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Notations
R+ = {x ∈ R : x ≥ 0}
R∗

+ = {x ∈ R : x > 0}
R = R ∪ {−∞,+∞}
N = {0, 1, 2, . . .}
N∗ = {1, 2, . . .}
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Chapitre 1

L’espace Rn et sa topologie

1.1 Espaces vectoriels normés
On rappelle ici les notions générales d’espace vectoriel, norme, distance et produit

scalaire.

Définition 1.1 (Espace vectoriel réel). Un ensemble V est un espace vectoriel réel si
les opérations de somme et multiplication par un scalaire (réel) sont définies sur V avec
les propriétés suivantes :

1. somme : V × V → V, (x, y) ∈ V × V 7→ z = x+ y ∈ V ,
— ∀x, y ∈ V, x+ y = y + x,
— ∀x, y, z ∈ V, (x+ y) + z = x+ (y + z),
— ∃ élément nul 0 : x+ 0 = x,
— ∀x ∈ V, ∃ élément opposé −x : x+ (−x) = 0,

2. multiplication par un scalaire : R × V → V, (λ, x) ∈ R × V 7→ z = λx ∈ V ,
— ∀λ, µ ∈ R, ∀x ∈ R, λ(µx) = (λµ)x,
— ∀x ∈ V, 1 · x = x,
— ∀λ, µ ∈ R, ∀x ∈ V, (λ+ µ)x = λx+ µx,
— ∀λ ∈ R, ∀x, y ∈ V, λ(x+ y) = λx+ λy.

Définition 1.2 (Norme). Soit V un espace vectoriel réel. Une norme sur V est une
application N : V → R+ qui satisfait les propriétés suivantes :

1. ∀x ∈ V, N(x) ≥ 0, et N(x) = 0 ⇔ x = 0,
2. ∀x ∈ V, λ ∈ R, N(λx) = |λ|N(x),
3. ∀x, y ∈ V, N(x+ y) ≤ N(x) +N(y) (inégalité triangulaire).

On note souvent une norme par ∥ · ∥ (N(x) = ∥x∥).

Un espace vectoriel muni d’une norme est appelé espace vectoriel normé et souvent
noté (V, ∥·∥). On dit que deux normes N1 et N2 sur un espace vectoriel V sont équivalentes
s’ils existent deux constants c, c > 0 telles que cN1(x) ≤ N2(x) ≤ cN1(x) pour tout x ∈ V .
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Définition 1.3 (distance). Soit X un ensemble. Une distance ou métrique sur X est
une application d : X ×X → R+ qui satisfait les propriétés suivantes :

1. ∀x, y ∈ X, d(x, y) ≥ 0, et d(x, y) = 0 ⇔ x = y,
2. ∀x, y ∈ X, d(x, y) = d(y, x),
3. ∀x, y, z ∈ X, d(x, y) ≤ d(x, z) + d(z, y) (inégalité triangulaire).

Un ensemble X muni d’une distance (X, d) est appelé espace métrique. Si (V, ∥ · ∥)
est un espace vectoriel normé, alors l’application

d : V × V → R, d(x, y) = ∥x− y∥, ∀x, y ∈ V,

est une distance (vérifiez-le) appelée la distance induite par la norme ∥·∥. Donc (V, d(x, y) =
∥x− y∥) est un espace métrique.

Exercice 1.4. Soit V un espace vectoriel, d(·, ·) : V × V → R+ une distance sur V et
h : [0,∞) → R+ une fonction différentiable telle que h(0) = 0, h′(x) > 0 pour x > 0 et
h′(x) décroissante sur [0,∞). Montrer que d̃ = h ◦ d est aussi une distance sur V . Vérifier
que les hypothèses sont satisfaites par la fonction h(x) = x/(1 + x), mais que la distance
d̃ = h ◦ d n’est pas induite par une norme lorsque V ̸= {0}, même si ceci est vrai pour d.

Définition 1.5 (Produit scalaire). Un produit scalaire sur un espace vectoriel réel V
est une application b : V × V → R qui satisfait les propriétés suivantes :

1. (symétrie) ∀x, y ∈ V, b(x, y) = b(y, x),
2. (bi-linéarité) ∀x, y ∈ V, ∀α, β ∈ R, b(αx+ βy, z) = αb(x, z) + βb(y, z),
3. (positivité) ∀x ∈ V, b(x, x) ≥ 0, et b(x, x) = 0 ⇔ x = 0.

Un produit scalaire satisfait l’importante inégalité suivante :

Lemme 1.6 (Inégalité de Cauchy–Schwarz). Soit V un espace vectoriel réel et
b : V × V → R un produit scalaire sur V . Alors

∀x, y ∈ V, |b(x, y)| ≤ b(x, x)
1
2 b(y, y)

1
2 .

Démonstration. ∀α ∈ R, ∀x, y ∈ V

0 ≤ b(αx+ y, αx+ y) = α2b(x, x) + 2αb(x, y) + b(y, y) = p2(α)

où p2(α) est un polynôme de degré 2 en α. Par la positivité de b, on obtient la condition
suivante pour le discriminant : ∆ ≤ 0 ce qui implique b2(x, y) − b(x, x)b(y, y) ≤ 0, d’où la
thèse.

Grâce à cette propriété, un espace vectoriel réel muni d’un produit scalaire est toujours
un espace normé.

