas
étre choisies arbitrairement et sont liées par des contraintes.

Exemple 7.14. Considérons une canette de forme cylindrique. On veut trouver la forme
optimale qui minimise la surface (qui requiert le minimum de matériel) tout en gardant
un volume constant. Soit Xpy = {(z,y,2) € R® : 2% + y>* < R?, 0 < 2 < H} un cylindre
plein de hauteur H > 0 et de rayon R > 0.
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Ce cylindre a un volume V(R, H) = mR?H et une surface S(R, H) = 2nR?> + 2rRH. Le
probléme d’optimisation prend la forme suivante : pour V. > 0 donné, discuter

min S(R,H) sous la contrainte V(R,H) =V.
R,H>0

Ceci est un probléme de minimisation sous contrainte.
Soit £ C R™ ouvert non vide et f,g : E — R de classe C'. On pose le probléme de

minimisation (maximisation) sous contrainte suivant

min f(z) sous la contrainte g(z) = 0.
zcE

Si on dénote par ¥, = {z € E : g(z) = 0} I'ensemble des points qui satisfont la contrainte
(appelé aussi ensemble faisable ou admissible), le probleme de minimisation sous contrainte
peut s’écrire de facon équivalente comme

min f(z).

z€¥y
Déterminer si le minimum est fini et effectivement atteint fait partie de la discussion.
Définition 7.15. On dit que z* € X4 est un point de minimum local de f sur ¥, si
30 >0Vze B(z",0)n%E, f(z")< f(z)

Le minimum est strict si I’inégalité est stricte, dans le méme sens qu’expliqué plus haut.
De la méme fagon, on dit que z* € Xy est un point de mazimum local de f sur Xy si

30 >0Vz e B(z",6)nNY, f(z")> f(z).
Le maximum est strict si l'inégalité est stricte. On utilise aussi la terminologie de mini-
mum,/mazximum (strict ou non) lié.

On se pose la question de caractériser les points d’extremum (minimum/maximum)
liés. Voyons quelques exemples :

Exemple 7.16. On considere le probléme de minimisation suivante :

min 22 + y2 sous la contrainte x +y —1 = 0.
(z,y)ER?
La fonction f(z,y) = 2% +y? a minimiser est conveze et a un minimum global en (0,0).
Toutefois, ce point ne satisfait pas la contrainte. Le minimum lié est caractérisé par le fait
que V[ est perpendiculaire a la contrainte au point de minimum lié. Voir la figure 7.2
(gauche) pour une interprétation graphique.
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Minimum lié

Vf aimum lié
- N
N TN

Contrainte z + y —

minimumnNjé

Courbes de niveau de f

FIGURE 7.2 — Gauche : Probléme de minimisation, Exemple 7.16. Droite : Probleme de minimisa-
tion, Exemple 7.17.

Exemple 7.17. On considére le probléeme de minimisation suivante :

min z+y sous la contrainte z? + y2 —1=0.
(w,y)ER?

La fonction f(x,y) = x+y n'a pas de minimum ou mazimum sur R%. Toutefois, I’ensemble
Yy = {(z,y) : 22+ y* — 1 = 0} est compact, donc f étant continue, elle atteint son
mazimum et minimum sur Yg. On voit encore qu’aussi bien au point de minimum lié
qu’au point de mazimum lié, le vecteur V f est perpendiculaire d la courbe ¥, (c’est-a-dire,
orthogonal au plan tangent).

Soit g(x,y) = 22 +y*> — 1 et xpr le point de mazimum lié. Puisque Vg = (2y,2y)' #
0, V(z,y) € X4, l’équation g = 0 définit implicitement une fonction y = ¢p(x) ou x = ¢(y),
et, autour de chaque point z € Xy, l’ensemble X, peut étre représenté par le graphe d’une
fonction. De plus, le vecteur Vg(z) est normal au plan tangent I1,(X) da X, en z.

Puisqu’au point du mazimum lié on a que V f(xpr) est aussi un vecteur normal au
plan tangent Iy, (X), il s’ensuit que V f(xar) || Vg(xar), ¢’est-a-dire IN € R: V f(xpr) =
AVyg(xpr). Ceci est en fait une condition nécessaire pour avoir un extremum lié comme le
théoreme suivant le montre.

Théoréme 7.18 (Condition nécessaire d’optimalité). Soit n > 2, E C R™ ouvert non
vide, f,g : E — R deux fonctions de classe C1(E) et z* € ¥, = {z € E : g(z) = 0}
un point d’extremum local de f sur 3g. Alors, si Vg(z*) # 0, il existe \* € R tel que
V/(z) = \'Vg(z").

Démonstration. Puisque Vg(z*) # 0, il y a au moins une composante non nulle, soit
%(Z*) # 0. Pour se fixer les idées, supposons que j = n, le cas général se traitant de la
méme maniére en permutant le role des coordonnées. Notons y = z, et x = (21,...,2p-1) €
R"~! de sorte que tout point z € F puisse s’écrire comme z = (x,¥); en particulier
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z* = (x*,y*). Par le théoréeme des fonctions implicites, il existe 4 > 0 et une unique

fonction ¢ : B(x*,6) C R*! = R telle que ¢(x*) = y*, (x,¢(x)) € E et g(x,¢(x)) =0
sur B(x*,9), et le graphe de ¢ coincide avec ¥, dans un voisinage de z*. }

Alors la fonction f(x) = f(x, ¢(x)) admet un extremum local (libre) en x* et V f(x*) =
0. Donc

D’autre part,
09 oy __ i)
O 24 7+
Par conséquent, on a
dg z*
gf(z*)—gf(z*)%wg"(*)—O, Vi=1,...,n—1
55 @)
Si on pose \* = S¥— alors
3y (z)
of

(z") :)\*gjl(z*), Vi=1,...,n—1

Ox;
et, par définition, %(z*) = )\*g—g(z*). On a donc bien
Vf(z*) = \"Vg(z").
O

D’apres le théoreme, une condition nécessaire pour que z* € ¥4, avec Vg(z*) # 0, soit
un point d’extremum lié de f sur X, est que (z*, A*) soit solution du systeme

=A
9(z) =0
de n + 1 équations & n + 1 inconnues (z,\) = (21, ..., 25, A). On remarque, en particulier,

qu'un point z* d’extremum lié de f sur ¥, n’est généralement pas un point stationnaire
de f car Vf(z*) = A\*Vg(z*) # 0 si A\* # 0.

Exemple 7.19. On cherche les extrema de f(x,y) = x+y, liés par la contrainte g(z,y) = 0,
ot g(x,y) = 22 + y?> — 1. On résout d’abord le systéme de 3 équations d trois inconnues

(z,y,A) :

g(z,y) =0 % o

g(z,y) = 24yt =1
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On remarque que A = 0 n’est pas une solution. Alors, les premiéres deux équations donnent
r=y= % et, de la troisiéme équation, on obtient \*> = % qui admet les deux solutions
A= :I:%. On a alors deux points candidats :

1 1 1 1

e T

Puisque Uensemble ¥, = {(z,y) : g(z,y) = 0} est compact et f est continue, alors f
admet un mazimum et un minimum sur X, et nécessairement P1 ou Po doit étre un point
de maximum li€ et autre un point de minimum lié. Par évaluation directe de f en Py et
Py on conclut :

P = ).

2
) est un point de mazximum lié, max f(z,y) = f(P1) = —,
(a:,y)ezg 2
11 , . g : 2
) est un point de minimum lié,  min f(z,y) = f(P2) = ——

V2 V2 (z.9)€%, V2

)

P; = (

-
-

Py = (

7.3 Méthode des multiplicateurs de Lagrange

Le systeme (7.1) donne des conditions nécessaires d’optimalité. 11 y a une autre fagon
d’obtenir ce systéme qui utilise la fonction de Lagrange (ou lagrangienne)

L:ExR—=R, L(z,\) = f(z) — A\g(z).

La variable A € R est appelée dans ce cas le multiplicateur de Lagrange.

Siz"t € ¥y, ={z € E: g(z) = 0} est un point d’extremum lié de f sur ¥, avec
Vg(z*) # 0, alors d’apres le théoreme 7.18, il existe A* € R tel que (z*, \*) est solution
de (7.1). On vérifie facilement que ceci est équivalent a dire que (z*, \*) est un point
stationnaire de la fonction de Lagrange. En effet

VL@ A)=0 {V;E(Z*’m N {Vf(z*) = X'Vg(a)
&Lz A7) =0 9(z") = 0.

Donc pour trouver les extrema liés de f sur X, il faut d’abord chercher les points
stationnaires de L.

7.4 Extrema sous contraintes multiples

Dans les sections précédentes on a considéré le cas ou les variables z = (z1,...,2y)
sont liées par une contrainte g(z) = 0. Les arguments présentés se généralisent au cas ou
les variables z = (21, ..., z,) sont liées par plusieurs contraintes.

Soit E C R™ ouvert non vide et f,g1,92,...,9m : E — R de classe C!(E), avec m < n.
On pose le probléeme de minimisation sous contraintes multiples suivant

mig f(z) sous les contraintes g;(z) =0, i=1,...,m. (7.2)
zE
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Soit g = (g1,.--,9m)  E 2R et ¥g ={z€c E:g(z) =0} ={z€ F:gi(z) =0, Vi=
1,...,m} lensemble faisable. Alors le probleme (7.2) est équivalent &
min f(2).

Le théoréeme 7.18 sur les conditions nécessaires d’optimalité se généralise de la fagon
suivante.

Théoréme 7.20 (condition nécessaire d’optimalité — contraintes multiples). Soit E C R"
ouvert non vide, f,g1,...,gm € CH(E) etz* € Lg={z€ E:gi(z) =0, i=1,...,m} un
point d’extremum local lié de f sur Xg (avec m < n). St Rang(Dg(z*)) = m, c’est-d-dire
si les vecteurs {Vgi(z*),...,Vgm(z*)} sont linéairement indépendants, alors il existe
A = (AT, A) € R™ tel que

Vi(z") =) N Vgi(z)
i=1

ou, de fagon équivalente, (z*,A*) € E x R"™ est un point stationnaire de la fonction de
Lagrange L : E x R™ - R, L(z,A) = f(z) — X-g(z) = f(z) — X121 \igi(z) i.e

Vian Lz, A%) = 0.

Démonstration. Puisque Rang(Dg(z*)) = m, il existe m colonnes linéairement indépen-
dantes de la matrice Jacobienne Dg(z*). Soient (i1, ...,%m) ces colonnes. Pour se fixer
les idées, supposons que ce soit les m dernieres : (i1,...,i0,) = (n —m+1,...,n), le cas
général se traitant de la méme manieére en permutant le réle des n coordonnées. Notons
Y = (Zn—m+1s---,2n) €t X = (21,..., 2n—m) les variables restantes, de sorte que z = (x,y)
et, en particulier, z* = (x*,y*). De plus, nous décomposons la matrice jacobienne en

Dg(z*) = [Dxg(z*)|Dyg(z*)] ou

0 0
g (2%) e g (2Y)

Ogm Ogm
ani}mﬂ (z") - agn (z*)

est inversible. Puisque det(Dyg(z*)) # 0, on peut appliquer le théoreme des fonctions
implicites. Donc il existe un ouvert U = B(x*,6) C R"™ un ouvert V. C E C R"
contenant z* et une fonction ¢ : U — R™ de classe C*(U) tels que

— y* = ¢(x¥) et, pour tout x € U, (x,¢(x)) € V et g(x,¢(x)) =0;
— XgNV =G(9)
— Do¢(x*) = —(Dyg(z")) "' Dxg(z").
Introduisons f(x) = f(x, ¢(x)), x € U. Alors x* est un extremum local de f sur U et
Df(x*)=0.On a
0= Df(x") = Dxf(z") + Dy f(z") - Dp(x™)
= Dy[(2") = Dy f(2") Dyg(z") "' Dxg(z").
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Si on pose A* = Dy, f(z") Dyg(z*)_1 € RY™™ (vecteur ligne), on a pour i = 1,...,n —m
—_———  ——

eRlxm cRmXxXm

_of of N7

0= 8$1<Z )_>‘ Da&ig(z ): 81‘1(Z )_]z:)‘jaxi(z )

et, par définition, Dy f(z*) = X*Dyg(z*) qui implique

Ay i=1
Donc finalement
of T Og
*\ )\* D (o * =1
=S, =1

que 'on peut écrire comme
Vf(z") = Z A;Vg;(z")
j=1
ou encore
V(ZV)\)ﬁ(Z*, A*)=0.
O

Exercice 7.21. Chercher les extrema liés de f(x,y,z) = x +y + z sous les contraintes
gl(xvyaz) = 1’2 +y2 —-2= 07 92(1"73/)2:) =r+z—-1=0.

7.5 Conditions suffisantes

On mentionne ici sans démonstration (laissée comme exercice) des conditions suffisantes
pour avoir un extremum local lié.

Théoréme 7.22. Soit E C R" ouvert non vide, f,g1,...,9m € C*(E) et (z*,\*) € ExR™
un point stationnaire de la fonction de Lagrange L(z,X) = f(z) — Y i2q Nigi(z) (c’est-a-dire
VL(z*,X*) = 0). On note g = (g1,...,9m) : E - R™ et ¥z = {z € E : g(z) = 0}
lensemble faisable. Supposons encore Rang(Dg(z*)) = m et considérons [’espace vectoriel
tangent a g en z* :

Ty (Xg) = {w € R" : Dg(z") - w = 0}.

Vw € T (S)\{0) w' (Hf<z*> SN i<z*>> w >0,
=1

alors z* est un point de minimum local de f sur Xg.
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La condition Dg(z*) - w = 0 dans le théoréme précédent implique (Vg;(z*))" - w =

0, Vi =1,...,m. Donc les directions w sont des directions orthogonales a tous les vecteurs
Vgi(z*) et donc tangentielles a la contrainte g(x) = 0.

Si on note HEZ) (z,A) la matrice Hessienne de £ calculée uniquement par rapport aux
variables z :

(2) L O2f I 9%
H = = —
( £ (Z’)‘)>~ 020z (= A) 0202j () =2 A

v

on voit que Héz)(z, A) = Hy(z) — X772 AeHg,(z). Le théoreme précédent nous dit ainsi
que, si
Yw € Ty (Sg)\{0} W' HP (z*, \*)w > 0,

alors z* est un point de minimum local lié. Il suffit de vérifier la positivité de la forme
quadratique WTHEZ) (z*, X*)w (et non pas de w' H #(z*)w!) uniquement pour les directions
tangentielles & la contrainte g(z) = 0.



Chapitre 8

Intégrale multiple au sens de
Riemann

Soit £ C R™ borné non vide et f : E — R bornée. On veut définir I'intégrale de f sur

E, noté
/ f(x)dx
E

On parle d’intégrale double lorsque E C R?, d’intégrale triple lorsque E C R? et, plus
généralement, d’intégrale multiple pour n > 1. On commence notre étude par le cas
ou le domaine F est un pavé de R™, i.e. un rectangle fermé en dimension n = 2 et un
hyper-rectangle fermé en dimension n > 2.

8.1 Pavés de R”
On commence par donner la définition de pavé ainsi que de partition d’'un pavé et
raffinement d’une partition.

Définition 8.1 (Pavé). On appelle pavé tout ensemble R C R™ de la forme R = [a1,b1] X
<X [an,bp] otta; <bj, j=1,...,n sont des nombres réels. Le volume de R, noté Vol(R),
est défini comme

n
Vol(R H b — aj).
On dit que R est un pavé dégénéré s’il existe un ou plusieurs k =1,...,n tels que ap = by.
Dans ce cas on a Vol(R) = 0.

Définition 8.2 (Partition). On appelle partition d’un pavé R C R"™, une collection finie
P de pavés tels que Ugep @ = R et, pour tout Q,Q" € P, Q #Q', on a QNQ" =10

La figure 8.1(gauche) montre un exemple de partition d’un pavé.

Définition 8.3. Une partition P d’un pavé R = [a1,b1] X ... X [an, by] sera dite tensorielle
s’il existe, pour tout j € {1,...,n},

a;=19<... <t =b; dansR, N;e N,

91
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FIGURE 8.1 — Exemple d'une partition d'un pavé de R? (gauche) et d’un possible raffinement de
cette partition (droite).

tels que
P= {5 0 < ox [t 6] 0<ar SN =1, 0 < ap < Ny -1}

On notera alors P = (19,... ,tjlvl) ®...@ () ... tNn). Le conteste devrait permettre de
ne pas confondre des indices supérieurs comme ici avec des puissances.

Définition 8.4 (Raffinement d’une partition). Soit P, P’ deux partitions d’un pavé
R C R™. On dit que P’ est un raffinement de P si, pour tout Q € P, la collection
Py =1{Q € P': Q' C Q} est une partition du pavé Q.

La figure 8.1(droite) montre un exemple d’un raffinement d’une partition. A partir de
la définition 8.4 on peut montrer les propriétés suivantes des pavés d’'un raffinement P’
d’une partition P.

— SiQ CQetQ CQ2avec Q € P et Q1 # Q2 dans P, alors Vol(Q') = 0.
— Si Q' € P’ n’est inclus dans aucun @ € P, alors Vol(Q') = 0.

— P’ est un raffinement de P si et seulement si pour tout Q' € P’ non dégénéré il
existe Q € P tel que Q' C Q.

— Si le raffinement P’ de P est une partition tensorielle, alors, pour tout Q € P,
Py ={Q € P': Q" C Q} est une partition tensorielle de Q.

On a aussi les résultats suivants.
Lemme 8.5. Soit P, P’ deuz partitions d’un pavé R C R™. Alors il existe une partition

tensorielle P" qui est un raffinement a la fois de P et P'. En particulier, toute partition
P admet un raffinement tensoriel.

Démonstration. Notons R = [a1,b1] X ... X [an, by], et soit K et K’ les nombres de pavés
dans P et P’. Notons aussi

n»-n

PUW:{Mmﬂxmxmiwy1§i§K+K}
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Pour chaque j € {1,...,n}, ordonnons a},b},a?,bjz, .. ,af“'K’,berK/ :

131 2 ;2 K+K' (K+K'\ _ 140 41 2(K+K')—1 0 _ L1 2K+K')—1
{aj,bj,aj,bj,...,aj , b; }—{tj,tj,...,tj } avec t; <t;<... <t .
Alors )

P =,.. . BETE) g @0, .. 2ETE)-L
est un raffinement commun. O
Lemme 8.6. Soit P une partition d’un pavé R C R". Alors
Vol(R) = ) Vol(Q)
QeP
Démonstration. Supposons d’abord que P est tensorielle :
P=t),.. .t e...0@,. . . th).
Alors
Ni-1  N,-1
1 1 n n
SoVol@) = D . > (T - (e — )
QeP a1=0 an=0
Ni—1 Np—1
1 1+an n) — (+V 0 Np, 0) _
= > (BT —e) Y (e ) = (B =) - (8 1) = VoU(R).
a1=0 an=

Passons au cas général et appliquons le lemme 8.5 & P’ = P, ce qui donne un raffinement
P" de P qui est une partition tensorielle. On a donc

Vol(R) = Vol(Q") (cf début de la preuve)
Q//G’PI/
= Z ( Z VOI(Q”)) (car P” est un raffinement de P)
QGP Q//e'])//7 QllcQ
=) Vol(Q).
QEP

Pour la derniere égalité on a utilisé le fait que Pgy = {Q" € P": Q" C @} est une partition
tensorielle de @ ; voir une remarque précédente. O

8.2 Fonctions intégrables au sens de Riemann sur un pavé

Soit R C R™ un pavé et f: R — R une fonction bornée (pas nécessairement continue).