Théorème 1.7. Soit b : V × V → R un produit scalaire sur un espace vectoriel réel V .
Alors ∥x∥b = b(x, x) 1

2 : V → R+ est une norme et (V, ∥ · ∥b) un espace vectoriel normé.
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Démonstration. Il faut vérifier que ∥ · ∥b satisfait toutes les propriétés d’une norme selon
la Définition 1.2. Les propriétés 1. et 2. suivent directement de la positivité du produit
scalaire (propriété 3. de 1.5) et de sa bi-linéarité (propriété 2. de 1.5).

Quant à l’inégalité triangulaire (propriété 3.) elle est une conséquence de l’inégalité de
Cauchy–Schwarz :

∥x+ y∥2
b = b(x+ y, x+ y) = b(x, x) + 2b(x, y) + b(y, y)

≤ b(x, x) + b(y, y) + 2b(x, x)
1
2 b(y, y)

1
2

= (∥x∥b + ∥y∥b)2

1.2 L’espace Rn

On note Rn =
n fois︷ ︸︸ ︷

R × R × · · · × R l’ensemble des n-uples x = (x1, . . . , xn), avec xi ∈ R,
pour i = 1, . . . , n, muni des opérations de

— somme : pour tout x = (x1, . . . , xn), y = (y1, . . . , yn), x+y = (x1+y1, . . . , xn+yn),
— multiplication par un scalaire : pour tout x = (x1, . . . , xn), λ ∈ R, λx = (λx1, . . . , λxn).

Ainsi, Rn a une structure d’espace vectoriel réel. Sur Rn, on peut introduire plusieurs
normes. Voici les plus communes :

— Norme euclidienne :

∥x∥E =

√√√√
n∑

i=1
x2
i ,

— Norme p :

∥x∥p =
(

n∑

i=1
|xi|p

) 1
p

, p ≥ 1,

— Norme ∞ :
∥x∥∞ = max

1≤j≤n
|xj |.

La norme euclidienne correspond à la norme p avec p = 2, i.e. ∥x∥E = ∥x∥2. On vérifie
(exercice) que toutes les applications ∥ · ∥p : Rn → R+, pour tout p ≥ 1 et p = ∞, sont
des normes. Par contre, ∥x∥p = (∑n

i=1 |xi|p)
1
p avec 0 < p < 1 n’est pas une norme lorsque

n ≥ 2 (elle ne vérifie pas l’inégalité triangulaire).
Toutes les normes ∥ · ∥p, p ≥ 1, sont équivalentes, c’est-à-dire, ∀p, q ≥ 1, il existe

0 < c1(p, q) < c2(p, q) :

c1(p, q)∥x∥p ≤ ∥x∥q ≤ c2(p, q)∥x∥p, ∀x ∈ Rn.

Plus généralement, sur Rn, toutes les normes sont équivalentes, c’est-à-dire, si ∥ · ∥
et ||| · ||| sont deux normes sur Rn, alors ∃ 0 < c1 < c2 tels que.

c1∥x∥ ≤ |||x||| ≤ c2∥x∥ ∀x ∈ Rn.
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La preuve de ce résultat sera proposée plus loin dans le cours.
Seule la norme euclidienne ∥x∥2 = (∑n

i=1 x
2
i )

1
2 parmi toutes les normes ∥ · ∥p, p ≥ 1 est

une norme induite par un produit scalaire, nommément le produit scalaire euclidien :

(x,y) =
n∑

i=1
xiyi = y⊤ · x = y⊤ x.

Dans ces deux dernières expressions, x et y sont des vecteurs colonnes, y⊤ est la transposée
de y et le produit est la multiplication matricielle. En effet, ∥x∥2 = (x,x) 1

2 et l’inégalité
de Cauchy Schwarz sur Rn devient :

|(x,y)| ≤ ∥x∥2∥y∥2.

1.3 Suites dans Rn

Définition 1.8 (Suite convergente). Soit {x(k)}∞
k=0 ⊂ Rn une suite d’éléments de Rn,

x(k) = (x(k)
1 , . . . , x

(k)
n ) ∈ Rn. On dit que {x(k)}k∈N converge s’il existe x ∈ Rn tel que

limk→∞ ∥x − x(k)∥ = 0, c.-à-d. :

∀ϵ > 0, ∃N > 0 : ∀k ≥ N, ∥x − x(k)∥ ≤ ϵ.

Dans ce cas, on note limk→∞ x(k) = x.

Puisque toutes les normes sont équivalentes sur Rn, la convergence de la suite x(k)

ne dépend pas de la norme choisie. De même que la valeur limite x (si elle existe) ne
dépend pas de la norme. En particulier, si on prend la norme ∥ · ∥∞ dans la définition de
limk→∞ x(k) = x, on en tire la propriété suivante.

Lemme 1.9. Une suite {x(k)}∞
k=0 ⊂ Rn converge vers x ∈ Rn si et seulement si

{x(k)
j }∞

k=0 ⊂ R converge vers xj ∈ R pour toute composante j = 1, . . . , n.

Démonstration. Soit limk→∞ x(k) = x, et considérons la norme ∥ · ∥∞ dans la définition
de convergence d’une suite de Rn. Alors,

∀ϵ > 0, ∃N > 0 : ∀k ≥ N, ∥x − x(k)∥∞ = max
j=1,...,n

|xj − x
(k)
j | ≤ ϵ,

ce qui implique que limk→∞ x
(k)
j = xj , ∀j = 1, . . . , n.

Réciproquement, supposons qu’il existe x = (x1, . . . , xn) ∈ Rn tel que limk→∞ x
(k)
j = xj ,

∀j = 1, . . . , n. Alors,

∀ϵ > 0, ∃Nj > 0 : ∀k ≥ Nj , |xj − x
(k)
j | ≤ ϵ.

En prenant N̄ = max{N1, . . . , Nn} on a maxj=1,...,n |xj − x
(k)
j | ≤ ϵ pour tout k ≥ N̄ , ce

qui implique limk→∞ x(k) = x.
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Définition 1.10 (Suite de Cauchy). Une suite {x(k)}k∈N ⊂ Rn est dite de Cauchy si

∀ϵ > 0, ∃N > 0 : ∀k, j ≥ N, ∥x(k) − x(j)∥ ≤ ϵ.

En suivant la même démonstration du lemme 1.9, on peut montrer qu’une suite
{x(k)}k∈N ⊂ Rn est de Cauchy si et seulement si chaque suite {x(k)

j }k∈N ⊂ R, j = 1, . . . , n
est de Cauchy.
Théorème 1.11. Une suite {x(k)}k∈N ⊂ Rn est convergente si et seulement si elle est de
Cauchy.

Démonstration. Ceci est vrai pour n = 1 (voir cours d’Analyse I). En utilisant la norme
∥ · ∥∞ et le lemme 1.9, on a : {x(k)}k∈N converge ⇐⇒ {x(k)

i }k∈N converge pour tout i
⇐⇒ {x(k)

i }k∈N est de Cauchy pour tout i ⇐⇒ {x(k)}k∈N est de Cauchy.

Théorème 1.12 (Bolzano–Weierstrass sur Rn). Soit {x(k)}k∈N ⊂ Rn une suite bornée, c.-
à-d., ∃M ∈]0,+∞[ tel que ∥x(k)∥ ≤ M, ∀k ≥ 0. Alors il existe une sous-suite {x(kj)}j∈N ⊂
{x(k)}k∈N qui est convergente.

Démonstration. On utilise le théorème de Bolzano–Weierstrass sur R : puisque {x(k)}k∈N

est bornée, en particulier {x(k)
1 }k∈N est bornée où x(k) = (x(k)

1 , x
(k)
2 , . . . , x

(k)
n ). Donc on

peut extraire une sous-suite x(kj)
1 qui converge vers x1 ∈ R. Prenons maintenant la suite

y
(j)
2 = x

(kj)
2 . Puisqu’elle est bornée, on peut extraire une sous-suite y(jℓ)

2 qui converge
vers x2 ∈ R. Ainsi limℓ→∞ x

(kjℓ
)

2 = x2 et limℓ→∞ x
(kjℓ

)
1 = x1. En itérant ce raisonnement

n fois, on peut extraire une sous-suite de x(k) dont chaque composante converge vers
(x1, x2, . . . , xn).

Ce qui est important dans la preuve de ce théorème est que l’on fait un nombre fini
d’itérations (n est fini). Si n était ∞ la preuve ne porterait pas à conclusion.

1.4 Topologie de Rn

1.4.1 Concepts de base

On s’intéresse ici à l’étude et classification des sous-ensembles de Rn. On commence
par définir les boules.
Définition 1.13 (Boule de Rn). Pour tout x ∈ Rn et δ > 0, on appelle

— B(x, δ) = {y ∈ Rn : ∥x − y∥ < δ} : la boule ouverte centrée en x et de rayon δ,
— S(x, δ) = ∂B(x, δ) = {y ∈ Rn : ∥x − y∥ = δ} : la sphère centrée en x et de rayon δ,
— B(x, δ) = B(x, δ) ∪ S(x, δ) = {y ∈ Rn : ∥x − y∥ ≤ δ} : la boule fermée centrée en x

et de rayon δ.

La Figure 1.1 montre la forme des boules de R2 selon la norme qu’on choisit. On
travaille par la suite avec la norme euclidienne ∥x∥ = ∥x∥2 mais toutes les définitions ci
après s’appliquent à n’importe quelle norme puisque toutes les normes sont équivalentes
sur Rn.

On considère maintenant un sous-ensemble quelconque E de Rn.
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x

y
‖ · ‖2

x

y
‖ · ‖∞

x

y
‖ · ‖1

Figure 1.1 – Forme des boules de R2 pour des normes différentes

Définition 1.14 (sous-ensembles ouverts, fermés, bornés). Soit E ⊂ Rn. On dit que
— E est ouvert si ∀x ∈ E, ∃δ > 0 tel que B(x, δ) ⊂ E. En particulier E est ouvert

s’il est vide.
— E est fermé si son complémentaire Ec = Rn\E = {x ∈ Rn,x /∈ E} est ouvert.
— E est borné s’il existe M > 0 tel que ∥x∥ ≤ M, ∀x ∈ E.

On vérifie facilement que si un sous-ensemble E est ouvert par rapport a une norme, il
est aussi ouvert par rapport à n’importe quelle autre norme puisque toutes les normes sont
équivalentes sur Rn. La même conclusion est vraie pour les ensembles fermé ou bornés.
L’ensemble des ouverts de Rn est appelé la topologie de Rn (induite par une norme).