Définition 8.7 (Sommes de Darboux). Soit P une partition de R. On définit

somme inférieure : S(f,P) = Z (inf f(x)) Vol(Q),
Qep \X€¢

somme supérieure : S(f,P)=> (sup f(x)) Vol(Q).
QeP \X€Q
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On remarque que, puisque f est bornée et P est une partition finie, les quantités S(f, P)
et S(f,P) sont bien définies. Le lemme suivant montre aussi qu'une somme inférieure est
toujours plus petite qu’une somme supérieure.

Lemme 8.8. Soit P une partition de R, et P" un raffinement de P. Alors,
S(f.P) < S(f,P") < S(f,P") < S(f.P).
De plus, pour toute partition P, P’ de R on a S(f,P) < S(f,P).

Démonstration. Puisque P” est un raffinement de P, on a

VQeP Q= [J Q" et Vol(Q) = > Vol(Q").
Q“EP“ Q//Ep//
Q’cQ Q'cQ

Donc

s = 3 (int £00) Vol(@ = Y- (nf 169) S vel@”)

QEeP QeP x€Q Q'ep!
QIICQ
< . /! — ! .
<> S (Linf, f60) Vol@") = S(7.P)
o i

De la méme fagon, on prouve S(f,P"”) < S(f,P). Enfin, I'inégalité S(f,P") < S(f,P")
est immédiate.

Puisque toute paire de partitions P, P’ de R admet un raffinement commun, le résultat
précédent implique immédiatement S(f,P) < S(f,P’). O

On est maintenant en mesure de donner la définition suivante de fonction intégrable
au sens de Riemann.

Définition 8.9 (Fonction intégrable au sens de Riemann). Soit R C R"™ un pavé et
[+ R — R une fonction bornée. On appelle

(x)dx := inf{S(f,P), P partition de R},
(x)dx :=sup{S(f,P), P partition de R}.

intégrale de Riemann supérieure

intégrale de Riemann inférieure

[~— —|

f
R

f
R
On dit que f est intégrable au sens de Riemann (ou “Riemann-intégrable” ou simplement

“intégrable”) si o
/ f(x)dxz/ f(x)dx.
J R R

/R f(x)dx := /Rf(x)dx = /Rf(x)dx,

On note R(R) l’ensemble des fonctions f : R — R bornées et intégrables au sens de
Riemann.

Dans ce cas on note
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Puisque dans la définition ci-dessus on a supposé f bornée, pour toute partition P de
R donnée, on a

o< 8(£P) < [ fgdx < [ fexix <S(£.P) < +oo.
J R R
On voit donc que [ . f(x)dx et [ rf(x)dx existent et sont finies. Une autre caractérisation

des fonctions intégrables au sens de Riemann est la suivante.

Lemme 8.10. Soit R C R™ un pavé et f : R — R bornée. Alors f est intégrable au sens
de Riemann st et seulement si pour tout € > 0 il existe une partition P. de R telle que

g(f773€) _ﬁ(f,Pﬁ) <e€

Démonstration. « < » : Supposons que, pour tout € > 0, il existe une partition P, de R
telle que S(f,Pe) — S(f,Pe) < e. Alors

[ feodx <317, / F(x)dx > S(f.P)

et

/f dx—/ dx < S(f,P) — S(f,P) < e

Comme € > 0 est arbitraire, ceci implique [ rf(X)dx = i R f(x)dx et par conséquent, f est
intégrable au sens de Riemann.

« = » : Supposons f intégrable au sens de Riemann. Par définition de sup et inf on a
que Ve > 0

AP, partition de R:  S(f,Pe) > / f(x)dx — < :/ f(x)dx — E,
J R 2 R 2

JP! partition de R:  S(f,P) < / f(x)dx + % :/ f(x)dx + %
R R
Soit P” un raffinement commun de P, et P.. Alors

S(1.P) = 8P > [ o= 5.

S(1.P) <SP < [ Fodx+ 5.

ce qui implique

g(fa Pé/) - ﬁ(.ﬂ Pé,) <€

A partir de cette caractérisation, on montre facilement le résultat suivant :

Théoréme 8.11. Soit R C R™ un pavé et f : R — R une fonction continue. Alors f est
intégrable au sens de Riemann.
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Démonstration. R est compact et f est continue sur R, donc uniformément continue. Ceci
implique que

€
Ve>035 >0Vx,y € R (Hx—yH<5e = If(X)—f(y)!<1+V701(R))v

ol on utilise dans cette démonstration la norme euclidienne de R™. Soit P, une partition
de R telle que
VQ € P diam(Q) = max [|x —y|| < ..
x,yeQ

Une telle partition existe toujours. Il suffit de prendre la partition tensorielle de R =
[a1,b1] X -+ X [an,by] suivante : Pe = (#9,..., V) ®@...@ (t2,...,t)) avec

ty=a;+ (b —aj) 57

et N € N* choisi tel que Ne > /> 1 (b; — a;)?/d. de telle sorte que pour tout @ € P, et
x,y € Qona ||x —y| <. On a alors

S(1,P) - S(hP)= 3 (maxf< ) — min f(x >) Vol(Q)

Ocp. xXEQ x€EQ

< —— Z Vol(Q
1+ Vol Q Y

<€,
ce qui montre que f est intégrable au sens de Riemann. O

Grace a ce résultat, on a immédiatement que C°(R) C R(R). D’autre part, si R est
dégénéré et f: R — R est bornée, alors f est toujours intégrable au sens de Riemann et
d’intégrale nulle.

Exercice 8.12. Dire si les fonctions suivantes définies sur [0,1]? sont intégrables au sens
de Riemann ou non :

1, (z,y9)€10,1>°NQ?

0 autrement

fa(z,y) = {\/W’ (z,y) € [0,1]*\ {(0,0)}
0 (z,) = (0,0)

L (z,y) €01 v <3

0 autrement

fi(z,y) = { fa(z,y) = {

On conclut cette section par un résultat qui sera utile par la suite.

Lemme 8.13. Soit deux paves R et R dans R™ tels que R C mt(R), soit f:R— R une
fonction bornée et notons f R—Rle prolongement par zéro de f sur R :

~

F(x) = f(x) pour tout x € R et f(x) =0 pour tout x € R\R.

Alors f est Riemann-intégrable ssi f Uest, auquel cas Jr f(x)dx = [ f(x)dx.
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Démonstration. Supposons d’abord f Riemann-intégrable et soit € > 0. Choisissons une
partition P, de R telle que

g(fvpe) _ﬁ(f7736) <€

Soit encore un pavé R, tel que
R C int(R.) C R. C int(R)

et
Vol(R¢) — Vol(R) < £ avec M > sup | f(x)].
2M xXER

Soit la partition tensorielle P, de R définie a partir de toutes les composantes (éven-
tuellement répétées) de tous les sommets des pavés dans 73 et des sommets de R, et
R. Alors aucun Q € P, ne contient & la fois un point de R et un point de R\R De
méme aucun Q € P ne contient a la fois un point de R, et un point de R\R De plus
{Q € Po: QC R} est une partition de R qui raffine P.. On a donc, ou @ € P,

SEPI=D+ 3 + > |supf(x)Vol(Q)

QCR  QCRA\R  QCR\R. *x€Q
_ _ M
<S(LP)+ Y MVolQ)+ Y 0< + 537 = SU P+
QCRAR QCR\R.
De méme .
§(f773€) Z ﬁ(fv Pe) - 5

et donc R ~
S(F,P) = S(F,P) < S(f,P) — S(f,Pe) + € < 2e.

Comme € > 0 est arbitraire, f est Riemann-intégrable. De plus, en considérant de nouveau
€ > 0, ce qui précede donne

6—7</f x < S(f,Pe) +

et, par ailleurs,

x)dx — /Rf(x)dX’ < 2

et, puisque € > 0 est arbitraire, les deux intégrales sont égales.
Réciproquement, supposons f Riemann-intégrable et soit ¢ > 0. Choisissons une
partition P, de R telle que



98 CHAPITRE 8. INTEGRALE MULTIPLE AU SENS DE RIEMANN

Soit encore un pavé R, tel que

~

R C int(R.) C R, C int(R)

et
Vol(R.) — Vol(R) < £ avec M > sup | f(x)].
2M xER
Soit la partition tensorielle 732 de R définie & partir de toutes les composantes (éventuelle-

ment répétées) de tous les sommets des pavés dans P, et des sommets de R et R.. Alors
P.={Q € P.: Q C R} est une partition de R. On a, ou Q € P/,

~

SEP) =S+ 3 + 3 |sup f(x)Vol(@)

Q€Pe  QCRA\R  QCR\R. *<Q
_ Me — €
> _ Tt 40= _
De méme R
S(f,P) < S(f,Pe) +
et donc

S(f.Pe) = S(f,Pe) < S(f.PL) — S(F, Py + € < S(f.Pe) — S(f,Pe) + € < 2e.

Comme € > 0 est arbitraire, f est Riemann-intégrable et on conclut que [ f(x)dx =

~

It alf (x)dx par le méme argument qu’auparavant.
O

8.3 Intégrales itérées sur un pavé et théoreme de Fubini

On montre ici une procédure simple pour calculer I'intégrale d’une fonction sur un
pavé. Elle se base sur le résultat suivant qui prend le nom de formule des intégrales itérées.

Théoréme 8.14 (de Fubini). Soit R C R"" un pavé de la forme R = RV x R R ¢
R", R c R™ et f : R — R une fonction bornée et intégrable au sens de Riemann,
f=fxy),xe RV yecR? Sivye R® lafonction f(-,y): RV = R est intégrable
au sens de Riemann, alors la fonction'y — G(y) = [po) f(x,y)dx, y € R®) | est aussi
intégrable au sens de Riemann et

[ seeyyixay = [ Gy = [ ([ recyix) dy.

ou [p f(x,y)dxdy est une notation pour lintégrale de f sur R.

Réciproquement, siVx € RY [q fonction f(x,-) : R@ R est intégrable au sens de
Riemann, alors la fonction x — F(x) = [pe) f(X,y)dy, x € R est aussi intégrable au
sens de Riemann et

/Rf(x,y)dxdy: /R<1> F(x)dx = /R(l) ( o (x,y)dy) dx,
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Démonstration. Puisque f est intégrable, Ve > 0 il existe une partition P. de R telle que
S(f,Pe) — S(f,Pe) < e. Cette partition admet toujours un raffinement P! qui est une
partition tensorielle :

N Nn m
Pl=(t], .., t0) @@ty s b
Soit
1 0 N 0 N, 2) _ (40 Ny, 0 Nrtm
P =), .., t0)@. @, ) et PR = (0, 1, )@ @ s i),

des partitions de respectivement R et R(2). Alors, pour tout y € R,
S(fCy) P < | Fxy)dx = Gly) < S(F(,y), PY),

Donc

S(G,P?) =

= Z inf Z inf f(x,y)Vol(Q(l)) VOI(Q(2))

Q@ ep? yeQ® QW ep™) xeQ™)
> inf o0 oo
. Z Z ((va)eg%l)xQ@) fx, y)) Vol(Q") Vol(Q'”)

QPep® Qeplt)
= S(f, Pe)-

De fagon similaire, on montre que S(G, 736(2)) < S(f,Pe) et donc
5(G.PP) ~ S(G,PP) <5(f,P) = S(f.Pe) <,

ce qui implique que G est intégrable au sens de Riemann sur R®@ . De plus,

S(1.P) <SG PI) < [ Gy < (6. PY) <F(1.P)

et
S(f.P) < /R F(x,y)dxdy < S(f,P)

avec S(f,Pe) — S(f,Pe) < €; par Parbitrarité de €, on conclut

- G(y)dy = /R f(x,y)dxdy.
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/

FIGURE 8.2 — Interprétation géométrique de la formule des intégrales itérées

Corollaire 8.15. Soit R = R x R?) c R"*™ ¢t f € CO(R). Alors
— Vy € R®, G(y) = [po) [(x,y)dx eziste,
— ¥x € RW, F(x) = [pe [(x,y)dy eziste,
— Jre G(y)dy = [po) F(x)dx = [ f(x,y)dxdy.

Détaillons ce résultat en dimension n = 2 : R = [a,b] X [¢,d], f : R — R continue.

Alors
[ 1 wyazdy = [ ( / bf(sc,y>dx> w=[" ( / df(l‘,y)dy) iz

Cette formule prend le nom de formule des intégrales itérées. La Figure 8.2 donne une
interprétation géométrique.

Exemple 8.16. Soit R = [1,2] x [0,1], et f(z,y) = x—%ey/x : R — R. Clairement, [ est
continue sur R (fermé). On peut donc calculer l'intégrale double de f par la formule des
intégrales itérées :

[ swasty= [ ([ swiy)ae= [ ([ re.ie) ay.

(4) (B)

Utilisons (A) :

2 11 21
/ </ 3ey/zdy) d:p:/ —3xey/z
1 \Jo 1z y=0
21 21 21
— 1/x _ 1/x
—Aﬁ(e/—l)dx—/lﬁe/d:v—/l ?d:v

12 1
=e—+e——.
1 2

y=1
dx

On a donc [ f(z,y)dzdy = e — \/e — 3.
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8.4 Intégrale de Riemann sur un ensemble quelconque

On souhaite maintenant, généraliser la définition d’intégrale au sens de Riemann d’une
fonction bornée f : E — R sur un sous-ensemble ¥ C R" quelconque borné. L’idée est
simple : puisque F est borné, il existe un pavé R O E qui le contient. On prolonge alors
par zéro la fonction f et on 'integre sur le pavé R.

Définition 8.17 (Intégrale de Riemann sur un ensemble quelconque). Soit E C R™ borné,
f:E — R bornée et R C R™ un pavé contenant E. On dit que [ est intégrable au sens de
Riemann si la fonction f: R — R définie par

f(x)=f(x), sixeE, f(x)=0, sixe R\ E

est intégrable au sens de Riemann. Dans ce cas, on définit l’intégrale de f sur E par

/E F(x)dx = /R F(x)dx. (8.1)

On note R(E) l’ensemble de fonctions f : E — R intégrables au sens de Riemann sur E.

Il est parfois commode de considérer E = (). Dans ce cas fest nulle sur R et donc
Riemann-intégrable avec [, f(x)dx = 0. On conviendra donc que [ f(x)dx = 0 dés que
E =0.

Il est important de vérifier que la définition de l'intégrale en (8.1) ne dépende pas du
choix de R.

Lemme 8.18. Soit E C R" borné, f : E — R bornée et f : R" — R le prolongement de
f par zéro au dehors de E. S’il existe un pavé R D E tel que la fonction f: R — R est
intégrable, alors pour tout autre pavé R' O E, la fonction f: R' — R est intégrable et on a

Jr f(x)dx = [p f(x)dx.

Démonstration. Soit R D E un pavé tel que la fonction f: R — R est intégrable au sens
de Riemann, soit R’ D FE un autre pavé et soit R un troisitme pavé dont I'intérieur contient
aussi bien R que R/, i.e. RO RUR'.

Par le lemme 8.13 appliqué a f:R—>Retf: R — R, on sait que f R — R est
Riemann-intégrable et [5 fdx = Ir fdx. Par le méme lemme appliqué & f : R’ — R et
f: R — R, on sait ensuite que f : R’ — R est Riemann-intégrable et [ R fdx = [; A fdx =
Ir fdx. O

L’intégrale multiple au sens de Riemann a les propriétés suivantes, analogues a celles
de l'intégrale en dimension n = 1.

Théoréme 8.19 (Propriétés de l'intégrale de Riemann).

(i) R(E) est un espace vectoriel et l'intégrale de Riemann est linéaire, c’est-d-dire, si

f,g € R(E) et a, f € R, alors af + Bg € R(E) et

J(ar+sg)=af 1+5 [



102 CHAPITRE 8. INTEGRALE MULTIPLE AU SENS DE RIEMANN

(ii) Si f,g € R(E) et f(x) < g(x) Vx € E alors

/Ef(x)dxg/Eg(x)dx.

(iii) Si f € R(E), alors |f], f+, f- € R(E), ot fy = max{f,0} et f- = max{—f,0}; de

plus
[ #6ax] < [ 10lax.
E E
(iv) Si f,g € R(E) alors fg € R(E) (i.e. R(E) est une algébre).
Démonstration. Soit R C R™ un pavé contenant F et f,g : R — R les prolongements de
f et g par zéro en dehors de F.
La démonstration des points (i) et (ii) est laissée comme exercice aux étudiants.
(iii) Pour € > 0, soit P, une partition de R telle que S(f,P.) — S(f,P.) < e. Alors,
V@ € P, on a ) . 5 .
sup f+ —inf f <sup f —inf f.
Q Q Q Q
En effet :
— si supg f>infg f>0,alors fi(x) = f(x) Vx€Q et on a égalité;
— siinfg f< supg f <0, alors supg fi— infg fi=0< supg f- infg f:

— si 1anf < 0 < supg f, alors, pour tout x € Q, fi(x) = f(x) + f_(x) < f(x) +
supg f- = f(x) —infg f et

sup f+ — inf f, =sup f < sup f — inf f.
Q Q Q Q Q

S(fe,P) < S(f,P) — S(f,P.) < eet fr € R(R), donc

1l s’ensuit que S(fy,P.) —
=(—f)+ onaaussi fo € R(E) et |f| = fr+ f- € R(E). Enfin,

f+ € R(E). Comme f_

puisque < ||, ona [ fx)dx < [ [7(x)lax
puisque — £ <f, ona — [ f(x)dx < [ [7(x)lax

ce qui implique que | [ f(x)dx| < [ |f(x)|dx.

(iv) Supposons d’abord f,g > 0 et f(x) < M, g(x) < M Vx € E avec M €]0,+oo[
(M existe car f et g sont bornées). Pour tout pavé ) C R on a

Supf'ﬁ—inff'gﬁsupf-supg inf f -inf g

Q Q Q Q Q Q
< (sup f — inf f)sup g +1nff(supg mfg)
Q @ Q

< M(sup f — inf f) + M(sup § — inf §).
Q Q Q
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Soit maintenant € > 0 et P, une partition de R telle que

S(f,Pe) = S(f,Pe) < S(3,P) — S(3,P.) < —.

5}27
Alors
g(fgape) _ﬁ(fgape) < M(?(f, Pe) _ﬁ(f7 7)6)) + M(?(g,'Pe) —§(§,736)) <€

et donc f§ € R(R) ce qui implique que fg € R(E) Si f n’est pas positive ou g n’est pas
/)

positive (ou ni 'une ni 'autre),ona fg = (f+ —f-)(9+—9-) = fr9+—f+9-—f—g++[-g—
et chaque terme fi,g+ € R(E), donc fg € R(E). O

8.5 Ensembles mesurables au sens de Jordan

Il est clair que si E est un sous-ensemble quelconque borné de R et f : F — R
une fonction quelconque bornée, le fait que f soit intégrable sur E au sens de Riemann
dépendra aussi bien des propriétés de f que des propriétés de ’ensemble E. En particulier,
on peut se poser la question si une fonction f : F — R continue est intégrable. La réponse
a cette question n’est pas toujours affirmative et dépend des propriétés de E, notamment
qu’il soit mesurable au sens de Jordan, notion qu’on va introduire dans cette section.

On introduit la fonction caractéristique de ’ensemble E, notée 1g : R™ — R et définie
par

1g(x)=1sixe E, 1g(x)=0 six¢E.
On peut se poser la question de savoir pour quels sous-ensembles F£ C R™ bornés la

fonction 1g est intégrable au sens de Riemann.