Remarque 1.15. On vérifie facilement que B(x, δ) est ouvert et B(x, δ) est fermé. En
effet, ∀z ∈ B(x, δ), B(z, δ − ∥z − x∥) ⊂ B(x, δ), donc B(x, δ) est ouvert. De même,
∀z ∈ Rn\B(x, δ), B(z, ∥z − x∥ − δ) ⊂ Rn\B(x, δ), donc B(x, δ) est fermé.

Étant donné un sous-ensemble E ⊂ Rn, on peut classifier les points x ∈ Rn par rapport
à E de la façon suivante :

Définition 1.16. Soit E ⊂ Rn et x ∈ Rn. On dit que
— x est un point intérieur de E si

∃δ > 0 : B(x, δ) ⊂ E.

L’ensemble des points intérieurs de E est noté E̊ ou int(E) et appelé l’intérieur
de E.

— x est un point frontière si

∀δ > 0, B(x, δ) ∩ E ̸= ∅ et B(x, δ) ∩ Ec ̸= ∅.

L’ensemble des points frontières de E est noté ∂E et appelé la frontière ou le bord
de E.

— x est un point adhérent à E si

∀δ > 0, B(x, δ) ∩ E ̸= ∅.

Un point adhérent est soit un point intérieur, soit un point frontière. L’ensemble des
points adhérents à E est noté E, et appelé l’adhérence ou la fermeture de E, et
coïncide avec E = E ∪ ∂E = E̊ ∪ ∂E.
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— x est un point isolé de E si

∃δ > 0 : B(x, δ) ∩ E = {x}

— x est un point d’accumulation de E si ∀δ > 0, B(x, δ) contient au moins un
point de E autre que x, c.-à-d. B(x, δ) ∩ (E\{x}) ̸= ∅. (Rappel : E\{x} = E si
x ̸∈ E.)
Il s’ensuit que si x est un point d’accumulation de E, alors ∀δ > 0, B(x, δ) contient
une infinité de points de E. Les points d’accumulation de E sont tous les points de
E = E ∪ ∂E qui ne sont pas isolés.

On remarque que pour tout y ∈ Rn et δ > 0, on a B(y, δ) ∩E ̸= ∅ ⇔ B(y, δ) ∩E ̸= ∅.
En effet, l’implication ⇒ est claire car E ⊂ E. Pour montrer l’implication ⇐, soit
z ∈ B(y, δ) ∩ E. Puisque z est point adhérent à E, il existe w ∈ B(z, δ − ∥z − y∥) ∩ E ⊂
B(y, δ) ∩ E. Donc B(y, δ) ∩ E ̸= ∅.

Exercice 1.17. Soit E = {(x, y) ∈ R2 : x2 +y2 > 1}∪{(0, 0)} le sous-ensemble montré en
figure. Déterminer son intérieur E̊, sa frontière ∂E, son complémentaire Ec, son adhérence
E, ainsi que tous ses points isolés et d’accumulation.

x

y

E

Définition 1.18. Soit x ∈ Rn. On dit qu’un ensemble V ⊂ Rn est un voisinage de x s’il
existe δ > 0 tel que B(x, δ) ⊂ V . Autrement dit, tout ensemble V qui a x comme point
intérieur est un voisinage de x.

Quelques remarques sur les ensemble ouverts

— E̊ est ouvert.

Démonstration. En effet, si x ∈ E̊, il existe δ > 0 tel que B(x, δ) ⊂ E. Vérifions
que B(x, δ) ⊂ E̊, ce qui prouvera que E̊ est ouvert. Pour tout z ∈ B(x, δ), on a
B(z, δ − ∥z − x∥) ⊂ B(x, δ) ⊂ E, et donc z ∈ E̊ et B(x, δ) ⊂ E̊.

— E est ouvert si et seulement si E = E̊.
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— Toute réunion quelconque (même infinie, dénombrable ou non) de sous-ensembles
ouverts de Rn est un sous-ensemble ouvert.

Démonstration. Soit E = ⋃
αEα avec Eα ouvert. Pour tout x ∈ E, il existe α : x ∈

Eα. Mais, Eα étant ouvert, ∃δ > 0 : B(x, δ) ⊂ Eα ⊂ E. Donc E est ouvert.

— Toute intersection finie de sous-ensembles ouverts de Rn est un sous-ensemble ouvert.

Démonstration. Soit E = ⋂m
i=1Ei, avec Ei ouvert. Si x ∈ E, alors x ∈ Ei ∀i =

1, . . . ,m et, puisque chaque Ei est ouvert, ∃δi : B(x, δi) ⊂ Ei. Soit δ = min{δ1, ..., δm}
alors B(x, δ) ⊂ B(x, δi) ⊂ Ei, ∀i et donc B(x, δ) ⊂ ⋂m

i=1Ei = E.

— Rn est ouvert.

Quelques remarques sur les ensembles fermés

— Rn\E = int(Rn\E) et Rn\E = Rn\E̊.
— L’adhérence E d’un ensemble E ⊂ Rn est toujours fermé.

Démonstration. La preuve est par “passage au complémentaire” : son complémentaire
Rn\E = int(Rn\E) est en effet ouvert.

— E est fermé si et seulement si E = E. (Preuve : par passage aux complémentaires.)
— Toute intersection quelconque (même infinie, dénombrable ou non) de sous-ensembles

fermés est fermée. (On passe aux complémentaires pour montrer cette propriété et
la suivante.)

— Toute union finie de sous-ensembles fermés est fermée.
— ∅ et Rn sont fermés.

Une caractérisation importante des ensembles fermés est la suivante.

Lemme 1.19. Un ensemble E ⊂ Rn non vide est fermé si et seulement si toute suite
{x(k)}k∈N ⊂ E convergente, converge vers un élément de E.

Démonstration. Soit E fermé et {x(k)}k∈N ⊂ E une suite convergente vers x ∈ Rn. Alors
x adhère à E et, puisque E est fermé, x ∈ E.

Réciproquement, supposons que E n’est pas fermé, autrement dit, que Rn\E n’est pas
ouvert. Il existe donc x ∈ Rn\E tel que ∀δ > 0 B(x, δ) ̸⊂ (Rn\E). En choisissant δ = 1/k
avec k ∈ N∗, on obtient x(k) ∈ B(x, 1/k) ∩ E. La suite {x(k)}k∈N∗ dans E converge alors
vers x ̸∈ E.

On montre de même que x ∈ E ssi il existe une suite {x(k)}k∈N ⊂ E qui converge
vers x.
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1.4.2 Ensembles compacts

On peut donner plusieurs définitions équivalentes d’un ensemble compact en Rn. On
présente ici la définition la plus “facile”, mais non pas celle qui caractérise le mieux la
notion de compacité.

Définition 1.20 (Compacité). Un ensemble E ⊂ Rn est compact s’il est à la fois borné
et fermé. L’ensemble vide sera considéré comme compact.

Les deux autres caractérisations (équivalentes en Rn) sont montrées dans les théorèmes
suivants.

Théorème 1.21 (Caractérisation de la compacité par sous-suites convergentes). Un
sous-ensemble non vide E ⊂ Rn est compact (fermé et borné) si et seulement si de toute
suite d’éléments de E on peut extraire une sous-suite qui converge vers un élément de E.

Démonstration.

1. Soit E compact (fermé et borné). Par le théorème de Bolzano–Weierstrass, de toute suite
{x(k)}k∈N ⊂ E bornée (car E est borné), on peut extraire une sous-suite {x(kj)}j∈N ⊂ E
convergente telle que limj→∞ x(kj) = x ∈ Rn. Puisque E est fermé, x ∈ E.

2. Supposons que E n’est pas compact, autrement dit, qu’il n’est pas fermé ou qu’il n’est
pas borné (ou ni l’un ni l’autre). Si E n’est pas fermé, il existe x ∈ Rn\E et une
suite {y(k)}k∈N ⊂ E telle que limk→∞ y(k) = x. Une telle suite n’a aucune sous-suite
qui converge vers un élément de E (car x ̸∈ E). Si E n’est pas borné, il existe une
suite {x(k)}k∈N ⊂ E telle que ∥x(k)∥ > k pour tout k ∈ N. Toute sous-suite {x(kj)}j∈N
satisfait ∥x(kj)∥ > kj ≥ j et {x(kj)}j∈N ne converge pas.

Théorème 1.22 (de Heine-Borel-Lebesgue – Caractérisation de la compacité par recou-
vrements finis). Un sous-ensemble non vide E ⊂ Rn est compact (fermé et borné) si et
seulement si de toute famille de sous-ensembles ouverts de Rn constituant un recouvrement
de E, c.-à-d. E ⊂ ⋃

α Uα, avec Uα ouvert, on peut extraire une famille finie qui est encore
un recouvrement de E.

On dit qu’un ensemble E satisfait la propriété de Heine–Borel si de toute famille de
sous-ensembles ouverts de Rn constituant un recouvrement de E on peut extraire une
famille finie qui est encore un recouvrement de E. Le théorème précédent affirme donc que
un ensemble E est compact si et seulement si il satisfait la propriété de Heine–Borel. On
montre deux exemples d’application de la propriété de Heine–Borel pour montrer qu’un
ensemble n’est pas compact.

Exemple 1.23. R2 n’est pas compact. En fait, on peut écrire R2 = ⋃
k∈N∗ B(0, k) mais

de ce recouvrement, on ne peut pas extraire de sous-recouvrement fini.

Exemple 1.24. E = B(0, 1)\{0} n’est pas compact. En fait, on peut écrire E ⊂
⋃
k∈N∗

(
B(0, 1

k )
)c

qui est un recouvrement de E mais duquel on ne peut pas extraire
un sous-recouvrement fini.
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Quelques remarques sur les ensembles compacts

— La caractérisation du théorème 1.21, qui peut être prise comme définition alternative
de compacité, dit qu’un ensemble E est compact si et seulement si toute suite
{x(k)}k∈N de E admet une sous-suite qui converge vers un élément de E, c’est-à-dire
qu’il existe (au moins) un point x ∈ E (point d’accumulation de la suite) tel que,
pour toute boule B(x, δ), δ > 0, l’ensemble d’indices {k ∈ N : x(k) ∈ B(x, δ)} est
infini. Donc E est suffisamment contraignant (compact) pour que toute suite de E
s’accumule quelque part dans E.