Définition 8.20 (Ensemble mesurable au sens de Jordan). Soit E C R™ borné. On dit que
E est mesurable au sens de Jordan (ou “Jordan-mesurable” ou simplement “mesurable”)
si 1g € R(E). Dans ce cas on pose

Vol(E) = / 15(x)dx.
E
Un ensemble borné E C R" est dit négligeable s’il est mesurable au sens de Jordan et
Vol(E) =
Une caractérisation équivalente d’ensemble Jordan-mesurable est la suivante.

Lemme 8.21. Soit E C R™ borné et R C R™ un pavé contenant E. Alors E est Jordan-
mesurable si et seulement, pour tout € > 0, il existe une partition P. de R telle que

> Vol(Q) < €

QEePe
QNE#D, QN(R™M\E)#D

Démonstration. Par le Lemme 8.10, E est Jordan-mesurable si, et seulement si, pour tout
e > 0, il existe une partition P, de R telle que S(1g,P.) — S(1g,P.) < €. Or

]lE, Z VOl

QEPe
QNE#(D
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et
S(1g,P)= > Vol(Q).
QEPe
QN(RM\E)=0

O]

De fagon similaire, on peut donner une caractérisation équivalente d’ensemble négli-
geable.

Lemme 8.22. Un ensemble borné E C R™ est négligeable si et seulement si Ve > 0
il existe K € N* et une collection finie de pavés Ry,..., Ry tels que B C Ufil R; et
K VOl(R;) < e.

Démonstration. Choisissons un pavé R C R" tel que E C R.

Supposons d’abord que 1 est Riemann-intégrable sur R et [, 1 g(x)dx = 0. Rappelons
qu’alors [p 1g(x)dx est I'infimum des sommes de Darboux supérieures sur toutes les
partitions de R. Soit € > 0. Il existe donc une partition P. = {Q; CR: 1 <i< L} de R
telle que S(1g,P.) < e. Or

S(g,P.) = > Vol(Q;) < €
i€{l,...,.L}, Q:NE#0

et £ C U Q;. Ceci termine la premiere partie de la preuve.
ie{1,...,.L}, Q:NE#D
Soit € > 0. Soit aussi des pavés Ry, ..., R tels que E C UX, R; et 3K | Vol(R;) < e.
Sans perte de généralité, on peut supposer que R; C R pour tout 1 < i < K et que
VxeEJie{l,...,K} xeR,.
Soit la partition tensorielle P. de R définie a partir de toutes les composantes de tous
les sommets de Ry,..., Rk, R. Alors

Vie{l,....K} Ri=|J{QeP.: QCRi},
ﬁ(]lE,PE) >0et
o K K
S(1g,P.) = > Vol(@Q) <Y Y Vol(Q) =) Vol(R;) <,
QEP:, QNE#D =1 Q€P:, QCR; i=1

ou on a utilisé que
YQeP. (QNE#0D = Jie{l,....K}QCR:).

Comme € > 0 est arbitraire, 1 est intégrable sur R et [, 1g(x)dx = 0. O

Remarque 8.23. II résulte de ce lemme que toute union finie d’ensembles négligeables
est un ensemble négligeable, et que tout sous-ensemble d’un ensemble négligeable est aussi
négligeable.

Exemple 8.24. Considérons les ensembles suivants :
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1. E={(z,y) €eR?: 2 €[0,1],y = 0}. Alors E est un pavé de volume nul et donc E est
négligeable. Dans le critére du lemme, on peut choisir K =1 et Ry = E. Si on souhaite,
pour une raison ou une autre, une collection finie de pavés non dégénérés, on s’en sort
dans cet exemple en choisissant un seul pavé R = [0,1] x [=%, §] (K =1), et on a bien
E C R avec Vol(R) < e.

(z,y,2) ER? 12 +y? < 1,2 = 0}. Soit R =[-1,1] x [-1,1] x [=§, §], alors

2. F =
E C R, Vol(R) = € donc E est négligeable.

3. E={(z,y) € R2: 22 + y2 =1} est négligeable.

oy
St

Y

L’important résultat suivant caractérise les ensembles mesurables au sens de Jordan.

Théoréme 8.25. (_]n ensemble borné E C R"™ est mesurable au sens de Jordan si et
seulement si OF = E '\ E est négligeable.

Démonstration. Soit R C R™ un pavé tel que £ C R.

« = » (E mesurable = OF négligeable) Soit € > 0. Par le Lemme 8.21, il existe une
partition P, de R telle que > nce Vol(Q) < €, ou

E={QeP.: QNE#0, QnE°#0}.
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Pour tout x € JF, il existe au moins un pavé @Q € P, qui le contient. Alors soit x € 00Q),
soit x € (), mais dans ce dernier cas on a nécessairement ) € £. On a donc

8EC(UQ)U(U 8@).
QEE QEP.

Le bord de tout pavé étant une union finie de pavés de volume nul, OF est inclus dans
I'union d’une famille finie de pavés (éventuellement dégénérés) dont la somme des volumes
est < e. Comme € > 0 est arbitraire, OF est négligeable.

« < » (OF négligeable = E mesurable) Puisque 1pr € R(R) et [ 1pp(x)dx = 0,
Ve > 0 il existe une partition P. de R telle que S(1yg,P.) < €. Mais pour Q € P,
supg log = 1 si et seulement si Q NIE # (. D’ou

Z Vol(Q) < e.
QEP:, QNIEAD

Observons que si un certain ) € P, rencontre a la fois E et E¢, alors Q NOFE # (). Pour
le voir, considérons x € QN E¢et y € QN E. L’ensemble {t € [0,1] : (1 —t)x+ty € E}
n’est pas vide (il contient ¢ = 1) ; soit o € [0, 1] son infimum. Alors tox+ (1 —tg)y € QNOE
et donc Q NOE # ().

On obtient ainsi

S(1g,P) - S(1g,P) = > Vol(Q) < Y. Vol(Q) <.
QEPe QEPe
QNE#D, QNEC#D QNOE#D

Comme € > 0 est arbitraire, ceci prouve que 1g est Riemann-intégrable, et donc E est
Jordan-mesurable. O

Corollaire 8.26. Soient E, F' C R™ des ensembles bornés et mesurables au sens de Jordan.
Alors
ENF, EUF, E\F, E, E

sont mesurables.
Démonstration. Soit R C R™ un pavé contenant E U F. Par hypotheése 1g,1p € R(R).
On a

— lprrp=1g-1p € R(R);

— lpurp =1g +1p — 1gnr € R(R);

— Ip\p =1 —lgnr € R(R);

— 1y =1 —1pnoE € R(R);

— 15 =1gusr € R(R).

O

Définition 8.27. On note J(R™) la collection des sous-ensembles de R™ compacts et

mesurables au sens de Jordan. Plus généralement, pour E C R™, on note J(F) la collection
des sous-ensembles de E qui sont compacts et mesurables au sens de Jordan.
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8.6 Caractérisation des fonctions intégrables

On souhaite maintenant donner une caractérisation des fonctions intégrables au sens
de Riemann sur un domaine quelconque. On commence par 'important résultat suivant :

Théoreme 8.28. Soit un pavé R C R" et une fonction bornée f: R — R. Si l’ensemble
des points de discontinuité de f est négligeable, alors f est Riemann-intégrable.

Démonstration. Soit M = supycp |f(x)|, notons par N Pensemble des points de disconti-
nuité de f et fixons € > 0. Comme N est négligeable, il existe une partition P, de R telle
que

— €
Sy, P.) = > Vol(Q) < .
QEP:, QNN#D 14+4M

Soit I’ensemble compact

K=U{QeP.: QNN =0}

(union finie de fermés bornés). Comme f : K — R est continue sur le compact K, elle est
uniformément continue sur K. Il existe donc . > 0 tel que

vy e K (Ix =yl <d = 1769 = I3 < T 5vam)

(si K = (), on peut choisir §. > 0 librement). Quitte a prendre un raffinement de P, nous
pouvons supposer que

vWQeP. (QCK = diam(Q) < ).
On obtient alors

S(£.P) = 8(1.P) = 3 (sup S — gl f) Vol(Q)

QePe

- ( oo+ > ) (sgpf—igff) Vol(Q)

QEPe, QCK  QEPe, QNNH#D

€
< Vol(R)+2M—
S T avoi() YOUR) +2M7 +4M

Comme € > 0 est arbitraire, ceci prouve que f est Riemann-intégrable. O
Continuons avec un autre résultat important.

Théoréme 8.29. Soit E C R™ borné et mesurable. ST f : E — R est bornée sur E et
continue sur E, alors f est intégrable sur E au sens de Riemann.

Démonstration. Soit R un pavé contenant E et f le prolongement de f par zéro en dehors
de E. Comme E est Jordan-mesurable, OF est négligeable. De plus I'ensemble N des
points de discontinuité de f est inclus dans OF, et donc N est négligeable. Par le théoréme
précédent, f € R(R) et donc f est intégrable sur E au sens de Riemann. O
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Comme cas particulier, on obtient le théoréme suivant :

Théoréme 8.30. Soit E € J(R"™) (compact et mesurable au sens de Jordan) et f : E — R
continue. Alors f est intégrable sur & au sens de Riemann.

Ce dernier théoréme implique, en particulier, que C*(E) C R(E) si E € J(R").
On conclut cette section en présentant d’autres propriétés de 'intégrale de Riemann,
au dela de celles déja énoncées dans le théoreme 8.19.

Théoréme 8.31 (Propriétés de 'intégrale de Riemann — suite du théoréme 8.19).

(v) Soit E C R™ borné et mesurable, et f : E — R bornée. Alors

1nf f(x) Vol(E / f(x)dx </ f(x)dx < sup f(x) Vol(E)
xelE
pour tout pavé R contenant E et le prolongement f : R — R de f par la valeur 0.
En particulier, si f € R(E),

inf f(x) Vol(E / f(x)dx —/ f(x)dx < sup f(x) Vol(E).

xeER xeE

(vi) Soit E € J(R™) connexe par arcs et f € C°(E). Si Vol(E) # 0, alors
1

Cette derniére égalité s’appelle le théoréme de la moyenne.

Démonstration. (v) Soit M =1+ sup,cp |f(x)| et fixons € > 0. Il existe une partition P,

de R telle que
€

S(lg,P) —S(g,Pe) < i

et donc .
> Vol(Q) < <7
QEP.
QNE#D, QN(RM\E)#0D
On a donc, ou Q € P,

= (Z + Z + Z ) supf ) Vol(Q)

QCE  QnE#D, QnE<#) QCEc) X€Q

< ) sup f(x) Vol(Q) + > M Vol(Q) + 0 < sup f(x)S (]1E,736)+Mi—|—0
xeE x€E M
Qck QNE#D, QNE°#D
< sup f(x) Vol(E) + M|S(1g,Pe) — Vol(E)| + € < sup f(x) Vol(E) + 2¢
xeFE xeE
car

S(1g,P.) < Vol(E) < S(1g,P.) avec S(lg,P.)—S(1g,P.) < ﬁ
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De méme,
S(f,Pe) > ingf(x) Vol(E) — 2e.
D’ou o
/ f(x)dx < sup f(x) Vol(E) + 2¢
xeE
et
/ Fx)dx > inf f(x) Vol(E) - 2e.

Comme € > 0 est arbitraire, on obtient la conclusion voulue.

(vi) Par (v) et le fait que f est continue sur un compact non vide, on a
0/ < oo [ Gk < max s
min — x)dx < max f.
E ° 7 Vol(E) JE )
Or, puisque F est compact et connexe par arcs,

m(f) = [mmﬂ ), max f(x >]

xel xeEE

Donc il existe xg € E tel que f(xg) = Vol fE O

Voici un corollaire tres utile :

Corollaire 8.32. Soit E C R™ borné et négligeable, et f : E — R bornée. Alors f € R(E)
et [ f(x)dx =0.

Démonstration. En effet

0= ;reljfgf(x) Vol(E) < /Rf(x)dx < /Rf(x)dx < sup f(x) Vol(E) =0

xeE

pour tout pavé R contenant E et le prolongement f : R — R de f par la valeur 0. O

Le théoréme suivant montre ’additivité de I'intégrale par rapport au domaine d’inté-
gration.

Théoréeme 8.33. Soient E1, Es C R™ bornés, tels que E1 N Eo est négligeable et notons
E =FEiUE;. Si f: E— R bornée est telle que ses restrictions f|g, € R(E;), i = 1,2,

alors f € R(E) et
/E F(x)dx = /E )+ /E () (8.2)

Inversement, si E, Eq, E5 sont mesurables (avec E1 N Ey négligeable) et f € R(E), alors
fle, € R(E;), i=1,2 et on a encore (8.2).
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Démonstration. Notons par 1g, : E — R la fonction caractéristique de E; pour i € {1,2},
et par 1g,ng, : E — R la fonction caractéristique de Ey N Ey. Supposons f|g, € R(E;),
i = 1,2. Alors les fonctions f-1 g, sont intégrables sur E et [ f(x) - 1g,(x)dx = [5, f(x)dx.
De plus f|g,nE, est intégrable sur By N By et [ p, flEnE (X)dx = 0, car F1 N E est
négligeable. D’ou la fonction f - 1g g, est intégrable sur E et [, f(x) - 1g,nE,(x)dx = 0.
Puisque f = f -1, + f - 1g, — f - Lg,nE, on conclut que f € R(E) et vérifie (8.2).

Soit maintenant f € R(E). Puisque les fonctions 1, ¢ = 1,2, sont aussi intégrables
sur E (car Ej, Ey sont mesurables), on a f-1g, € R(E) (produit de fonctions intégrables),
ce qui équivaut a f|g, € R(E;) et on a encore (8.2). O

On remarque que dans la deuxiéme partie du théoreme précédent, sans hypothese de
mesurabilité de E, E1 et Es, le résultat n’est pas forcément vrai. Il suffit de prendre la
fonction constante 1 sur E = [0,1] et prendre £} = QN [0,1] et Ey = [0,1] \ Q pour s’en
convaincre.

8.7 Généralisation de la formule des intégrales itérées

On a déja rencontré la formule des intégrales itérées pour le calcul de 'intégrale d’une
fonction sur un pavé. On va maintenant la généraliser a des domaines de formes plus
complexes.

Définition 8.34. On dit que E C R"! est un domaine simple par rapport a la variable y
s’il existe un ensemble K € J(R™) (compact et mesurable) et deux fonctions g,h : K — R
continues avec g(x) < h(x), Vx € K, telles que E ait la forme

E={(x,y) eR" x€ K, g(x) <y < h(x)}.

Théoréme 8.35. Un domaine simple E = {(x,y) € R""! x € K, g(x) <y < h(x)} avec
K e J(R"™), et g,h: K — R continues telles que g(x) < h(x), Vx € K, est mesurable au
sens de Jordan et Vol(E) = [, (h(x) — g(x))dx.

Remarque. Pour j € {1,...,n} fixé, il y a une version ot les rdles des variables z; et y sont
échangés. Ainsi, par exemple, g et h délimitent x; en fonction de (z1, ..., Tj—1,Zjq1,. .., Tn, Y).

Démonstration. On considére d’abord un domaine de la forme F = {(x,y) € R"*!: x €
K, 0 <y <h(x)}, avec h(x) > 0, Vx € K. Soit R un pavé non dégénéré tel que K C R,
et R = R x [0, M] un pavé qui contient F, ot M = maxyef h(x) + 1.

Puisque h est continue et K € J(R™), h est intégrable sur K au sens de Riemann. Soit
e €]0, Vol(R)[. T existe une partition P. = {R;}, de R telle que S(h, P.) — S(h, P.) < ¢,
ot on a noté h le prolongement par zéro de h en-dehors de K. Notons m; = infye R, h(x)
et M; = Supyep, h(x),Vi=1,...,L, et considérons la partition suivante de R (voir Figure
ci-dessous)

L
~ € €




8.7. GENERALISATION DE LA FORMULE DES INTEGRALES ITEREES 111

On a

S(1p,P)= > Vol(R; x [0,m;]) = Y m;Vol(R;) = S(h,Pe),
:R;,CK ©:R;CK

— ~ €

S(]IE,P) = ‘ Z Vol (RZ X [O,mi]) + ' Z Vol (Rl X {mi,Mi + VOI(R)])
i R;NK#D iRy NK#()

€ o~
= W(R) | M+ ——= | < 1(R;) M; = y e )

| > Vo(R)< +V01(R)> | > Vol(R)M; +e=S5(h,Pe) +e
:R;NK#() i R;NK#()

ce qui implique que S(1g,P)—S(1g, P) < 2 et donc, puisque € €]0, Vol(R)] est arbitraire,
1p € 7§(R) De plus, puisque € > 0 peut étre pris aussi petit qu’on veut et S(h,Pe) =
S(1g,P) < S(1g,P) < S(h,P.) + ¢, on conclut que

Vol(E) :/R]IE(x,y)dxdy:/RiL(x)dx:/Kh(x)dx.

Par les mémes arguments, on vérifie facilement qu'un domaine de la forme E = {(x,y) :
x € K, ¢ <y < h(x)}, avec ¢ < minkex h(x), est aussi mesurable.

Considérons maintenant le cas générale : £ = {(x,y): x € K, g(x) <y < h(x)}. Soit
¢ = mingex g(x) et

B, ={(x,y) eR"™ :x € K, c <y <h(x)},
Ey={(x,y) eR"™ :x € K, c<y<g(x)}

Ej, et E, sont mesurables, par les arguments ci-dessus, et

Vol(Ep) = /

[ (10— )dx et Vol(E,) = / (9(x) — ¢)dx.

K

D’autre part E, = E;UE et E;,NE = G(g) (le graphe de g). Or G(g) C 0E, et
OE, est négligeable car E,; est Jordan-mesurable. Donc G(g) est aussi négligeable. Ainsi
E = (Ep\Ey) UG(g) est Jordan-mesurable, Vol(E}) = Vol(E,) + Vol(E) et

Vol(E) = Vol(Ey) — Vol(E,) = /K

(P(x) - g(x) ) dx.
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Exemple 8.36. Considérons le triangle T = {(z,y) €R?, 0<2<1,0<y<1—z}. Si
on note K = [0,1] et h(z) =1—=x, on a donec T = {(x,y) ER?, z € K, 0 <y < h(x)} et
Uaire de T peut se calculer par la formule

1
Vol(T /h dx—/(l—x)dxza
Exemple 8.37. Considérons la boule unitaire
E={(z,y): 2> +y* <1} ={(z,y): —1<z<1, —V1-22<y<V1—2a?}

Alors, Uaire de la boule peut étre calculée par la formule

Vol(E / 2v/1 — 22dx —/

/2

/2
2 cos® df = / (cos20 + 1)df = .

—7/2
Théoréme 8.38 (Intégrales itérées). Soit E = {(x,y) e R"":x € K, g(x) <y < h(x)}
un domaine simple, avec K € J(R"), g,h : K — R continues avec g < h sur K, et
f+ E — R une fonction continue. Alors f est intégrable sur E et

[ secwxdy = | ( /g ?()) f(x,y>dy) dx.

Remarque. Pour j € {1,...,n} fixé, il y a une version o les réles des variables z; et y
sont échangés.

Démonstration. Soient R un pavé contenant K, m < ming g, M > maxgh et R =
R x [m, M] D E. Par le théoréme 8.35, E est mesurable et par le théoreme 8.30 f € R(E),
c’est-a-dire f est intégrable sur R, ot f : R — R est le prolongement de f par la valeur 0.
De plus, Vx € R, la fonctlon (de y) f(x,-) est intégrable sur [m, M], car elle est continue
par morceaux. Donc F f f X y)dy existe pour tout x € R et, par le théoréme
de Fubini 8.14, F € R( ) et [5f(x,y)dxdy = [, F(x)dx. Comme F : R — R est le
prolongement par la valeur 0 de la fonction K 3 x — F ( )= fg}zg) f(x,y)dy, cette derniere
fonction est intégrable sur K et

| sxyyaxdy = [ fx.y)axdy
E R

= /Rﬁ’(x)dx = /KF(x)dx = /K (/gZ:() f(x,y)dy) dx.

Exercice 8.39. Calculer [pxdzdydz o0 T = {(z,y,2):0<2<1,0<y<1—2, 0<
2z <1—x—vy} est un simpleze de R3.
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8.8 Changement de variables dans les intégrales de Riemann

Soit F' C R™ borné et mesurable, et f : FF — R une fonction bornée et intégrable sur
F. Notons I = [, f(x)dx. On introduit maintenant un changement de variables

x=1(u), :FECR"—=>R"

tel que F' = 1 (FE). On se pose les questions suivantes : i) 'ensemble E est-il mesurable ? ii)
La fonction f(u) = f(3(u)) : E — R est-elle intégrable sur F ? iii) Comment l'intégrale I
se transforme suite au changement de variables ?

Rappelons d’abord le cas n = 1. Soit F' = [a, f] C R un intervalle, f : FF — R une
fonction continue et ¢ : E = [a,b] — R une fonction de classe C! (jusqu’au bord) telle
que YP(a) = a, P(b) = L et P(F) =F (avec a < b et a < ). On ne suppose pas que ) soit
injective. Alors la fonction u — f(1(u))y'(u), u € E, est aussi continue et

/j f(z)dr = /ab F () (v)du.

Ce résultat se montre a partir du théoreme fondamental du calcul intégral. Soit G(t) =

JY® f(2)dz, alors G/ (t) = f((t)P'(t) et

B=1(b) b
/ f(z)dr = G(b) — G(a) = / Fb(u))y (u)du.
a=t(a) .

On remarque, en particulier, que pour obtenir ce résultat, on n’a pas demandé que la
fonction v soit une bijection entre E et F. En effet, le résultat reste vrai méme si la
fonction 1 n’est pas une bijection.

En dimension n > 1, on n’a plus un théoréme fondamental du calcul intégral, donc
on cherche un résultat qui soit valable sous des conditions un peu plus fortes et qui soit
généralisable au cas n > 1. Pour n = 1, on va demander que la transformation ¢ : £ — F
soit un difféomorphisme (donc une bijection de classe C! avec application inverse de classe
C1), ott E = [a,b] avec a < b dans R. Alors, nécessairement, ¢’ # 0 sur E, F = [¢(a), ()]
si 1 est strictement croissante, F' = [1)(b),1(a)] si ¢ est strictement décroissante, et on a :

1. Si ¢'(u) > 0, Vu € [a,b], alors v est strictement croissante et ¥(a) < ¥(u) <
Y (b), Yu €]a, b]. Donc

b

$(b) b , 7 ,
[ a@r= [ sy = [ e = [ ) i

2. Si ¢/ (u) < 0, Yu € [a,b], alors 9 est strictement décroissante et (b) < (u) <
Y(a), Yu €]a,b]. Donc

¥(a) P(b)
/Ff(w)dx = /w(b) f(z)dz = _/¢(a f(z)dx

b ) b
= - [ 1w @du= [ rea)



114 CHAPITRE 8. INTEGRALE MULTIPLE AU SENS DE RIEMANN

Donc dans les deux cas on a
F E

dx

On note que [¢'(u)| = | 4=
C’est bien cette formule qui se généralise en dimension n > 1. On a 'important résultat

représente le changement de 1’élément infinitésimal de longueur.

suivant qu’on ne va pas démontrer dans ce cours.

Théoréme 8.40 (Changement des variables d’intégration). Soient U,V C R™ ouverts tels
que, pour tout r >0, U N B(0,r) et VN B(0,r) sont Jordan-mesurables. Soit ¢ : U — V
un difféomorphisme de classe C' tel que toutes les composantes de ¥ et de D € R
sont bornés sur tout sous-ensemble borné de U. Soit encore un borné non-vide E C U et
F =4(FE) CV, qui est aussi borné non-vide. Alors

1. E est Jordan-mesurable si et seulement si F' [’est;

2. si E est Jordan-mesurable et f : F = p(E) — R est continue et bornée, alors
fER(F) et

[ 760dx= [ papw) |det Dep(w) du (33)
ot apparait la valeur absolue d’un déterminant dans le membre de droite.

Notons que f = fo : E — R est continue (composition de fonctions continues) et
bornée, donc f € R(E) si E est mesurable. De plus on a fait I'hypothése que toutes les
composantes de Db sont bornées sur E. Puisque elles sont aussi continues (car 1 € C1(U)
et E C U), donc intégrables sur E si celui ci est mesurable, on a que Jy, = det Dy € R(E)
(produit de fonctions intégrables) et I'intégrale & droite de (8.3) existe.

Le terme Jy(u) = det Dyp(u) dans (8.3), souvent appelé le jacobien de 1), représente
le changement infinitésimal de volume par le difféomorphisme ). En effet, soit ug € U et
r > 0 suffisamment petit tel que le pavé B, = {u € R" : ||u — ug||oc < 7} soit contenu
dans U. Gréace au théoreme 8.40 on a 1 (B,) est mesurable puisque B, 'est et

T

min |, (w)| Vol(B;) < Vol(w(B,) = [ |7y(wldu < max|.J, (w)| Vol(B,).

En prenant la limite pour  — 0 et grace a la continuité de |.Jy| on voit que

. Vol(y(By))
}%W = |Jy (o).

Que le changement infinitésimal de volume en ug soit donné par | det D (up)| ne devrait
pas surprendre. Considérons par exemple une application affine en dimension n = 2 :
x = 1p(u) = Au+b, avec A € R?*2 b € R? et notons (aj,az) les deux colonnes de A. Alors,
un rectangle B, ,, de sommets {ug, ug + r1e1,ug + r2€2,up + riej + raez} est transformé
en un parallélogramme (B, ,) de sommets {Xq, X + 121, Xo + 282, X0 + r1a1 + r2a2}
(voir figure ci-dessous),
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A A

/\

A
raesl  p r2a2 ria; = riAe;

7"191>

ou xg = ¥ (ug) = Aug + b et
Vol(¥(By, r,)) = |r1a1 xrag| = rire| det A| = | det A| Vol(By, r,) = | det Dap(ug)| Vol(By, r, ).

On peut montrer que le méme résultat est vrai en dimension n quelconque pour une
application affine.

Considérons maintenant une transformation non linéaire x = 1p(u). Autour d’un point
xo = ¥ (up) on peut écrire un développement limité & l'ordre 1

x =¥ (ug) + DY(up) - (u—ug) + R(u)
= Dip(up)u+ (x0 — Dip(up)ug) + R(u).

Négligeant le reste R(u) on s’attend donc a ce que le facteur du changement infinitésimal
de volume soit encore donné par |det Dip(up)|.

8.9 Quelques changements de variables usuels

8.9.1 Changement en coordonnées polaires

Considérons le changement de variables

AN _ [pcost
() st - (2520)

qui est un difféomorphisme entre les ouverts U = |0, +oo[x |-, 7[ et V = R2\{(z,y) : y =
0, < 0}. En particulier,

cosf —psind
sinf  pcoséd

Di(p,0) = < ) , Jy(p,0) = det Dip(p,0) = p > 0 sur U.

Soit maintenant F' C V borné et mesurable, et f : FF — R continue et bornée, donc
intégrable. Notons f(p,0) = f o (p,0) = f(pcosb, psin ). Puisque ¥~ est bornée sur
tout ensemble borné, on a que E = ¥~ !(F) est borné, ¥ et D sont bornées sur E et,
grace au théoreme 8.40, F est mesurable et

[ $@m)dedy = [ Fo.0) pdpds.
F E
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»
P>

FIGURE 8.3 — Changement en coordonnées polaires

Exemple 8.41. On souhaite calculer [n f(z,y)dzdy ou F = {(x,y) : 1 < 2% +4y? <
4, >0,y >0}y CV et f(z,y) = en utilisant le changement en coordonnées
polaires.

OnaE=9"YF)={(p0): 1<p<2 0<6<3%}CU. De plus, toutes les
hypothése du théoréme 8.40 sont vérifiées et on peut calculer l'intégrale par la formule (8.3)

~ 2 /2 1
Ajwwmwzéﬂmmwwzz<4 LW#QMp

2 p T o |? 5
:A zdp = log(1 +p7)

21+p T4 %y

1
1+CE2 +y2 )’

1

Exemple 8.42. On souhaite calculer [y f(z,y)dzdy ot F = {(z,y) € R?: 2?4+ y> <1}
et f(x,y) = m L’intégrale existe car F' est compact et mesurable, et f est continue.

Considérons de nouveau le changement en coordonnées polaires. Dans ce cas, ' ¢ 'V
ce qui pose un probléme. Toutefois, 'ensemble G = {(z,y) : y =0, —1 <z < 0} est
négligeable, donc F = F \ G CV est mesurable et

/fwwmwszmmmw
F F

On peut alors appliquer la formule (8.3) d cette derniére intégrale. On a E =~ (F) =
{(p,0):0<p<1, —w<b<nm}CU et

/jmmwwszmwmwzfﬂmmmw
F F FE

1 T 1
/0 <_7T1+p2 )PP mlog
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Observez que ([0, 1] x [—m, 7))\ E est négligeable et donc les intégrales sur [0,1] x [—m, 7] et
sur E& sont égales.

8.9.2 Changement en coordonnées cylindriques

Considérons le changement de variables

x pcosf
Y =’l,b(/),9,§) = PSin0 ’
z ¢
qui est un difféomorphisme entre les ouverts U = |0, +oo| x |-m,7[ x R et V = R3\

{(z,y,2): <0, y=0, z € R} avec

cosf —psinf 0
det D(p,0,() = det | sinf pcosf 0| =p>0surU.
0 0 1

Comme pour le changement en coordonnées polaires, si F© C V est borné et mesurable,
alors E = 1~ (F) est aussi borné et 1, D1 sont bornés sur E. Donc, si f : F — R est
continue et bornée et on note f = f o), on peut appliquer le théoréme 8.40 : E est
mesurable et

| #ay.2)dndydz = [ Fp.0.0) pdpasic.
F E

Exercice 8.43. Calculer VOI(F) ou F = {(z,y,2) € R®: 2?4y +22 <4, 2 > (22 +4?)}
(voir figure ci-dessous).
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g P=(y2)

v

FIGURE 8.4 — Changement en coordonnées cylindriques

8.9.3 Changement en coordonnées sphériques

Considérons le changement de variables

x pcos B sin @
y | =¥(p,0,p) = | psinfsing |,
z pCos
qui est un difffomorphisme entre les ouverts U = ]0,+oo[ X |—m,7w[ x [0,7[ et V =

R3\ {(z,y,2): <0, y=0, z € R}, avec

cosfsingp —psinfsiny pcoshcosp
det D(p,0,¢) = det | sinfsiny pcosfsing psinfcosp | = —p?sing < 0 sur U.
cos 0 —psin g

Comme pour le changement en coordonnées cylindriques ou polaires, si ' C V' est borné
et mesurable, et f : F' — R est continue et bornée, notant f = fop et E =~ !(F), on
peut appliquer le théoréme 8.40 : E est bornée et mesurable, et

|ty 2)dodydz = [ f(p.0.¢) p*sino dpdsdy.
F E

Exercice 8.44. Calculer le volume de la sphére de rayon R >0 : F = {(z,y,2) € R3:
2?2+ 9% + 22 < R?}.
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FIGURE 8.5 - Changement en coordonnées sphériques

8.10 Intégrale de Riemann généralisée

Jusqu’a présent on a défini I'intégrale d’une fonction f : E — R bornée sur un ensemble
borné £ C R™ par un prolongement f : R — R de f par zéro sur un pavé R D F :

/Ef(x)dx:/Rf(x)dx.

On souhaite ici généraliser la définition de I'intégrale de Riemann aux cas ou f ou F ne sont
pas bornés. Rappelons que, pour F C R™, on note J(F) la collection des sous-ensembles
de FE compacts et mesurables au sens de Jordan, et commencons par la définition suivante :

Définition 8.45 (Fonction absolument intégrable). Soit E C R™ ouvert non-vide et
f:E —= R (les deux pas forcément bornés). Soit {K;, j € N} une suite de sous-ensembles
non-vides tels que :

* Kj € j(E)7 Vj EN;

— K C Kjy;
Soit f bornée et intégrable au sens de Riemann sur chaque K; (fK]- f(x)dx existe ainsi
que fK,- |f(x)|dx). On dit que f est absolument intégrable sur E si lim;_,o ij |f(x)]dx
existe et est finie. Dans ce cas on pose

/ f(x)dx = lim / f(x)dx.
B j—=0 JK;

On remarque que pour tout ensemble £ C R™ on peut toujours trouver une suite de
sous-ensembles {K;}cn qui satisfait les propriétés de la définition ci-dessus. Il suffit en
effet de considérer, par exemple, la suite {K;,j > jo} d’ensembles compacts

. 1
Kj={xeb: |xl<j Ix-yll== vy ¢E},
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ol jo > 1 est tel que Kj, # 0.

On remarque aussi que si lim;_, || K; | f(x)|dx existe (sous-entendu : et est finie), alors
lim; o0 ij f(x)dx existe aussi. En effet, les suites ij fr(x)dx et ij f—(x)dx sont crois-
santes et bornées par lim;_, ij | f(x)|dx. Donc lim_, ij f+(x)dx et limj_,o0 ij f-(x)dx
existent et aussi lim;_, ij f(x)dx = lim;j_,o ij fr(x)dx — limj_,o0 fK]- f-(x)dx.

Le théoreme suivant assure que la valeur de I'intégrale [, f(x)dx dans la définition
précédente ne dépend pas du choix de la suite { K} en.

Théoréme 8.46. Si f : E — R est absolument intégrable selon la définition (8.45), alors
pour toute autre suite {K}jen telle que K} € J(E), K; C K'j41, Vj €N, Ujen K = E,
on a que [ est bornée et intégrable au sens de Riemann sur chaque KJ’ et

/ f(x)dx = lim f(x)dx.
E

J—=0 JK!,
J

Démonstration. Fixons j € N et K; € J(E). Clairement K; C E = UyenKmn C
Unmen Io(mﬂ donc {f(’m}meN est un recouvrement ouvert de K J’ Puisque K J’ est com-
pact, on peut extraire un recouvrement fini K ]/ C Io{il U---u Io{ie, et puisque les Km sont
emboités, K C IQ(NJ. avec Nj = max{iy,...,i}. Puisque f est intégrable sur Ky, et K
est mesurable, on a que f est intégrable sur K ]’-, Vj € N. De plus,

[ rax< [ peoax < tim [ fx)dx < oo,
KJ/ KNj m—0o0 K

- (x)dx < f-(x)dx < lim fo(x)dx < 4o0.

KNj m—0o0 K.

Donc limj_,o [ f+(x)dx existent et
J

lim f+( Jdx < lim [+ (x)dx, lim f-(x)dx < lim f-(x)dx.

]—>oo m—o0 Km j—>oo Kj/' m—0o0 Kum

De la méme fagon on peut montrer que Vj € N, EINJ‘ K C Kﬁvj, et

lim/ fr(x)dx < lim fr(x)dx

Jj—00 Jj—00 K’
lim / f-(x)dx < lim f (x)dx,
j—00 Jj—00

ce qui implique

lim fr(x)dx = 'lim/ fr(x)dx, lim f dx = hm/ f=(
K! j—o JK;

J—00 ]—)OO J]—00

et

lim f( )dx = lim f+( )dx — lim f-(x)dx

Jj—00 j—o00 j—00 K/

- lim / frx)dx — lim [ - xx = ], 160
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Exemple 8.47. On veut vérifier si on peut définir [ f(x,y)dxdy ot E = B((0,0),1)\
{(0,0)} et

1
r,y) = ————:R*\ {(0,0)} = R.
a9) = s 1R ((0.0)
o . 1
Considérons la suite de sous-ensembles K; = {(z,y) € R?: ]+2 <zr4+y?<1- b

J €N, qui satisfait les bonnes propriétés : K; € J(E), K; C KJH, UjenK;=E. On a
/ |f xy|d1:dy—/ f:cydxdy—/\/ J+2</ pd@)dp
K;
1 1 .
:27T< 1-—- — >§27r, Vi > 0.

j+2 Vi+2

Donc f est absolument intégrable sur E et

/f(x,y)dmdy= lim/ f(z,y)dzdy = 2m.
E j—= JK;

L’exemple précédent montre que la fonction L, avec r = [|x||, est (absolument) intégrable
pour x € R" n = 2, dans un voisinage de zéro. Par un calcul similaire on trouve qu’elle
est absolument intégrable pour tout n > 2. Toutefois, elle n’est pas intégrable pour
n = 1. Plus généralement, on a que la fonction f(x) = ||x||* est absolument intégrable sur
E = B(0,1) \ {0} pour tout a > —n.

Exemple 8.48. On veut vérifier si on peut définir [ f(x,y)dzdy ot E = B((0,0),1)\
{(0,0)} et

x
(22 + 42)2
De nouveau, on prend K; = {(z,y) : % <224y’ <1- %}, j>2.0na

flz,y) = :R?\ {(0,0)} = R.

V1~ 0
/ |f(x,y)|dedy = / p]cos | pdpdf
K; \L/ -
1
1\ V77 4
:4<—) oG- _ I oo,
1 —
p 7 1 /1 3
Donc la fonction f n’est pas absolument intégrable.
Attention : Si on n’avait pas mis la valeur absolue, alors ij flx,y)dxdy =0, Vj > 2

et donc lim;_,o0 ij f(z,y)dxdy = 0. Le probléme est que cette limite dépend du choix de
la suite {K;} car la fonction f n’est pas absolument intégrable !
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Chapitre 9

Equations différentielles ordinaires

Soient I un intervalle ouvert, E un ouvert inclus dans R et f : I x E — R une fonction
continue. Une fonction u : I — FE différentiable, qui satisfait I’équation

u'(t) = f(t,u(t)), Vtel, (9.1)

est appelée une intégrale ou une solution globale de I'équation (9.1) qui, & son tour,
est appelée Equation Différentielle Ordinaire (EDO) scalaire du premier ordre car elle
introduit une relation entre la valeur de la fonction (scalaire) inconnue u(t) et la valeur de
sa dérivée premiere en tout t € I.

L’adjectif « ordinaire » fait référence au fait que I'inconnue est une fonction d’une
seule variable ¢, donc sa dérivée est une dérivée ordinaire. Ceci est pour distinguer du
cas ou l'inconnue est une fonction de plusieurs variables (¢, x1,...,zy) et 'équation fait
intervenir les dérivées partielles de w. Dans ce dernier cas, on parle d’une Equation auz
Dérivées Partielles (EDP), qu’on ne va pas traiter dans ce cours.

Exemple 9.1. Soit I, E =R et f(t,z) =t> + x, ce qui va définir I'équation différentielle
ordinaire du premier ordre

u'(t) = f(t,u(t)) =t +u(t), VteR.

On vérifie facilement que u(t) = Cet — (2 +2t +2), avec C € R arbitraire, est une intégrale
de ’équation.

L’exemple précédent montre que la solution d’une EDO scalaire du premier ordre
dépend généralement d'un parametre arbitraire, mais les exceptions sont courantes. On a
donc ici une famille infinie de solutions u(-,C) : I — R paramétrées par un parameétre réel.

Définition 9.2. On appelle intégrale générale de l’équation différentielle (9.1) ’ensemble
de toutes les solutions globales de (9.1).