— La caractérisation du théorème 1.22 est la définition la plus générale de compacité,
mais aussi la plus abstraite. Elle exprime le fait qu’on puisse décrire un ensemble
compact par un nombre fini de termes et est à la base de toute étape d’approximation.
Soit E ⊂ Rn un sous-ensemble quelconque. Clairement, pour tout ε > 0, ⋃x∈E B(x, ε)
est un recouvrement de E. Si E est compact, on peut extraire un sous-recouvrement
fini, c.-à-d. il existe s = s(ε) ∈ N∗ et {x(1), . . . ,x(s)} ∈ E tels que E ⊂ ⋃s

i=1B(x(i), ε).
Donc, E est bien approché par l’ensemble fini Ê = {x(1), . . . ,x(s)} au sens que pour
tout x ∈ E, dist(x, Ê) = inf i=1,...,s ∥x − x(i)∥ < ε. Le nombre s = s(ε) est appelé
nombre de recouvrement de E et est un indicateur de la difficulté d’approcher E par
un ensemble fini.

1.4.3 Ensembles connexes et connexes par arcs

Intuitivement, un ensemble E ⊂ Rn est connexe s’il est fait “d’un seul morceau”. Plus
rigoureusement, on dit qu’un ensemble E ouvert est connexe si on ne peut pas le séparer
en deux parties ouvertes non vides et disjointes. La définition générale pour un ensemble
quelconque est la suivante :

Définition 1.25 (Connexité). Soit E ⊂ Rn. On dit que E est connexe s’il n’existe pas
deux ouverts A,B ⊂ Rn disjoints (A∩B = ∅) tels que A∩E ≠ ∅, B∩E ̸= ∅ et E ⊂ A∪B.

En particulier ∅ est connexe. Les ensembles connexes de R sont les intervalles, par
exemple ∅, R, [0, 1], ]0, 1[, [0, 1[, ] − ∞, 0[ ,[0,∞[, etc. Une notion un peu plus forte de
connexité est celle de connexité par arcs.

Définition 1.26. Soit E ⊂ Rn un ensemble non vide. On appelle chemin de E une
application γ : [0, 1] → E, t 7→ γ(t) = (γ1(t), ..., γn(t)) ∈ E, dont les fonctions γi : [0, 1] →
R sont continues.

Définition 1.27 (Connexité par arcs). Un ensemble non vide E ⊂ Rn est connexe par
arcs si pour tout x,y ∈ E, il existe un chemin γ : [0, 1] → E tel que γ(0) = x,γ(1) = y
(et γ(t) ∈ E,∀t ∈ [0, 1]). Nous considérerons ∅ comme connexe par arcs.

On peut montrer que tout ensemble E ⊂ Rn connexe par arcs est aussi connexe. Le
réciproque n’est toutefois pas vraie. On verra dans le chapitre suivant que les propriétés
de compacité, connexité et connexité par arcs sont des propriétés topologiques, préservées
par les applications continues. Autrement dit, si E ⊂ Rn est un ensemble compact (resp.
connexe ou connexe par arcs) et f : Rn → Rm une fonction continue, alors f(E) ⊂ Rm est
compact (resp. connexe ou connexe par arcs).
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Figure 1.2 – Gauche : ensemble connexe par arcs. Droite : ensemble non connexe



18 CHAPITRE 1. L’ESPACE Rn ET SA TOPOLOGIE



Chapitre 2

Fonctions de plusieurs variables
réelles ; limites et continuité

Soit E ⊂ Rn un ensemble non vide. On appelle fonction sur E à valeurs réelles une
application f : E → R. C’est à dire, ∀x = (x1, . . . , xn) ∈ E, f(x) = f(x1, . . . , xn) ∈ R est
l’image de x par f . La fonction f est donc une fonction de n variables réelles. On note :

— E ou D(f) le domaine de f ;
— Im(f) = {f(x) ∈ R : x ∈ E} l’image de f (notée aussi f(E)) ;
— G(f) = {(x, f(x)) ∈ Rn+1 : x ∈ E} le graphe de f.

Une fonction de 2 variables réelles à valeurs réelles, (x, y) 7→ f(x, y) ∈ R, peut être
visualisée par son graphe (surface de R3), ou par ces lignes de niveau Nf (c) = {(x, y) ∈
R2 : f(x, y) = c}. La figure 2.1 montre le graphe et les lignes de niveau de la fonction
f(x, y) = e−x2−y2

, (x, y) ∈ [−1, 1]2.

2.1 Notions de limite

Définition 2.1 (limite). Soit f : E → R et x0 ∈ Rn un point d’accumulation de E. On
dit que limx→x0 f(x) existe et est égale à l ∈ R si

∀ϵ > 0 ∃δ > 0 : ∀x ∈ E
(

0 < ∥x − x0∥ ≤ δ ⇒ |f(x) − l| ≤ ϵ
)
.

On écrit alors limx→x0 f(x) = l

La propriété limx→x0 f(x) = l ne dépend pas du choix de la norme ∥ · ∥ sur Rn car les
normes sur Rn sont deux à deux équivalentes. On note que dans la définition de limite
ci dessus, on exclut le point x0 de l’ensemble {x ∈ E, 0 < ∥x − x0∥ ≤ δ}. Cette limite
est parfois appelée limite épointée et notée aussi lim

x→x0
̸=

f(x) ou lim
x→x0
x̸=x0

f(x). Dans ces notes

on entendra toujours par limx→x0 f(x) la limite épointée. Le fait que x0 ∈ E ou x0 ̸∈ E
n’intervient pas dans cette définition.

Le théorème suivant donne une caractérisation équivalente de limite par les suites.

19
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Figure 2.1 – Graphe (gauche) et lignes de niveau (droite) de la fonction f(x, y) =

e−x2−y2
, (x, y) ∈ [−1, 1]2.