La notion d’équation différentielle se généralise facilement & une dimension n quelconque.
Dans ce cas, on parle d’'une EDO vectorielle du premier ordre ou bien d’un systéme d’EDO
du premier ordre. Soit I C R un intervalle ouvert, £ C R™ un ouvert et f : I x £ — R"

123
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une fonction a valeurs dans R™ continue. On considére ’'EDO vectorielle

G (8) = fult, ur(t), - .., un(t))
u(t) =ftut) <= {: vtel,  (9.2)

ul,(t) = fr(t,ur(t),. .., uy(t))

dont la solution sera une fonction vectorielle u: I — E C R" différentiable, ¢ — u(t) =
(ui(t),...,un(t)). On verra par la suite que, généralement, 'intégrale générale de (9.2) est
une famille de fonctions u(-,C1,...,Cy) : I — E paramétrée par n parameétres réels (mais
de nouveau les exceptions sont courantes).

On peut aussi introduire des équations différentielles d’ordres supérieurs a un. Par
exemple, soit I C R un intervalle ouvert, £ C R™ un ouvert et f : I x £ — R une fonction
scalaire continue. Considérons I’équation différentielle d’ordre n

u™ () = f(t,u(t), ' @), ..., u"V(@), VEtel, (9.3)

dont la solution est une fonction u : I — R de classe C™ telle que (u(t), ' (t), ..., u""D(t)) €
E, Vvt € I. Une telle équation peut toujours étre écrite sous forme d’une EDO vectorielle
d’ordre 1 en introduisant les variables

ainsi que la fonction vectorielle
U2

f:IxE—R",  f(tu,... ,up) = : ;

Un
f(t,ul, .. .,un)

ce qui permet d’écrire (9.3) comme u'(t) = f(¢t,u(t)), Vt € I. Pour cette raison, une étude
complete des systemes d’EDO du premier ordre est suffisante pour pouvoir traiter aussi
des équations d’ordres supérieurs.

9.1 Probleme de Cauchy

Comme 'exemple 9.1 le montre, I'intégrale générale d’une EDO scalaire du premier
ordre dépend en générale d’un parametre arbitraire (n parametres pour une EDO vectorielle
en dimension n). Il est souvent pratique d’imposer des conditions supplémentaires pour
obtenir une solution unique. Par exemple on peut demander que la solution passe par un
point (tg,up) € I x E. Ceci porte au Probléme de Cauchy :

Probléme 9.3 (de Cauchy). Etant donné f : I x E — R" continue, avec I C R un
intervalle ouvert, E C R™ un ouvert et (tg,ug) € I x E, trouwver u: I — E différentiable
sur I t.q.

{u’(t) =f(t,ut), tel, (9-4)

u(to) = Uup.
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Les équations différentielles ordinaires apparaissent souvent dans les applications pour
décrire I’évolution d’'un systéme en fonction du temps. Dans ce cas, la condition u(ty) = ug
peut étre interprétée comme une wvaleur initiale, c.-a-d. elle décrit 1’état du systéme au
temps initial ¢g, et on cherche a prédire 1’état u(¢) du systéme pour des temps futures
t > tg. On parle alors d’'un Probléme a valeur initiale :

Probléme 9.4 (& valeur initiale). Etant donné f : I, x E — R™ continue, avec I, = [to, T
et —oo <ty <T < +o0o, ECR" un ouvert et ug € E, trouver u: I, — E continue sur
1, et différentiable sur I t.q.

(9.5)

{u’(t) =f(t,ut), to<t<T,
u(to) = ug.

Il arrive parfois qu’on souhaite modéliser I’évolution passée qui a porté a I’état actuel
u(tg) = ug du systeme. On parle alors d’'un Probléme & valeur finale :

Probléme 9.5 (& valeur finale). Etant donné f : I_ x E — R" continue, avec I_ = |T, )]
et —o0 < T <ty < +00, FE CR"™ un ouvert et ug € E, trouver u: I — E continue sur
1_ et différentiable sur I_ t.q.

{u/(t) = f(t,u(t)), T <t < to, (9.6)

u(to) = Uyp.

Soit I =]T,T[=1_UI,. Il est clair que si u: I — E est une solution du probleme
de Cauchy (9.4), alors les restrictions u|7, et u|;_ de u a Iy et I_ sont solutions des
problémes a valeur initiale (9.5) et finale (9.6), respectivement. Il est facile de montrer
(exercice) I'implication inverse :

Lemme 9.6. Siuy : I — E et u_ : I_ — E sont solutions de (9.5), (9.6) et f est
continue sur I x E alors la fonction u : I — E définie par u(t) = u_(t) sit € I_ et
u(t) = uy(t) sit € I est de classe C' et est solution de (9.4).

Bien que le probléeme de Cauchy 9.3 soit formulé sur I'intervalle ouvert I, sa solution
(si elle existe) peut ne pas exister pour tout ¢t € I, comme ’exemple suivant le montre.

Exemple 9.7. Soit I, E =R, f(t,u) = u? et considérons le probléeme de Cauchy

u'(t) = u?(t), teR,
u(0) = 1.

On vérifie facilement que u(t) = %—t est une solution Vt # 1. Toutefois, cette solution n’est
pas définie pour t = 1. En particulier, elle présente une « explosion en temps fini » lorsque
t — 17. Du point de vue physique, prolonger cette solution pour t > 1 n’a pas vraiment de
sens. On dit alors que la solution existe seulement pour t < 1 et elle n’est pas une solution
globale du probléme de Cauchy.

Les considérations précédentes nous portent a donner la définition suivante de solution
locale et solution maximale du probléme de Cauchy (une terminologie analogue s’applique
aux problémes a valeur initiale et a valeur finale).
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Définition 9.8. On appelle solution locale du probléme de Cauchy 9.3 un couple (J,u)
o J C I est un intervalle ouvert contenant to et ou. u € C'(J) satisfait (9.4) sur J.

— On dit qu’une solution locale (K, w) du probléme 9.3 prolonge strictement (J,u) si
JCK,J#K, etu(t)=w(t), Vt€ J.

— On dit qu’une solution locale (J,u) est maximale s’il n’existe pas de solution locale qui
la prolonge strictement.

— On dit qu’une solution mazimale (J,u) est une solution globale si J = I.

— Une solution maximale (J,u) est dite unique si toute solution locale (K, w) est telle
que K C J et w(t) = u(t), Vt € K.

Si on s’intéresse a 'EDO u'(t) = f(¢,u(t)) pour ¢t dans l'intervalle ouvert I, sans
spécifier de condition initiale du type u(tg) = up, on peut aussi introduire une terminologie
analogue. Par exemple une solution locale est un couple (J,u) ou J C I est un intervalle
ouvert non-vide et ott u € C'(.J) est solution. Néanmoins, sans condition initiale, le concept
d’unicité d’une solution maximale n’est plus pertinent et, a la place, on introduit la notion
de solution générale : c’est ’ensemble de toutes les solutions maximales.

Remarque 9.9. Sans spécification de lintervalle de définition d’une solution, il est
souvent sous-entendu par “solution” le concept de solution mazximale.

Il est important de savoir sous quelles conditions sur f le probléme de Cauchy admet
des solutions locales ou globales et si elles sont uniques. On investiguera cette question
dans la section 9.4.

9.2 Quelques méthodes de résolution d’EDO scalaires

On considére dans cette section le cas d'une EDO scalaire et le probleme de Cauchy
correspondant

ul(t) = f(tau(t))7 le Ia u(tO) = Uo,

avec I C R un intervalle ouvert contenant tg, £ C R un ouvert contenant ug et f: I x £ —
R continue.

Avant d’illustrer quelques méthodes de résolution, on présente d’abord une inter-
prétation géométrique de la solution du probleme de Cauchy. Soit v : J — E une
solution maximale du probléme de Cauchy (J étant un intervalle ouvert contenant tg
et inclus dans I), dont le graphe G(u) = {(t,y) € J x E : y = u(t)}, appelé aussi
une courbe intégrale, est contenu dans I x E. Un vecteur tangent a G(u) en (¢, u(t)) est
donné par v = (1,u'(t)) = (1, f(t,u(t))). Définissons le champ vectoriel v : I x E — R?
(t,y) — v(t,y) = (1, f(t,y)). Alors, les courbes intégrales sont en tout point tangentes au
champ vectoriel v.

La figure 9.1 montre le champ vectoriel associé a la fonction f(t,u) = u(l — u), ainsi
que les trois solutions des problémes de Cauchy associés aux conditions initiales u(0) = 2,
u(0) = 0.25, u(0) = —0.25. On voit bien que les graphes des solutions (courbes intégrales)
sont en tout point tangentes au champ vectoriel v(t,y) = (1,y(1 —y)).
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FIGURE 9.1 - Courbes intégrales associées aux conditions u(0) = 2, u(0) = 0.25, u(0) = —0.25
pour 'EDO v = u(1l — u).

9.2.1 Equations différentielles & variables séparées

Soit f : I x E — R de la forme f(t,u) = g(t)k(u) avec g : I > Retk: E - R
continues sur les intervalles ouverts I et E, et considérons le probleme de Cauchy :

{u’(t) =g(t)k(u(t)), tel, (9.7)

u(to) = Uup,

avec (to,ug) € I x E. Si k(ug) = 0, le probleme de Cauchy admet la solution globale
u(t) = up, Vt € I. On verra dans la section 9.4 des conditions suffisantes sur k& pour que
cette solution soit unique. Si par contre, k(ug) # 0, grace a la continuité de k, il existe
un intervalle ouvert E C E contenant ug ot la fonction k& ne s’annule pas. Dans ce cas,
le résultat suivant donne une procédure explicite pour calculer une solution locale du
probléeme de Cauchy.

Thég)réme 9.10. Soient I,E C R deux mtervglles ouverts, g : I — R continue et
k: E — R continue telle que k(u) # 0, Yu € E. Pour tout (to,ugp) € I x E, notons
G(t) = ftto g(s)ds : I — R et F(u) = [ ﬁdv : E — R. Alors il existe un intervalle

owvert J C I contenant ty avec G(J) C Im(F') et une fonction u : J — R définie par

ut) = FHGM) e B, tel, (9.8)

tels que (J,u) est une solution locale du probléme de Cauchy (9.7). De plus, une telle
solution locale (J,u) est unique au sens que toute autre solution locale (K, w) a valeurs
dans E satisfait w(t) = u(t) € E, Vt € KN J.

Démonstration. Notons tout d’abord que la fonction k, étant une fonction continue,
ne change pas de signe sur F, ce qui implique que F' : F — R est continue strictement
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monotone sur £, Im(F) est ouvert et Papplication inverse définie sur Im(F) est contintiment
différentiable (F est un difféomorphisme entre E et Im(F)). Puisque F(ug) = 0, il existe
n > 0 tel que |—n,n[ C F(E) et par la continuité de G en tq et le fait que G(tp) = 0, il
existe 0, > 0 tel que J := |tg—dy,t0+9,[ C I et G(t) € |-n,n[, V¢t € J. On a donc montré
Pexistence d’'un intervalle ouvert J C I contenant ¢y et tel que G(J) C Im(F).

Grace au fait que F~! et G sont de classe C', on a que u = F 1o G € CY(J) et

G'(t)

v = FE T am))

=g(t)k(u(t)), Vte

De plus, u(tg) = F~(0) = ug, donc (J,u) est une solution locale du probléme de Cauchy.
Montrons I'unicité de cette solution. En effet, soit (K, w) une autre solution locale &

valeurs dans E. Puisque w est continue et E est ouvert, wH(E) est un ouvert dans K

contenant tg. Soit K le plus grand intervalle ouvert inclus dans w~!(E) et contenant to.

Alors, pour tout ¢t € K on a k(w(t)) # 0 (car w(t) € E) et fti) kz(“w((z)))ds = ftf) g(s)ds =

G(t). Mais, en faisant le changement de variable v = w(t), la méme intégrale devient

fti) kq(ﬂl;((ss)))ds = f;‘;(t) k(lv) dv = F(w(t)): ce qui implique, grace a 'inversibilité d~e F:E—
Im(F), que w(t) = F~Y(G(t)), Vt € K. Donc w = u sur I'intervalle ouvert JNK C JNK.
Par l’absurde, supposons qu’il existe £ € 9(.J NK)N(JNK). Comme u(t) € E, on

obtiendrait par continuité que w(t) = u(t) € E, ce qui conduirait & la contradiction
teJNK.Don JNK =JNK. O

Le théoreme précédent montre I’existence d’un intervalle ouvert J C I contenant % et
tel que G(J) C Im(F). Si maintenant on prend le plus grand intervalle J C I contenant ¢y

et tel que G(J) C Im(F), qui sera non-vide grace au résultat du théoréme précédent, on
pourra calculer I'unique solution locale sur J par la formule

u(t) = F7Y(G(t)), VteJ.

Il est possible qu’il existe une solution locale sur un intervalle ouvert plus grand JoJ.
Toutefois, le théoréme 9.10 ne garantit plus 'unicité de la solution sur J \ J. En effet,
Pexemple 9.12 ci-dessous montre que des que k(u(t)) = 0 pour quelque t € J, la solution
peut ne plus étre unique (observez que k n’est pas de classe C! dans cet exemple).

De fagon informelle, on peut construire la solution d’un probléeme de Cauchy par
séparation de variables en utilisant le procédé suivant :

W= gihw) = k‘éz) gt = [0 ka) - t;g(s)ds

= F(u) — F(u) = G(t) —G(ty) = u=F YG(t)—G(ty) + F(up))
ou F' est une primitive quelconque de % et G une primitive quelconque de g.

Exemple 9.11. Soit I, E =R, et f(t,u) = u?, (t,u) € I x E. Considérons le probléme
de Cauchy

{u’(t) =u3(t), tel,

u(tp) = up > 0.
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On note g(t) = 1, t € I, et k(u) = u?, u € E. Pour pouvoir appliquer la méthode de
séparation des variables, on se restreint a l'ensemble E = R C E, puisque ug > 0. On a

v ] 1 1 -
F(u):/ —dy=———-:E—>R
2
ug Y uop u
ug

qui est bien inversible sur E, avec application inverse F~1(v) = a0 continiment

différentiable sur]—oo, uio[ De plus, G(t) = jfo 1dt =t —tg et donc

UuQ 1
u(t) = ———2 Yt e]—oo,to+ —
() 1*@*750)’&0 ] 0 UO[
est l'unique solution du probléme de Cauchy sur Uintervalle |—oo, to + u—lo[ Cette solution
est aussi la solution mazimale car Iimtﬁ(tOJri)_ = +00 et elle ne peut pas étre prolongée
uo
de facon continue sur un intervalle plus grand.

Exemple 9.12. Soit I, E =R, et f(t,u) = —/|u|, (t,u) € I x E. Considérons le probléme
de Cauchy
{u%t) — V@], tel,

u(to) = ug > 0.

Observons déja que toute solution locale u satisfait u' < 0. On note g(t) = —1, t € I, et

k(u) = V/|u|, w € E. De nouveau, puisque ug > 0, on se restreint a E =R% C E et on
cherche une primitive de —= poury € E :
Vvl

F(u):/uu\}gdy:2f—2\/u>o:E—>R

qui est bien inversible sur E avec application inverse différentiable F~'(v) = (\/ug + %)2 , VE
|—2/ug, +oo[. D’autre part, G(t) = ftl;(—l)ds =ty —t et G(t) € |-2\/ug, +oo[ pour tout
t € |—00,2\/ug + to[, et on a la solution locale

t—to

mo—(ﬁi— 2){ € | =00, 21/ + tol.

La fonction u(t) = (\/ug — %)2, t € R, est bien définie pour t > 2\/ug + ty, mais
n’est pas solution car u'(t) > 0 pour tout t > 2\/ug + to. Toutefois il existe des solutions
globales, mais pas uniques. En effet, les fonctions

o (w/uo—%)Q, t < 2\/ug + to, o (Vu —%)2, t < 2\/ug + to,
u(t) = 2 a(t) =
—(Vuo — 52)7, t > 2y/ug + to, 0, t > 2/ug + to,

sont des solutions globales du méme probléme de Cauchy. On remarque que les deur
fonctions coincident pour t < 2,/ug + to, ce qui est consistent avec le résultat du théoreme
9.10, et que la solution n’est plus unique pourt > 2./ug+to, c.-a-d. une fois que la solution
a touché la valeur critique ue = 0 pour laquelle k(uer) = \/|uer| = 0. Ces deuz solutions
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globales peuvent étre vues comme les membres extrémes de la famille suivante de solutions
globales, la famille étant paramétrée par s €|2./ug + to, +00[ :

(Vo — 50)°, ¢ < 2/ug + to,
0, 2 /ug+tg <t <s,
—(52)?, t>s.

us(t) =

Exercice 9.13. Trouver, par la méthode de séparation des variables, la solution du
probléeme de Cauchy

u'(t) = 3u(t)t/3, teR,
u(to) = ug > 0.

Commenter sur l'unicité de la solution. Iciv — v'/3 est la fonction impaire sur R réciproque

de la fonction v — v3.

9.2.2 Equations avec fonction f (t,u) homogéne de degré zéro

Soit f: R* x R — R continue telle que f(at,ay) = f(t,y), Ya € R*. On appelle une
telle fonction homogéne de degré zéro. Si on prend, en particulier, a = %, t # 0, on voit
que f dépend uniquement du rapport y/t car f(t,y) = f(1,%). Introduisant la fonction
(%) := f(1,%), le probleme de Cauchy pour ¢y > 0 prend la forme suivante :

{u'(t) = f(tu(t) =6 (“2), te]o,+ool,

u(to) = uo.

On introduit, maintenant, le changement de variable v(t) = @ Alors

sy =20 10 _ 1 (1) 1ut)

‘ 2

t

t t

= L[6((1) — o(0)],
ce qui nous donne une équation a variables séparées en (¢, v).

Le méme raisonnement s’applique aussi si le fonction f est définie par exemple seulement
sur R* x R* ou R% x R% et ug # 0.

Exemple 9.14. Considérons la fonction f : R% x R% — R donnée par f(t,y) = fi;f et
le probleme de Cauchy

B ul(t)

u'(t) = P2 u(t) >0, t >0, u(1l) = up > 0.



9.3. EDO SCALAIRES LINEAIRES DU PREMIER ORDRE 131

u(t)

On pose v(t) = =~ et on cherche la solution du probléme transformé
1 (1403 171
") == |—5—~2 —v(t :[} t)>0,t>0 1) = uop.
/(1 t[ 0| = 1 ] 0> 00 ) =w
En intégrant on trouve F(v) = [ w?dw = £ (v — u3), inversible entre RY. et |—ud, +00]

1
uo 3
(dinverse C1), et G(t) = [} lds=Int, t e ]e‘“g/3,+oo[, et donc

o(t) = FTYG{)) = Blnt +ud)/3, t>e /3,
Finalement on obtient la solution locale

u(t) = o(t)t = (3lnt +ud) 3, > e w3,

9.3 EDQO scalaires linéaires du premier ordre

On parle d’équation différentielle linéaire du premier ordre lorsque f(t,y) est une
fonction affine de la variable y. Soit I C R un intervalle ouvert, g,p : I — R deux fonctions
continues et f(t,y) = g(t) — p(t)y. Pour ty € I, on pose le probleme de Cauchy suivant :

{u’(t) +pt)ut) =g(t), tel, (9.9)

u(to) = wo.

L’équation est dite homogéne ou sans second membre si g(t) = 0, Vt € I, et non-homogéne,
inhomogéne ou avec second membre autrement. (Faites attention que la terminologie
“homogene” a déja été utilisée dans la section 9.2.2, mais dans un sens différent !)

La méthode du facteur intégrant. Voici une premiere méthode courante de résolution
de probleme de Cauchy (9.9). Notons par P : I — R n’importe quelle primitive fixée de p
(Ia constante d’intégration est fixée librement) : P(t) = [* p(s) ds. On appelle la fonction
e 1 I — R un facteur intégrant. Cette terminologie provient de I’équivalence suivante :

9.9) < (POu(®)) = ePWg(t), teT,
U(to) = Uug.

Il est facile maintenant d’obtenir une formule pour la solution :

t
(9.9) < POy (t) — ePto)yy = / e"Gg(s)ds, tel,
to
t
& u(t) = e POPL)y, 4 efP(t)/ ePGlg(s)ds, tel.
to

Avec le choix de la primitive P(t) = ftto p(s) ds, ceci donne plus simplement

t
u(t) = e POyq + e P® / eP(S)g(s) ds, tel. (9.10)
to
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Ainsi (9.9) admet une unique solution globale.

Passons a une méthode standard, qui consiste a traiter d’abord le probleme homogene
et ensuite le probléme non-homogeéne. Comme nous le verrons, cette seconde méthode
s’appliquera aussi aux EDO du deuxiéme ordre linéaire.

Equation homogene. Il s’agit de trouver la solution générale du probléme homogéne
associé (dans lequel on remplace g par 0) :

u'(t) + p(t)u(t) =0, tel,

sans condition initiale. La méthode du facteur intégrant s’applique et donne la solution
générale
u(t) = Ce PO el

ou C € R est une constante arbitraire et P : I — R est une primitive fixée de p: I — R.
En fait additionner une constante a la primitive P est équivalent a multiplier C' par une
constante positive. Le choix C' = 0 donne la solution “triviale” u = 0 sur I.

Une autre maniere de résoudre le probleme homogene associé est de I’écrire sous forme
d’une EDO & variables séparées :

W (t) = —p(ult), tel,

se souvenir qu'une primitive de 1/v est donnée par In(|v|) et ne pas oublier la solution
triviale u = 0 sur tout 1.

Equation non-homogeéne. Considérons maintenant le cas non-homogene, pour lequel on
a le résultat suivant dont la démonstration est immédiate :

Proposition 9.15 (Principe de superposition de solutions). Soient gi1,92 : I — R
continues et deuzr constantes ay, s € R. Siuyp : I — R est une intégrale de l’équation
u) (t) + p(t)ur(t) = g1(t) et ug : I — R une intégrale de l’équation ub(t) + p(t)uz(t) = g2(t),
alors v = aquy + agus est une intégrale de l’équation v'(t) + p(t)v(t) = a1 g1(t) + agga(t).

En particulier, en prenant go = 0, g1 = g et @1 = a2 = 1, on obtient
Proposition 9.16. Toute solution de ’équation différentielle
u'(t) +pt)u(t) =g(t), tel (9.11)

est de la forme
u(t) = w(t) + Ce F® (9.12)

ot w(-) est une solution particuliere de [’équation non-homogéne (i.e. une solution fixée du
probléme non-homogéne qui ne satisfait pas forcément la condition w(ty) = up) et Ce P0)
est la solution générale de I’équation homogéne, avec P(-) une primitive quelconque de p
et C' € R une constante arbitraire.

Démonstration. 11 est clair que (9.12) est solution de (9.11) pour tout C' € R. Montrons
que (9.12) est bien 'intégrale générale. Par absurde, supposons qu'il existe une intégrale @
de (9.11) qui n’est pas de la forme (9.12). Alors @ — w est solution de I’équation homogene
et donc il existe C € R telle que @(t) — w(t) = Ce F® ce qui contredit 'hypothése que @
n’est pas de la forme (9.12). O
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Si, apres, on s’intéresse au probléeme de Cauchy, on peut toujours trouver sa solution
(globale) en calculant la constante C' dans (9.12) de telle sorte a avoir u(tp) = o, ce qui
donne C' = eP0) (ug — w(ty)).

Exemple 9.17. Considérons l’équation différentielle linéaire u'(t) = u(t) + 1, ainsi que le
probléme de Cauchy avec condition initiale u(to) = ug. On a
— solution générale de I’équation homogéne : z(t) = Cet ;
— solution particuliére de I’équation non-homogéne : w(t) = —1;
— solution générale : u(t) = w(t) + z(t) = —1 + Ce';
— solution globale (unique) du probléme de Cauchy : u(t) = —1 4 (1 + ug)elt—10),
Expliquons une méthode importante pour trouver une solution particuliere de I’équation

non-homogene : la méthode de variation des constantes. Elle consiste a chercher une solution
particuliere de I’équation non-homogene sous la forme

w(t) = Ct)e P, avec C' : I — R différentiable,

c.-a-d. qu’on prend l'expression de l'intégrale générale de I’équation homogene z(t) =
Ce P et on transforme la constante C' € R en une fonction C' : I — R différentiable. En
remplacant dans I’équation on a

w'(t) = —p(t)w(t) + g(t) = —p()C(t)e "M + g(1),
mais, d’autre part

% (Ct)e=P) = /(1) — C)e"Op(t),

w'(t) =
d’ott C'(t) = g(t)eP’® et donc C(t) = [* g(s)eP®)ds, ot on peut fixer librement la primitive
(c’est-a-dire, on peut fixer librement la constante “d’intégration”). On arrive finalement au
résultat final donnant U'intégrale générale d’'une EDO linéaire

u(t) = Ce( P(to)) +/ —PlDgs, tel,

et la solution du probleme de Cauchy avec condition initiale u(tp) = up est donnée

par la méme formule (9.10) déja obtenue. Comme la primitive a été fixée, qu'une seule

constante C appara1t dans l'intégrale générale. Si par contre on avait écrit par exemple
C(t) = j; g(s)eP’®)ds + D pour un certain to € I, on serait arrivé a

u(t) = Ce— (P(®)=P(to)) + /tg(s)e—(P(t)—P(s))dS 1 De~P®)

to

_ Clef(P(t)fP(to)) + tg(s)ef(P(t)*P(S))dS

to

avec de nouveau une seule constante C’, ot ¢/ = C + e~ ) D,
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Exemple 9.18. Considérons le probléme de Cauchy u'(t) = u(t) + 1, t € R et u(tg) = uo.
On a P(t) = fti) —lds=ty—t et

t
u(t) = uge ™ + [ 1.e""%ds
to

= ype! 0 —el(e7t —e70)

= —1+ (1+ug)e' .

9.3.1 Equation différentielle linéaire a coefficient constant

Considérons I’équation différentielle linéaire a coefficient constant
u'(t) + au(t) =g(t), tel,

avec g : I — R continue et o € R. Dans ce cas, la solution de 1’équation homogene est tout
simplement z(t) = Ce™* et I'intégrale générale prend donc la forme u(t) = w(t) + Ce™*
ou w est une solution particuliere de ’équation non-homogene. Voyons quelques cas
particuliers de fonctions g :

g est un polynoéme de degré n et a # 0: g(t) =37 a;tl.

On cherche w sous la méme forme : w(t) =37 Bt

Exemple 9.19. Considérons I’EDO linéaire u/(t) + au(t) = 1+t¢, t € R,
On cherche une solution particuliére sous la forme w(t) = By + S1t. On a donc

w'(t)+aw(t)= P14+ oo+ fit) =1+t

ce qui implique
pr+afy =1
{aﬂl =1
1

et donc (Bo, /1) = (é(l -2, é) Finalement, lintégrale générale est

1 1 1
u(t)z(l—)—i—?H—Ce_o‘t, teR, CeR.
a a «

g est un polyndme multiplié par une fonction exponentielle : g(t) = (Z?:o a;t! ) %t

Si § # —a alors on cherche w(t) = ( 0 Bjtj)eét. Par exemple, si g(t) = e, on

recherche w sous la forme w(t) = Be®. On a alors

w'(t) = B6e% = —apBedt + %

ce qui implique 8 = 54%1 et donc l'intégrale générale est

1
0+«

u(t) = 4 Ce™, teR, CeR.
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Si § = —a alors on cherche w(t) = t( 0 Bjtj)e‘”. Par exemple, si g(t) = % = e*
(qui est solution du probléme homogene associé), on recherche w sous la forme
w(t) = tFe’ = tBe~. On trouve que w(t) = te~®* est une solution particuliére et
I'intégrale générale est

u(t) = (C+t)e ™, tcR, CeR.

g est un polynéme multiplié par des fonctions trigonométriques-exponentielles :

(Zatj>e sin(wt) (i )e cos(wt), w # 0, § € R.

On cherche w(t) sous la méme forme :
n
w(t) = (Zﬁtj)e sin(wt) (Z A)e cos(wt).
Jj=0 J=0

En particulier, si g(t) = bsin(wt) + ccos(wt) avec b* + ¢2 > 0 et w # 0, on recherche
w sous la forme w(t) = fsin(wt) + v cos(wt), ce qui donne

w'(t) = Bw cos(wt) — ywsin(wt) = —a(Bsin(wt) + v cos(wt)) + bsin(wt) + ¢ cos(wt)
et implique par identification

fw=—ay+c N B = 2+w2(ab+wc)

—yw=—af +b ’y:m( wb + ac)

Donc l'intégrale générale est

()= -
u = —— _—
o? 4 w? o? 4 w?

Observons que b=0= 3 #0,et c=0= v # 0.

(ab4we) sin(wt)+ (—wbtac) cos(wt)+Ce ™, teR, CeR.

9.4 Existence et unicité de solutions

Dans cette section, on va étudier I'existence et unicité de solutions d’un probleme de
Cauchy pour un systéeme d’EDO du premier ordre

{u’(t) =f(t,ut), tel, (9.13)

u(to) = Uup,

ou I C R est un intervalle ouvert contenant {5, £ C R" un ouvert contenant ug et
f: I x E— R” une fonction continue.
Pour cela, on va réécrire (9.13) sous forme intégrale : soit (J,u) une solution locale
(méme globale si J = I). En particulier, u € C*(J, E) et
t
u(t) =ug+ [ f(s,u(s))ds, vt € J. (9.14)

to
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Le réciproque est aussi vrai. Si u € C°(J, E) satisfait I'équation intégrale (9.14), avec
J C I ouvert contenant ¢y, alors u est différentiable sur J et (J,u) est une solution locale
de (9.13). On introduit alors I'application ¢ : C°(J, E) — C°(J,R™) qui & toute fonction
v € C°(J, E) fait correspondre la fonction ¢(v) € C°(J,R™) définie par

o(v)(t) =ug + t f(s,v(s))ds, vt e J. (9.15)

to

La solution de (9.14) est un point fize de 'application ¢, i.e. u = ¢(u). Avant de présenter
les théoremes d’existence et unicité de solutions de (9.13) (resp. (9.14)) on va introduire
la notion abstraite d’espace de Banach et généraliser le théoreme de point fixe dans un
sous-ensemble fermé d’un espaces de Banach. Ceci nous permettra d’appliquer le théoréme
de point fixe & I’application ¢ dans I’espace C°(J,R").

9.4.1 Espace de Banach et complétude de C°(J)

Définition 9.20. Soit (V, | - ||) un espace vectoriel réel normé et {v™)}peny C V' une suite
d’éléments de V. On dit que

— {v®} ey converge vers v € V si limy_yo0 ||v — v®)|| = 0, d.e. si
Ve>0, IN>0: Vk>N, Jo—o®| <e

il est facile de vérifier que, si elle existe, la limite v € V est unique.

— {v®)}pen est une suite de Cauchy si
Ye>0, IN>0: Vkt>N, v -0 <e

On a vu au chapitre 1 que R™ a une structure d’espace vectoriel (réel) normé et que
toute suite de Cauchy est convergente. Cette propriété n’est pas toujours vraie dans un
espace vectoriel normé quelconque.

Définition 9.21 (Espace complet). On dit qu’un espace vectoriel normé (V.|| - ||) est
complet si toute suite de Cauchy de V' converge dans V. Autrement dit, pour toute suite
{v")}en €V de Cauchy, Iv* € V tel que limy_,o0 ||[v* — vF)|| = 0. Un espace vectoriel
normé complet est appelé espace de Banach.

On dit qu’un sous-ensemble K C V est complet si toute suite de Cauchy de K converge
dans K.

Exercice 9.22. Considérons [’espace vectoriel réel C’O([ ,1]) de fonctions réelles conti-
nues sur le compact [—1,1] et Uapplication || - ||1 : C°([~1,1]) — Ry donnée par || f|1 =
[Y | f(@)|dz. Vérifier que ||- ||y est une norme. Lespace (C° ([ L)), |- |l1) est-il complet ?
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Dans un espace de Banach (V|| - ||), les sous-ensembles ouverts sont définis a I’aide
de la norme de la méme maniére que dans R” et les sous-ensembles fermés sont définis
comme les complémentaires des ouverts. Comme dans R™, un sous-ensemble £ C V est
fermé si, et seulement si, toute suite d’éléments de E qui converge dans V a sa limite
dans E. Il en résulte immédiatement le lemme suivant qui caractérise les sous-ensembles
complets d’un espace de Banach.

Lemme 9.23. Soit (V.|| - ||) un espace de Banach et K C V un sous-ensemble de V.
Alors, K est complet si et seulement si K est fermé.

Par cette caractérisation, on a que si K est un sous-ensemble fermé d’un espace de
Banach (V, ||-]]), alors (K, d) est un espace métrique complet, avec distance d(u, v) = [[u—v||
induite par la norme de V.

Le théoréme de point fixe s’applique en fait a tout espace de Banach et méme plus
généralement, a tout espace métrique complet. La preuve est essentiellement la méme que
celle vue dans R".

Théoréme 9.24 (Point fixe de Banach). Soit (V, || - ||) un espace de Banach, K CV un
sous-ensemble fermé non-vide et ¢ : K — K une application contractante, i.e.

BP0l YoweK [|ow) - ow)] < pllv - w].

Alors il existe un unique v, € K tel que ¢(vy) = vy (c’est-a-dire, Uapplication admet un
point fixe, qui est unique).

Pour démontrer les théorémes de la section suivante, on va travailler avec ’espace des
fonctions continues sur un compact, qui a une structure d’espace de Banach s’il est muni
d’une norme appropriée, comme le théoreme suivant le montre.

Théoréme 9.25. Soit Q C R™ compact. L’espace vectoriel CO(Q, R™), muni de la norme

[V][co@) = maxxeq [[V(X)]], est un espace de Banach. (Ici, || - || est n’importe quelle norme
sur R™ ).
Démonstration. Voir cours d’Analyse 1. O

En fait, on travaillera plutot sur des boules fermées de C°(Q, R™) :
Kpu(Q) ={v e CULR™) : [v—ulco <b}, b>0, ueC’Q,R™)

qui sont donc des sous-ensembles complets de C?(€2, R™).

9.4.2 Théorémes d’existence et unicité locale

On consideére d’abord la question de I'existence de solutions du probleme de Cauchy
(9.13). Le théoréme suivant, qu’on ne va pas démontrer dans ce cours, montre que la seule
hypotheése de continuité de f : I x E — R"™ est suffisante pour garantir I’existence d’une
solution locale (mais non pas 'unicité, en générale).
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Théoréme 9.26 (Cauchy-Peano). Soit I C R un intervalle ouvert, E C R™ un ouvert et
f:1xE—R" continue. Alors, pour tout (to,up) € I x E, le probléme de Cauchy (9.13)
admet au moins une solution locale (J,u), avec J C I.

Pour avoir unicité de solutions locales, il faut demander un peu plus de régularité pour
la fonction f. Il s’aveére que la bonne condition est une propriété de Lipschitz locale par
rapport au deuxieme argument :

Définition 9.27. Soit I C R un intervalle ouvert, E C R™ un ouvert et f: I x £ — R"
une fonction continue. On dit que f est localement lipschitzienne par rapport au deuxiéme
argument si, ¥(to,ug) € I x E, il existe a,b > 0 avec [ty — a,tg + a] x B(ug,b) C I x E et
une constante L > 0 tels que

Vt € [to — a,to + a] ¥x,y € B(ug,b) |If(t,x) —f(t,y)|| < L|x —y|,
ot a,b et L dépendent éventuellement de (ty,up).
On remarque, en particulier, que si f : I x E — R", (t,y) — f(t,y), est continue avec

dérivées partielles gg' i ] x FE — R" continues Vi,j = 1,...,n, alors f est localement
J

lipschitzienne par rapport au deuxieéme argument.

Théoréme 9.28 (Cauchy-Lipschitz — version locale). Soit I C R un intervalle ouvert,
E CR" ouvert et f: I x E — R™ un fonction continue et localement lipschitzienne par
rapport au deuxieme argument.

Alors, pour tout (to,ug) € I x E, il existe § > 0 tel que J5 = [to — d,t9 + 6] C I et une
fonction u: Js — E de classe C1 solution du probléme de Cauchy (9.13).

Cette solution est aussi unique au sens suivant (“unicité locale”) : toute autre solution
locale (K, w) du probléme de Cauchy, avec K un intervalle ouvert contant ty et inclus
dans I, vérifie w = u sur K N Js.

Remarques. L’énoncé est formulé pour l'intervalle fermé Js car ceci est plus naturel
pour la preuve. Néanmoins il en découle les mémes conséquences pour son intérieur jg,
par exemple 'unicité locale : toute solution locale (K, w) du probleme de Cauchy vérifie
w =u sur K NJ; (K étant un intervalle ouvert contant ¢y et inclus dans I). Les mémes
conséquences seront aussi valables pour toutes les valeurs de > 0 plus petites.

Il y a deux maniéres, équivalentes ici, de définir le concept de solution u de classe C!
sur U'intervalle compact Js C I. On peut d’'une part demander que (i) u soit continue sur
Js et solution de classe C' sur JD(;, ou d’autre part que (ii) u soit continue sur Jg, solution
de classe C! sur JO(; et u’ admette un prolongement par continuité sur Js. On voit qu’ici (i)
implique (i) car, en supposant (i), w'(t) = £(¢, u(t)) sur Js, u est continue sur Js et donc
f(t,u(t)) est continue sur Js. Clairement (ii) implique (i).

Démonstration. Puisque f est localement lipschitzienne par rapport au deuxieme argument,
il existe a,b, L tels que [to — a,tp + a] X B(ug,b) C I x E et

I£(t,x) — £(t,y)| < Lilx —yll, V€ [to—a,to+al, Vx,y € B(ug,b).
Choisissons

M> N ]
(t,y)e[to—a,t0+a]><B(u0,b)
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Soit maintenant ¢ € |0, al, Js = [to — 0,tp + ] C I et considérons

Ky u(J5) = {v : Js = R" continue : max lv(t) —ug| < b},
€Js

qui est un sous-ensemble fermé (et donc complet) de C%(J5, R™). On va étudier I'application

¢ Kpuy(Js) — CO(Js, R™) définie en (9.15) :
t
op(v)(t) =up+ [ f(s,v(s))ds, vVt € Js.
to
Pour tout v € Kj 4, (Js) et t € J5 on a
t
[£(s, v(s))llds

to

< < Mo,

J6)(6) — ol = | / £(s, v(5))ds

donc, si on prend § < & on a [|¢(v) —wl[co(gy) < b, ie. d(V) € Kpuy(Js), YV € Kpuy(Js)
et ¢ envoie Ky y,(J5) dans lui-méme. De plus, Vv, v € Ky u,(J5) et Vt € Js

(s, va(s)) — £(s, va(s)) | ds

to

<

l6(vi)(t) — d(va)(B)]| = ‘

/t: f(s,vi(s)) — f(s,va(s))ds
: ‘/;L”‘”(S) —va(s) | ds

< _
<Lé max [vi(t) — v2()l

ce qui implique [|¢(v1) — @(va)llco(ss) < Ld|lvi — vl co(s)- Done, pour 6 < min{a, 2. 11,
I'application ¢ : Ky u,(Js5) = Kpuy(Js) est contractante et il existe un unique u € Ky, (J5)
point fixe de ¢. Alors (Js,u) est 'unique solution du probleme de Cauchy (9.13) dans
Kb u, (J5).