Théorème 2.2. Soit f : E → R et x0 ∈ Rn un point d’accumulation de E. Alors f admet
pour limite l lorsque x tend vers x0 si et seulement si, pour toute suite {x(k)}k∈N ⊂ E\{x0}
telle que limk→∞ x(k) = x0, on a limk→∞ f(x(k)) = l. De plus la limite l est unique (si
elle existe).

Démonstration. Identique au cas d’une fonction f : R → R en remplaçant la boule 1D
]x0 − δ, x0 + δ[ par la boule de Rn, B(x0, δ). Voici la démonstration complète.

1. Supposons que f admet pour limite l lorsque x tend vers x0 et donc, pour tout ϵ > 0,
il existe δ > 0 tel que, pour tout x ∈ E vérifiant 0 < ∥x − x0∥ ≤ δ, on a |f(x) − l| ≤ ϵ.
Soit, maintenant, {x(k)}k∈N ⊂ E \ {x0} une suite telle que limk→∞ x(k) = x0. Alors il
existe N ∈ N tel que ∥x(k) − x0∥ ≤ δ pour tout k ≥ N et donc |f(x(k)) − l| ≤ ϵ, ce qui
montre que limk→∞ f(x(k)) = l.

2. Supposons que limk→∞ f(x(k)) = l pour toute suite {x(k)}k∈N qui converge vers x0.
En raisonnant par l’absurde, supposons que f n’admet pas pour limite l lorsque x tend
vers x0. Alors il existe ϵ > 0 tel que pour tout δ > 0 on a l’existence de x0 ≠ x ∈ E,
∥x −x0∥ ≤ δ (puisque x0 est un point d’accumulation de E) tel que |f(x)− l| > ϵ. Prenons
δ = 1

k , k ∈ N∗. Alors il existe une suite {x(k)}k∈N∗ telle que ∥x(k) − x0∥ ≤ 1
k (et donc

limk→∞ x(k) = x0) et |f(x(k)) − l| > ϵ, ce qui est contradictoire.

Bien que la définition de limite soit la même pour des fonctions d’une seule ou de
plusieurs variables réelles, le calcul des limites pour des fonctions de plusieurs variables
réelles est bien plus compliqué. Prenons la caractérisation de limite par les suites :

lim
x→x0

f(x) = l ⇐⇒
∀{x(k)}k∈N ⊂ E\{x0}, lim

k→∞
x(k) = x0

on a lim
k→∞

f(x(k)) = l

Pour affirmer que limx→x0 f(x) = l existe, il faut s’assurer que f(x(k)) k→∞−−−→ l pour
n’importe quelle suite s’approchant de x0.
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x0

Figure 2.2 – Exemples de chemins possibles qu’on peut suivre pour atteindre x0.

Exemple 2.3. Considérons la fonction f : E = R2 \ {(0, 0)} → R, f(x, y) = x√
x2+y2

et
x0 = (0, 0), qui est un point d’accumulation de E. Est-ce que limx→x0 f(x) existe ?

Prenons la suite

x(k) = (1
k
, 0) k ∈ N∗ x(k) k→∞−−−→ (0, 0).

On a que

f(x(k)) =
1
k√

1
k2

= 1 ∀k ⇒ lim
k→∞

f(x(k)) = 1.

Prenons maintenant la suite

y(k) = (0, 1
k

) k ∈ N∗ y(k) k→∞−−−→ (0, 0).

On a que
f(y(k)) = 0 ∀k ⇒ lim

k→∞
f(y(k)) = 0.

On a donc trouvé deux suites différentes {( 1
k , 0)}k∈N∗ et {(0, 1

k )}k∈N∗ qui donnent des
limites différentes. On conclut donc que limx→x0 f(x) n’existe pas.

Exemple 2.4. Considérons la fonction f : E = R2 \ {(0, 0)} → R, f(x, y) = xy2

x2+y4 , et
x0 = (0, 0), qui est un point d’accumulation de E. Est-ce que limx→x0 f(x) existe ?

Prenons la suite x(k) = (αk ,
β
k ), k ≥ 1, avec α, β ∈ R non nuls en même temps. On a

que

f(x(k)) =
αβ2

k3

α2

k2 + β4

k4

= αβ2k

α2k2 + β2
k→∞−−−→ 0, ∀(α, β) ̸= (0, 0).

Donc si on se rapproche de x0 par un chemin “droit” la limite est 0. Toutefois, si on prend
la suite x(k) = ( 1

k2 ,
1
k ) k→∞−−−→ (0, 0), on a que

f(x(k)) =
1
k4

1
k4 + 1

k4
= 1

2 ∀k ≥ 1 =⇒ lim
k→∞

f(x(k)) = 1
2 .

Donc limx→x0 f(x) n’existe pas !
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2.1.1 Propriétés de l’opération de limite

L’opération de limite limx→x0 f(x) pour des fonctions f : E ⊂ Rn → R de plusieurs
variables réelles a les mêmes propriétés que pour des fonctions f : R → R d’une seule
variable réelle.

Théorème 2.5. Soit E ⊂ Rn, x0 un point d’accumulation de E et f, g : E → R tels que
limx→x0 f(x) = l1 et limx→x0 g(x) = l2. Alors

— ∀α, β ∈ R, limx→x0(αf(x) + βg(x)) = αl1 + βl2

— limx→x0 f(x)g(x) = l1l2

— Si l2 ̸= 0, limx→x0
f(x)
g(x) = l1

l2

Comme pour les fonctions f : R → R d’une seule variable réelle, on a un critère de
comparaison qui peut être très utile pour établir l’existence d’une limite.