On pourrait encore se demander s’il existe d’autres solutions @t ¢ Kj y,(Js) définies
sur Js. Montrons que ceci n’est pas le cas en considérant une solution @ : Js — E du
probléme de Cauchy. Puisque u(ty) = ug et @1y est continue en ty, il existe 0 < 6 <6 tel
que [|[a(t) — uol| < b, Vt € J5 = [to — 0, to + d]. Soit

B =max{d €]0,0] : |[a(t) —uol| <b, Vt € [to — 5, t0 + 9]}

(se convaincre que le maximum existe) et supposons par I’absurde que § < ¢ et donc
B < L. Puisque i satisfait I'équation (t) — up = ft'; f(s,0a(s))ds, on a

t
|a(t) — uol < ‘/t I1£(s, @(s))||ds| < MB < b, V€ [to—B.to+Al.

Mais alors, il existe un é €]0,8 — [ tel que |[a(t) — ug|| < b, Vt € [to — B — b,t0 + B+ ],
ce qui contredit la définition de 5. Ainsi 1 = u sur Jj.

Soit, maintenant, (K, w) une solution locale du probléme de Cauchy et JC KNJsun
intervalle fermé contenant ¢y dans son intérieur. Le méme raisonnement que celui ci-dessus,
mais appliqué & l'intervalle .J, donne que w(t) = u(t), ¥Vt € J. Comme on obtient ainsi
I’égalité sur tout intervalle fermé J C K N Js contenant ¢y dans son intérieur, on a prouvé
I’égalité sur K N Js.

O
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Exemple 9.29. Considérons [’edo
u'(t) =u?(t), teR.

Puisque f(t,y) =y*>: R x R — R est localement lipschitzienne par rapport au deuxiéme
argument, le probléme de Cauchy avec condition initiale u(ty) = ug admet, pour tout
(to,uo) € R2, une solution locale, localement unique.

Exemple 9.30. Considérons l’edo
u'(t) = —\/|ut)], teR.

La fonction f(t,y) = /]y] : R x R = R est continue sur R? mais pas localement lipschit-
zienne par rapport au deuziéme argument. Par contre, si f est restreinte ¢ R x (R\ {0}),
f est localement lipschitzienne par rapport au deuzriéme argument.

On conclut du théoréme 9.28 appliqué a R x (R \ {0}) que le probléme de Cauchy
avec condition initiale u(to) = ug admet une solution locale, localement unique, pour tout
(to,up) € R x (R\ {0}). Si la condition initiale est u(ty) = 0, on aura Uexistence de
solutions locales grice au théoréme de Cauchy-Peano 9.26 appliqué a R x R mais on ne
peut pas garantir 'unicité locale. En fait, en raisonnant comme dans l'exemple 9.12, on
voit qu’aucune solution locale n’est localement unique.

Le théoréme 9.28 donne existence et unicité d’une solution u : J — E du probléme
de Cauchy sur un intervalle fermé J = [tg — d,tg + d] C I, pourvu que la fonction f
soit localement lipschitzienne par rapport au deuxiéme argument autour de la condition
initiale (g, up). Cette solution est toujours prolongeable. En effet, prenons ¢; =ty + J et
u; = u(to + ). Puisque (t1,u;) € I x E et f est localement lipschitzienne par rapport au
deuxiéme argument sur I X F, on peut appliquer encore le théoréme 9.28, cette fois-ci au
probléeme de Cauchy avec condition initiale u(¢;) = u;. On aura alors I'existence d’une
solution @ : J — E définie sur un intervalle fermé J = [t; — 8,¢; + 0] C I avec § > 0. Soit
la fonction @ : J U [t1,t1 + 8] = [to — d,tg + 6 + 0] — E définie par a(t) = u(t) sit € J
et (t) = a(t) sit €]ty, t; + 0]. Alors @t est solution (vérification directe dans Iesprit du
Lemme 9.6). La solution @ est un « prolongement a droite » de la solution u. De méme,
on peut prolonger u a gauche, et a la fois a droite et a gauche.

Lemme 9.31. Sous les mémes hypothéses du théoreme 9.28, soient des intervalles Ji, Jo C
I contenant ty dans leurs intérieurs et soient des fonctions continues uy : J;1 — E et
uy : Jo — E, solutions du probléme de Cauchy (9.13) sur respectivement Ji et Jy. Alors
ul(t) = ug(t), Yt e JiNJs.

Démonstration. Notons Jy N Jy = J et J = JA, B[ avec —o0 < A < tp < B < +o0. Le
théoréme 9.28 garantit I'existence d'un intervalle fermé Js = [to — 6,10 + 6] C J (avec
d > 0) ou la solution existe et est unique. Sur un tel intervalle on doit avoir nécessairement
u; = uy. Soit alors

a:inf{d €]A,to — 6] : u; = uy sur [d,to+5]} > A
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et
8= sup{ﬁ~ € [to+ 0, B[: u; = ugy sur [ty —(5,3]} < B.

Donc J = Ja, B[ est le plus grand intervalle ouvert inclus dans J contenant ty et ou
u; = uy. On veut montrer que J = J. Supposons par l'absurde que j # B, et donc
B e J \ J. Puisque u; et uy sont continues sur J O J et coincident sur J on a

ui () = tE%l_ w(t) = tggl_ us(t) = up(f) == 2o

et on pourra encore trouver un intervalle J 55 = B — 3, 6+ 5] C J ot la solution du
probléme de Cauchy avec condition initiale (/3,2¢) existe et est unique. Mais cette solution
doit coincider avec u; et us, et donc u; = ug sur J U J 550 Ce qui contredit I’hypothese que
J était le plus grand intervalle ouvert contenant ty ou u; = up. Le meme raisonnement
s’applique & gauche si a # A, donc on conclut que J = J u; = ug sur J et donc sur J

(par continuité de u; et ug sur J). O

Gréce au Lemme précédent, on peut toujours construire une unique solution maximale.

Théoréme 9.32. Sous les hypothése du théoréme 9.28, pour tout (ty,ug) € I X E il existe
une unique solution mazximale (Jpqz, 1) du probléme de Cauchy (9.13) avec Jpar C 1
ouvert contenant tg.

Démonstration. Soit {(Jp,u,)}, 'ensemble des solutions locales du probleme de Cauchy
(9.13), avec J,, C I intervalle ouvert contenant to. Ici chaque solution locale est paramétrée
par n appartenant a un certain ensemble I' en bijection avec ’ensemble des solutions
locales.

On note Jyaz = U,7 Jy et on définit la fonction u : Jy0 — R™ de la fagon suivante :
pour t € Jpae il existe au moins un 7 t.q. t € J,; on définit alors u(t) = u,(t). Cette
définition de u(t) ne dépend pas du choix de 7 car si i’ est aussi tel que ¢t € J,y, par
le lemme 9.31 on a u,(t) = u,y(t). De plus, la fonction u ainsi définie est solution du
probleme de Cauchy et elle est la solution maximale car toute solution locale (J,,u,) est
telle que J,, C Jpae et uy(t) = u(t), vt € Jj,. O

Remarque 9.33. Siu:J — FE est solution du probleme de Cauchy sur un intervalle
compact contenant tog dans son intérieur, on peut toujours prolonger la solution u sur un
ouwvert J, O J comme expliqué juste avant l’énoncé du Lemme 9.31. Comme J, C Jpmaz,
on a aussi J C Jmaz-

Par le théoreme précédent, sous les hypotheses du théoreme 9.28 le probleme de Cauchy
(9.13) a une solution maximale unique. Alors, ou bien Jy,q, = I et la solution est globale,
ou bien J,4, est strictement inclus dans I et on aura seulement une solution maximale
mais non globale. On peut se poser encore la question de savoir que se passe-t-il aux
extrémités de 'intervalle maximale si celui ci est strictement inclus dans I. Le théoreme
suivant répond a cette question.

Théoréme 9.34. Sous les mémes hypothéses du théoréme 9.28, soit (Jmaz, 1) la solution
mazimale du probléme de Cauchy (9.13), définie sur un intervalle ouvert Jpar = o, Bl C I
contenant ty, ot —oo < a < f < +o00. Si B €1 (et donc B est fini), alors
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— pour toute suite {t, tnen dans Jmaz t.q. lim, ooty = B et lim, oo u(t,) =€ € E C
R™ ona & €0F;

— en particulier, si £ = R", alors lim;_,5- [[u(t)|| = +oo0.

On a des conclusions analogues si € 1.

La démonstration de ce théoreme va au dela des objectifs de ce cours.

Une des conséquences du Lemme 9.31 est que deux solutions locales (maximales ou non)
de ’EDO sans spécification d’une condition initiale, soit coincident sur la partie commune
de leurs domaines de définition, soit leurs graphes ne peuvent jamais « se rencontrer ».
Plus précisément : considérons 1’équation différentielle u'(¢) = f(t,u(t)), t € I, on f
satisfait les hypotheses du théoreme 9.28. Soit (J, v) une solution locale du probleme de
Cauchy avec condition initiale v(tg) = vo et (J,¥) une solution locale du probléme de
Cauchy avec condition initiale ¥(#) = ¥¢. Si v et ¥ prennent la méme valeur en un certain
t € JNJ, sous les hypotheses du théoréme 9.28 de Cauchy-Lipschitz local, on doit avoir
nécessairement v(t) = v(t), Vt € J N .J. Voir le Lemme 9.31.

Exemple 9.35. Considérons le probléme de Cauchy suivant

{u’(t) =ut)(1—-u(t), teR (9.16)

u(to) = up.

La fonction f(t,y) = y(1 — y) est localement lipschitzienne par rapport au deuziéme
argument pour tout (t,y) € R x R. Donc le probléme de Cauchy admet une solution
mazimale unique. Clairement, u(t) =0 et u(t) =1 ¥Vt € R sont deux solutions (globales).
Le graphe de toute autre solution mazximale ne peut pas rencontrer les droites u = 0,u = 1.
De plus,

— Siug €10,1[ alors la solution mazimale correspondante satisfait Tm(u) € |0, 1] et est
croissante car f(t,y) > 0 pour 0 <y < 1; par le Théoréme 9.3/, u est définie sur
tout R ;

— Siug € |1,400[ alors Im(u) C |1, +00] et est décroissante car f(t,y) < 0 poury > 1;
par le Théoréme 9.34, u est définie sur un intervalle ouvert contenant [to, +o00|

— Siug € |—00,0[ alors Im(u) C ]—00,0[ et est décroissante car f(t,y) < 0 poury < 0;
par le Théoréme 9.3/, u est définie sur un intervalle ouvert contenant | — 0o, to].

La figure ci dessous montre trois solutions mazimales correspondantes aux trois problémes
de Cauchy avec ug € ]0,1[, ug € |1, +00[, up € |—00,0] et to = 0.
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Uy = —0.25

Le théoréme 9.34 nous garantit que pour ug € ]0,1[ la solution est globale (autrement
elle devrait aller a Uinfini en un temps fini mais ceci impliquerait de franchir une des deux
barriéres u =0 ou u = 1.) On ne peut par arriver a la méme conclusion si uy € |1, +00[
ou uy € |—00,0[. En effet, en faisant les calculs, on voit que la solution est mazimale mais
non globale.

9.4.3 Théoremes d’existence globale

Dans cette section on présente des conditions suffisantes sur la fonction f qui garantissent
I’existence et unicité d’une solution globale. La premiere condition qu’on considere est
une condition de lipschitzianité globale par rapport au deuxiéme argument qui permet de
donner une version globale du théoréeme de Cauchy-Lipschitz local 9.28.

Définition 9.36. Soit I C R un intervalle ouvert et f : I xR™ — R"™ une fonction continue
(attention : £ doit étre définie sur tout I x R™). On dit que £ est globalement lipschitzienne
par rapport au deuxriéme arqument s’il existe une fonction continue £ : I — R4 non
négative telle que

VteIvxy e R [£(t,x) - £(t.y)] < (O)lIx vl

Théoréme 9.37 (Cauchy—Lipschitz — version globale). Soit I C R un intervalle ouvert et
f:IxR" — R" continue et globalement lipschitzienne par rapport au deuxiéeme argument.
Alors, pour tout (tp,up) € I x R™, le probléme de Cauchy (9.13) a une solution globale
unique u € CH(I,R"™).

Démonstration. Puisque f est globalement lipschitzienne par rapport au deuxiéme argu-
memt, elle est aussi localement lipschitzienne par rapport au deuxiéme argument. En effet,
pour tout intervalle compact K C I non vide, on a

Vie K vxy R |E(Lx) - £(Ly)] < Lix -yl

ou L = maxgeck £(s). Par le théoréeme de Cauchy—Lipschitz local 9.28 et le Théoreme 9.32,
il existe une unique solution maximale (J;,42, 1) du probléme de Cauchy. Pour montrer le
théoréme, il suffit donc de vérifier que Jp,qr = 1.
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Raisonnons par I’absurde en supposant que J,q. est strictement inclus dans I, autre-
ment dit, sup Jyar € I ouinf Jyq, € I (ou les deux a la fois). Traitons le cas sup Jyaq € 1,
Pautre cas étant analogue. Pour T := sup Jp,q. (qui est fini puisque dans I), choisissons
1> 0 tel que J := [T — p, T+ p] C I, et soit § € ]0, u] tel que 6 maxye s £(t) < 1.

Posons Jy = [T — 6,T + 6]. Alors, l'application ¢ : C°(Jy, R") — C9(Jo, R") définie
par ¢(v)(t) = u(T — g) + f;fg f(s,v(s))ds, t € Jy, est contractante. En effet, pour tout
vi,ve € C%(Jy,R") on a

/ tfé I£(s. vi(s)) = £(s, va(s)) |ds

ma [6(v1)(0) ~ 6(v2) (0] < max

teJ tedo |JT g
t
< max| | M) —va(s)lds
<3 <maxz(t)> <max”v () — v (t)||>
- 2 teJo teJo ! 2

1
< 5 maxvi(t) = va(b)].

Par le théoréme de point fixe de Banach on a alors une fonction u® C°(Jy,R™) point
fixe de ¢ qui est, en particulier, de classe C'! et solution du probleme de Cauchy sur Jy.
Grace au Lemme 9.31 appliqué aux intervalles J; = Jo = [T — 6, T et & la relation
uO(T — g) =u(T - g), on a ul® = u sur [T'— 6, T[. On obtient une solution locale @ du
probléme de Cauchy de départ définie sur Jp,qp U [T, T + 6] en posant U = u sur Jyqq et
a=u® sur [T, T + §[. Ceci contredit la maximalité de Jyqz- ]

Exemple 9.38. Considérons le probleme de Cauchy

{u'(t) =sin(u(t)), teR.

u(to) = up.

Soit f: R? — R la fonction f(t,y) = sin(y). Puisque |g—£(t,y)] <1, Y(t,y) € R? on a que
f est globalement lipschitzienne par rapport a y avec £(t) =1 et le probléme de Cauchy
admet une unique solution globale, i.e. définie sur tout R.

Exemple 9.39. Soit I C R un intervalle ouvert et g,p € C°(I). Considérons le probléme
de Cauchy

{u’(t) =g(t) —p(t)u(t), tel
u(to) = Uug.

La méthode du facteur intégrant nous a montré que ce probléeme admet une unique solution
globale (définie sur tout I). On peut aussi le voir comme suit. La fonction f(t,y) = g(t) —
p(t)y est globalement lipschitzienne par rapport au deuxiéme argument avec £(t) = |p(t)|,
qui est une fonction continue, et donc le probleme de Cauchy a une solution unique globale
définie sur tout l'intervalle I. Ceci remontre que une edo linéaire scalaire avec fonctions
p, g continues a toujours une solution unique globale satisfaisant une condition initiale
u(to) = ugp.
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La condition de Lipschitz globale demandée par le théoreme 9.37 de Cauchy—Lipschitz
global est assez restrictive. L’exemple 9.35 montre qu’un probléme de Cauchy peut avoir des
solutions globales méme si la fonction f n’est pas globalement lipschitzienne par rapport
au deuxieme argument. On présente ci-apres d’autres théoremes d’existence globale qui
demandent des conditions moins restrictives sur f.

Théoréme 9.40. Soit I C R un intervalle ouvert contenant tg et £ : I x R" — R"
une fonction continue et localement lipschitzienne par rapport au deuxriéme argument.
Supposons de plus qu’il existe £ : I — R continue telle que

y - f(t,y) <) (1+ |ly|?) Vtel, Vy eR" (9.17)
Alors, le probléme a valeur initiale
u'(t) = f(t,u(t)), t € I4 = I N [ty, +oo], u(to) = ug
admet une solution globale unique u € C1(I,,R™). Si, de plus, { est non négative et
[y £t y)l <O +lyl*) vEel, vy eR™, (9-18)
alors le probléme de Cauchy (9.13) admet une solution globale unique sur I.

Démonstration. Par le théoreme de Cauchy—Lipschitz local 9.28 et le Théoreme 9.32, il
existe une solution maximale (Jy,qz, 1) du probléeme de Cauchy. Si Jyaz,+ = JmazN[to, +00]
est strictement contenu dans Iy alors Jyaq + = [to, f[, avec 8 € Iy et lim,_,5- [[u(t)]| =
400 selon le théoréme 9.34. Montrons que ceci ne peut pas arriver. Pour tout ¢t € Jy,q, On
a

= L4
u(t) -u'(t) = 5
Soit h(t) = |Ju(t)|>. Alors h'(t) < 20(t)(1 + h(t)) ce qui implique, pour tout t € [tg, A]

th'(s) B 1+ h(t) ¢
/to Tohs) +h(s)d8 =In <1 —i—h(t0)> <2 \ {(s)ds

(la@®I?) = u() - £t ut) < (A + [a@)]?).

et donc
h(t) < =1 + (1 + h(to)) exp (2 tf(s)ds) .

to
Mais £ € C°([to, B]) est bornée donc ‘ftto E(s)ds‘ < ftﬁ |0(s)|ds < +o0, Vt € [to, 5[, et h(t)

8
£(s)|d
est bornée uniformément sur [tg, 5. Par conséquent, si on note M = /1 + Hll()||26ft0 [e)lds
ona M < +oo et
lu(t)]] < M, Vte [to, ],

ce qui contredit I’hypothese que lim,_,5- |[u(t)|| = +oo.

Dans le cas de la condition bilatérale (9.18) on a aussi

R (t) = 2u(t) - ' (t) = 2u(t) - £(t,u(t)) > —20(t)(1 + |u(t)||*) = —2£(t)(1 + h(t))
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et donc, pour tout t € Jpa.N] — 00, tol,

to B(s) B 1+ h(to) to
 Tohes —|—h(s)d8 =In (1 T h(l) ) > —Q/t {(s)ds

ce qui implique de nouveau h(t) < —1+4 (1+h(tp))exp (2 P K(s)ds). Si JmazN] — 00, to] =
Ja,to] et a € I, alors on doit avoir lim; ,,+ ||u(t)|| = +oo mais, d'un autre coté, on a

lu(®)] < V1+ HuoHQef;O K9)ds 4 oo, Wt € ], to], ce qui est contradictoire. On conclut
alors que Jya: = 1.

Il reste a prouver I'unicité. Soit 'unique solution maximale (Jp,q2, 1) pour le probleme
de Cauchy. Considérons une solution @ : Iy — R” pour le probléme a valeur initiale.
Elle peut se prolonger sur la gauche en une solution 0 :|ty — €, to[Ul; — R™ pour un
certain € > 0. Par unicité de la solution maximale, |ty — €,to[Ul; C e €t @ = u sur
Jto — €, to[UL, et donc forcément que & = u sur .

Considérons une solution globale u : I — R™ pour le probleme de Cauchy. Par unicité
de (Jmaz, ), on a I = Jya, et = u sur [; ainsi u est uniquement déterminée. ]

Remarque 9.41. La condition bilatérale (9.18) du théoréme 9.40 est garantie si par
exemple dk1, ko : I — Ry continues et non négatives telles que

£yl < ka(t) + k@) llyll VEe T, Vy € R™.

En effet,

IN

IV IHIECE I < B @)yl + k()]

S04 1y + ko + Iyl <

ly - £(t,y)|
k1 (t)
2

IN

+ k2<t>) 1+ Iyl

Ceci montre que l’on a des solutions globales du probléme de Cauchy si la norme de f(t,y)
croit au plus linéairement par rapport a la norme de'y.

Exemple 9.42. Considérons le probléeme a valeur initiale

{u’(t) = —u(t)e"®, ¢ >t
u(ty) = up.

La fonction f(t,y) = —ye¥ est localement lipschitzienne par rapport au deuziéme argument,
donc ce probléme admet une solution maximale unique. Toutefois, f n’est pas globalement
lipschitzienne par rapport au deuxiéme argument, donc on n’est pas garanti d priori que
la solution mazimale soit définie sur tout [to, +oco[. Toutefois, yf(t,y) = —y?e¥ < 0,
Yy € R, t € [tg, 00[, donc la solution mazximale est globale.

(Attention : on ne peut pas déduire la méme conclusion si on définit le probléme sur
tout R au lieu de [tg, +00[. On a donc lexistence globale garantie seulement « a droite ».)

Le théoreme prochain donne une autre condition suffisante pour I'existence et unicité
de solutions globales unilatérales.
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Théoréme 9.43. Soit I C R un intervalle ouvert contenant tg et £ : I x R* — R"
une fonction continue et localement lipschitzienne par rapport au deuzriéme argument.
Supposons qu’il existe £ : I — R continue telle que

(E(t,%) — £(t,y)) - (x—y) < LD)x—y]? Vel vxyeR™  (9.19)
Alors, le probléme a valeur initiale
u'(t) = f(t,u(t)), t € I = 1IN [ty, +o0], u(to) = ug
a une solution globale unique u € C1(I1,R"™).

Démonstration. La condition (9.19) est plus forte que la condition (9.17) du théoreme
9.40. En effet, si on prend y = 0 en (9.19) on obtient pour tout x € R"

f(t,x)-x < f£(t,0) - x + £(t)||x]|?
< [I£ (2, 0)[|[|xI| + () 1]

< (IO o) -+ 1l

ol dans la derniere inégalité on a utilisé que [|x| < 3(1 + [|x|?). Donc le résultat suit par
le théoreme 9.40.
O

Remarque 9.44. Si, de plus, £ est non négative et
(E(tx) — £(t.y) - (x—y)| < €O x—y]? Vi€l vxyeRY,  (9.20)

alors le probléme de Cauchy (9.13) admet une solution globale unique sur I. En effet, on
vérifie de la méme maniére que (9.20) est une condition plus forte que (9.18). Comme étre
globalement Lipchitz par rapport au deuziéeme argument implique (9.20), ceci donne une
nouvelle preuve du Théoréme 9.37.

9.5 EDO scalaires linéaires du second ordre

Soit I C R un intervalle ouvert, £ C R? un ouvert et f : I x £ — R une fonction
continue. Une équation différentielle scalaire du second ordre est une équation du type

W (1) = f(tul)d (1), tel

dont I'inconnue est une fonction u : I — R de classe C? telle que (u(t),v'(t)) € E, Vt € 1.
Comme on I’a vu dans 'introduction du chapitre, une telle équation peut toujours étre
réécrite sous forme d’un systeme de deux équations différentielles ordinaires du premier
ordre en introduisant les nouvelles inconnues u1(t) = u(t), uz(t) = v/(t). On a alors

tel.
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Si on note u = (u1, uz) et £(t,y) = (y2, f(t,y1,92)) : I x E — R2, alors le systéme précédent
peut s’écrire sous forme compacte

u'(t) = f(t,u(t)), tel

et peut étre analysé du point de vu théorique utilisant les résultats de la section 9.4. Le
probléme de Cauchy correspondant s’écrit pour un ty € I et ug = (ug,vg) € E :

{u’(t) =f(t,u(t)), tel, — {u"(t) = f(t,u(t),'(t)), tel,

u(to) = uy, u(to) = ug, u'(to) = vo.

On voit donc que, pour une edo du second ordre, on a de fagcon naturelle deux conditions
initiales, une sur la solution u(ty) = up et une sur la dérivée premiére u’'(tg) = vo.

Dans le reste de la section, on restreint notre étude aux équations différentielle scalaires
linéaires du second ordre, pour lesquelles la fonction f(¢,y) est une fonction affine de
y. Soient a,b,g : I — R trois fonctions continues. Une équation différentielle linéaire du
second ordre est une équation de la forme

W’ (t) +a(t)u'(t) + b(t)u(t) = g(t), tel,

ou, sous forme de systéme de deux équations du premier ordre,

u'(t) =f(tu(t), tel, avec f(ty)= (g(t) = b<t§Jy21 - a(ﬂ?ﬂ) '

I est facile de montrer (exercice) que cette fonction f : I x R? — R? est toujours continue et
globalement lipschitzienne par rapport au deuxiéme argument (voir définition 9.36). Donc,
pour tout (tg,up,vp) € I x E, le probleme de Cauchy avec condition initiale u(tg) = uy,
u'(tg) = vo a toujours une solution unique globale.

Pour la construction de I'intégrale générale et de la solution du probleme de Cauchy,
on procede comme dans la section 9.3 en analysant séparément le cas homogene (g = 0) et
le cas non-homogene (g # 0).

9.5.1 Solution générale de 1’équation homogene

Par les considérations précédentes, le probléme de Cauchy associé a I’équation homogene

{uu(t) +a(t)u/(t) +b(t)u(t) =0, tel, (9.21)

’u,(t()) = Uup, u/(t()) = o,

admet une solution unique globale pour toute donnée initiale uy = (ugp, vp). En particulier,
si ug = (0,0), la solution (unique) est identiquement nulle.

Définition 9.45. On dit que deux solutions z1,zs : I — R de I’équation homogeéne

u"(t) + a(t)u' (t) + b(t)u(t) =0, tel. (9.22)
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sont linéairement indépendantes si, pour tout choir des constantes o, 5 € R, implication
sutvante est vraie :

azi(t) + Bz(t) =0, Vt e I = a=p=0.

Inversement, on dit que z1, zo sont linéairement dépendantes s’il existe deux constantes
réelles o, B non simultanément nulles telles que azy(t) + Bz2(t) =0, Vt € I. Dans ce cas,

on peut exprimer une de deuz solutions en fonction de l'autre, i.e. z1(t) = —§22(t) ou
bien z3(t) = —Gz1(t).

Définition 9.46. Soit z1, 2o deuz solutions de l’équation homogéne (9.22). On appelle
wronskien de z1, zo, noté W|z1, 23] la fonction Wz, z9] : I — R définie par

Wen, 2] (t) = det (28 ZE;?) — (A1) - (A0, tel.

Le théoreme suivant montre que deux solutions zj, zo de I’équation homogeéne sont
linéairement indépendantes si et seulement si leur wronskien est non nul pour tout ¢ € I.

Théoreme 9.47. Deuz solutions z1, zo de l’équation homogéne sont linéairement indé-
pendantes si et seulement si pour tout t € I les deux vecteurs z1(t) = (21(t), 21(t)) et
zo(t) = (22(t), 25(t)) de R? sont linéairement indépendants, ce qui équivaut a dire que

W[Zl, Zz](t) 75 0, Viel.

Démonstration.

« = » : Soient z1, z2 : I — R linéairement indépendants. On veut montrer que pour
tout ¢ € I les deux vecteurs z (t), z2(t) € R? sont linairement indépendants. Par I'absurde
supposons qu'il existe tg € I tel que z1(ty), z2(tg) sont linéairement dépendants, c’est-a-dire
Ja, 5 non simultanément nuls tels que az;(ty) + Sz2(ty) = 0, i.e.

azl (t()) + ,BZQ(t()) =0, az’l (to) + ﬁzé(to) =0.

Mais alors, la fonction v(t) = az1(t) + Sz2(t) satisfait le probleme de Cauchy

{v”(t) + a(t)v'(t) + b(t)v(t) =0, tel,
v(to) = 0,0'(to) =0,

dont on connait 'unique solution globale : v(t) = 0, Vt € I. On obtient la contradiction
que azi(t) + Bz2(t) = 0 pour tout ¢ € I.

« < » : Soit z1(t), z2(t) linéairement indépendants pour tout ¢ € I. On veut montrer que
z1, z9 sont linéairement indépendants. Par 'absurde, si z1, 29 sont linéairement dépendants
alors Ja, f non simultanément nuls tels que az1(t) 4 Sz2(t) = 0, Vt € I. Mais ceci implique
azi(t) + B24(t) =0, Vt € I et donc azq(t) + Bza(t) = 0, ce qui est une contradiction. [

L’ensemble S = {z € C*(I) : 2" + a2’ + bz = 0 sur I} est un espace vectoriel : si
21,29 € S et a, B € R, alors az; + Sz2 € S. Dans ce cadre, z1, 29 € S sont linéairement
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indépendants s’il n’existe pas deux constantes réelles «, 5 non simultanément nulles telles
que azi + Bzo = 0 sur I, comme nous ’avons déja mentionné. De plus, pour ty € I fixé,
I'application z +— (z(tg), 2’ (tg)) € R? pour z € S est linéaire. Cette application est aussi
bijective car, pour chaque (ug,vo) € R?, il existe une unique fonction z € S telle que
2(tg) = ug et 2'(ty) = vo, comme nous I’'avons vu. Il en résulte que S et R? sont deux
espaces vectoriels isomorphes, ce qui donne une nouvelle preuve du théoréme précédent. En
particulier ils ont la méme dimension. Ainsi S est de dimension 2 et toute paire 21,20 € S
linéairement indépendante en est une base : S = {C121 + Cazo : C1,C € R}.

Ces considérations permettent de conclure que la solution générale de 1’équation
homogeéne a la forme

u(t) = Crz1(t) + Caza(t), tel, (9.23)

ol z1, z9 sont deux solutions linéairement indépendantes de I’équation homogene et Cy, Cs €
R deux constantes arbitraires. Si on souhaite résoudre le probleme de Cauchy (9.21) il
faudra encore trouver les bonnes valeurs des constantes pour satisfaire la condition initiale
u(to) = uo, u'(to) = vo.

La méthode de variation des constantes, déja présentée dans la section 9.3, permet, a
partir d’une solution de I’équation homogene, d’en construire une deuxiéme linéairement
indépendante. Etant donnée une solution non identiquement nulle z; : I — R de Péquation
homogene, 'idée est d’en chercher une deuxiéme sous la forme z2(t) = C(t)z1(t), ou
C : I — R est une fonction non constante de classe C?. Les calculs sont laissés comme
exercice.

9.5.2 Solution générale de 1I’équation non-homogéne

Considérons maintenant I’équation non-homogene
u’(t) + a(t)u'(t) + b(t)u(t) = g(t), tel.

En utilisant le principe de superposition de solutions (voir section 9.3) la solution
générale de 1’équation non-homogeéne peut s’écrire comme

u(t) =w(t) + Cr21(t) + Caza(t), tel,

ou w est une solution particuliére de 1'équation non-homogene et Cjz1(t) + Caza(t) est la
solution générale de I’équation homogene, avec 21, 29 linéairement indépendantes.

De nouveau, on peut utiliser la méthode de variation des constantes pour construire
une solution particuliére de ’équation non-homogeéne a partir des solutions de I’équation
homogene. Etant donné deux solutions z;, z linéairement indépendantes de 1’équation
homogene, on peut toujours trouver une solution particuliere de I’équation non-homogene

de la forme )

w(t) = Ci(t)z1(t) + Ca(t)za(t) = > Cilt)zi(t)

i=1
ou C1,Cy : I — R sont deux fonctions de classe C? & déterminer. On a

2 2
w = Z(C{zi + C;2)), w” = Z(C{’zi + 202 + C2Y).

i=1 =1
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Donc

2
w” + aw' + bw = Z(Cg'zi + 2072, + Crzl + aCiz; +M+bG{Z7)

=1

LATo)

2
— [ /.
— ;(szz +aCjz; + dt(

2
=Clz1 +Ch2h+a (Z C/ZZ> 7 (Z C’{zi> =g.
i=1

C’est une seule équation pour les deux fonctions inconnues Cq et Cy. On peut donc en
principe imposer une relation supplémentaire entre C7 et Co. L’équation précédente se
simplifie beaucoup si on impose la condition Z?zl C!z; = 0. On obtient alors le systéme
de deux équations différentielles

C{zl + CéZQ =0
Clt +Chy = g

. A - C] S
qui peut étre écrit sous forme matricielle comme [z} Z?] l 1] = lg] ce qui implique

1 Cy
-1
Ci . zZ1 22 0 . 1 Zé —Z9 0
Gy |21 % 9] Wlz, 2] |=21 21 | |9
et donc C] = —WFZQﬂZQ] et C) = W Par intégration on obtient finalement
b —z(s)g(s)
C t - d +/{ 9
MO J W, 2 T
b z(s)9(s)
Co(t) = ds + ko,
240) to Wlz1, 22)(s) ’

avec K1, ko € R et tg € I fixés librement. Par conséquent, on peut choisir comme solution
particuliere

w(t) = t:K(t,s)g(s)ds, K(t,s):zl(s)ﬁf(gl;;l(g))@(s). (9.24)

La fonction K : I x I — R a l'interprétation suivante : pour chaque s € I fixé, la
fonction ¢t — K (t,s) := K4(t) est solution du probléme homogene associé :

K!(t) +a(t)KL(t) + b(t)Ks(t) =0, tel,

sous les conditions
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9.5.3 EDQO linéaires du second ordre a coefficients constants

On s’intéresse ici a des équations de la forme :
u”’(t) + av/(t) + bu(t) = g(t), tel,

ou a,b € R sont des coefficients constants (ne dépendent pas de t).

Equation homogene : v (t) + av'(t) + bu(t) = 0, t € I.
On cherche des solutions exponentielles z(t) = e*. Remplacant dans I’équation on
obtient A\2e* 4+ aleM + be* = 0 qui donne I’équation caractéristique

A 4ar+b=0.
On distingue les trois cas correspondants au signe du discriminant A := a? — 4b de
I’équation caractéristique.

Cas A > 0. On a deux solutions réelles distinctes :

—a+ Va2 —4b N —a—+va?—4b
— M=

A =
! 2 2

On vérifie facilement que z;(t) = e*M? et 29(t) = 2! sont deux solutions linéairement
indépendantes. La solution générale de ’équation homogene est donc

u(t) = CreMt + Cye?!

avec C1,Cy € R constantes arbitraires.
Cas A < 0. On a deux solutions complexes conjuguées :

—a +i1vV4b — a? N —a —iV4b — a?

)\ — =
1 2 ) 2 2 )

ce qui conduit & considérer les fonctions & valeurs complexes eM? et e*??, ¢’est-a-dire,
~ —_a ; ~ _a 4 /Ab—a2
Z1(t) = e 2% et Z(t) = e"2'e™ ™ avec pu = %

solutions réelles, on pose

. Puisque 1'on cherche des

Z1(t) + Za(t)
2
Z1(t) — Za(t)

z9(t) = — = e~ 2 sin(ut)

z1(t) = = e 2! cos(ut)

qui sont effectivement des solutions linéairement indépendantes. La solution générale
de I’équation homogene est donc

u(t) = e~ 2 (C) cos(ut) 4+ Cosin(ut))

avec (', (9 € R constantes arbitraires.
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Cas A = 0. On a ici une seule solution réelle caractérisée par A = —5 ce qui donne la
solution 21 (t) = e~ 2! de I’équation homogene. On cherche une deuxiéme solution sous
la forme zo(t) = C(t)z1(t). On trouve zy(t) = te~2* (vérifiez-le comme exercice) qui
est linéairement indépendante de z1(t). La solution générale de I’équation homogene
est donc

U(t) = (Cl + Cgt)e_gt

avec C1,Cy € R constantes arbitraires.

Equation non-homogéne : v”(t) + au/(t) + bu(t) = g(t), Vt € I.

Pour trouver une solution particuliere de ’équation non-homogene, on peut toujours
utiliser la formule générale (9.24). Toutefois, si la fonction g a une forme particuliere
(polynomiale, exponentielle, etc.) on peut souvent chercher la solution particuliere dans
une famille appropriée de fonctions paramétrées. Voici quelques exemples.

g est un polynéme de degré n : g(t) = >7 a;tl.
Si b # 0, on cherche w sous la méme forme : w(t) = 377 B;t tJ
Sib=0 et a+#0, on cherche w sous la forme : w(t) = tz _o B! (remarquez que
dans ce cas la fonction ¢t — 1 est solution de ’équation homogene associée, mais pas
la fonction ¢+ t).
Si b =0 et a =0, on cherche w sous la forme : w(t) = ¢ 70 B;t! (remarquez
que dans ce cas les fonctions ¢ — 1 et t — ¢ sont solutions de 1’équation homogene
associée). En fait, dans ce cas, on peut résoudre ’équation u”(t) = g(t) directement
par une double intégration.

g est un polynéme multiplié par des fonctions trigonométriques-exponentielles :

n n
g(t) = (Z ajtj)eat sin(wt) + (Z djtj)e‘slt cos(wt), w # 0, § € R.
§=0 5=0
Si la fonction ¢ — €% cos(wt) n’est pas solution du probléeme homogene associé (et
donc ¢ + €% sin(wt) non plus), on cherche w(t) sous la méme forme :

_ (Zﬁjﬁ)e sin(wt) (Zﬁ]ﬁ)e cos(wt).

Si la fonction t — €%

w(t) sous la forme

cos(wt) est solution du probleme homogene associé, on cherche
n 4
w(t) —t(ZBJtJ)e sin(wt) +t(z )e cos(wt).
J=0 =0

Plus explicitement, la fonction t — €% cos(wt) est solution du probléme homogene
associé si et seulement si & la fois § = —a/2, 4b — a? > 0 et w = £/4b — a? /2.



154 CHAPITRE 9. EQUATIONS DIFFERENTIELLES ORDINAIRES

g est un polynéme multiplié par une fonction exponentielle : g(t) = (Z?:o a;t’ ) %,

Si § = 0, la discussion qui suit redonne celle que 'on a déja vu pour g un polyndme.

Si la fonction t — €% n’est pas solution du probléme homogene associé, on cherche

w(t) sous la méme forme :
w(t) = (Z/Bjtj)e&.
5=0

On est dans ce cas exactement lorsque, a la fois, § # A1 et § #£ As.

Si la fonction t — €% est solution du probléme homogene associé, mais pas la fonction
t + te®, on cherche w(t) sous la forme

w(t) = t(iﬁjtﬂ')e‘%.
7=0

On est dans ce cas exactement lorsque a la fois A\j # Ay et 6 € {\1, A2}.
Si les fonction t — €% et t — te sont solutions du probléme homogene associé, on
cherche w(t) sous la forme

w(t) = t2<zn:5jtj)e‘”.
=0

On est dans ce cas exactement lorsque A\ = A9 = 4.
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