Théorème 2.6 (des deux gendarmes). Soient f, g, h : E ⊂ Rn → R, x0 un point
d’accumulation de E et limx→x0 h(x) = limx→x0 g(x) = l. S’il existe α > 0 tel que

h(x) ≤ f(x) ≤ g(x) ∀x ∈ E, 0 < ∥x − x0∥ ≤ α

alors limx→x0 f(x) = l.

Remarque 2.7. Dans le théorème des deux gendarmes, on utilise souvent des fonctions h
et g qui dépendent uniquement de la distance ∥x − x0∥. Soit par exemple g : E → R avec
E = Rn ou E = Rn\{x0}, et supposons que

∀x ∈ E\{x0} g(x) = g̃(∥x − x0∥),

où g̃ :]0,∞[→ R. Alors limx→x0 g(x) = l si et seulement si limr→0+ g̃(r) = l. En effet

∀ϵ > 0 ∃δ > 0 : ∀x ∈ B(x0, δ)\{x0} |g(x) − l| = |g̃(∥x − x0∥) − l| ≤ ϵ

si et seulement si
∀ϵ > 0 ∃δ > 0 : ∀r ∈]0, δ] |g̃(r) − l| ≤ ϵ.

Exemple 2.8. Soit f : E = R2 \ {(1, 0)} → R, f(x, y) = y ln((x− 1)2 + y2). Calculer si
elle existe lim(x,y)→(1,0) f(x, y).

Prenons la suite x(k) = (1, 1
k ) Alors limk→∞ f(x(k)) = limk→∞ 1

k ln 1
k2 = 0. Donc si la

limite existe elle doit être égale à l = 0. On a de plus

0 ≤ |f(x, y)| = |y| | ln((x− 1)2 + y2)|

≤
√

(x− 1)2 + y2 | ln((x− 1)2 + y2)|.

Notons ρ =
√

(x− 1)2 + y2 = ∥(x, y) − (1, 0)∥. Puisque

lim
(x,y)→(1,0)

√
(x− 1)2 + y2| ln((x− 1)2 + y2)| = lim

ρ→0+
ρ| ln ρ2| = lim

ρ→0+
ρ(− ln ρ2) = 0

(par la remarque appliquée à la norme euclidienne), on conclut par le théorème des deux
gendarmes que lim(x,y)→(1,0) |f(x, y)| = 0 et lim(x,y)→(1,0) f(x, y) = 0.
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Théorème 2.9 (Critère de Cauchy). Soit f : E ⊂ Rn → R et x0 un point d’accumulation
de E. Alors limx→x0 f(x) existe (dans R) si et seulement si

∀ϵ > 0 ∃δ > 0 : ∀x,y ∈ B(x0, δ) ∩ (E\{x0}) |f(x) − f(y)| ≤ ϵ.

Démonstration. Le sens ⇒ est clair. Montrons le sens ⇐. Il existe δ1 > 0 tel que

∀x,y ∈ B(x0, δ1) ∩ (E\{x0}) |f(x) − f(y)| ≤ 1.

Pour δ ∈]0, δ1], soit les nombres réels

α(δ) = inf{f(x) : x ∈ B(x0, δ)∩ (E\{x0})}, β(δ) = sup{f(x) : x ∈ B(x0, δ)∩ (E\{x0})}

(deux fonctions monotones en δ). Il en résulte que

∀ϵ > 0 ∃δ ∈]0, δ1] 0 ≤ β(δ) − α(δ) ≤ ϵ

et donc, comme β − α est croissante en δ, limr→0+(β(r) − α(r)) = 0. Posons ℓ =
limr→0+ β(r) = limr→0+ α(r). Comme

∀x ∈ B(x0, δ1) ∩ (E\{x0}) α(∥x − x0∥) ≤ f(x) ≤ β(∥x − x0∥),

le théorème des deux gendarmes assure que limx→x0 f(x) = ℓ.

2.1.2 Limite de fonctions à valeurs dans Rm

La définition de limite s’étend sans difficultés aux fonctions à valeurs dans Rm. Soit
f : E ⊂ Rn → Rm, c’est-à-dire,

∀x ∈ E f(x) = f(x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn))

où fi : E → R. Donc une fonction f : E → Rm est une collection de m fonctions fi : E → R.
Lorsque n = m, la norme dans l’espace de départ n’est pas nécessairement la même que
celle dans l’espace d’arrivée.
Dans ce qui suit, nous choisirons la norme euclidienne, sauf mention du
contraire.

Définition 2.10. Soit f : E ⊂ Rn → Rm et x0 un point d’accumulation de E. On dit que
limx→x0 f(x) = l ∈ Rm si

∀ϵ > 0, ∃δ > 0 : ∀x ∈ E, 0 < ∥x − x0∥ ≤ δ ∥f(x) − l∥ ≤ ϵ.

Comme pour les fonctions à valeurs dans R, limx→x0 f(x) = l existe si et seulement
si pour toute suite {x(k)}k∈N ⊂ E \ {x0} telle que x(k) k→∞−−−→ x0 on a limk→∞ f(x(k)) = l
(limite dans Rm). Il est aussi facile de montrer que limx→x0 f(x) = l si et seulement si
toutes les limites limx→x0 fi(x) = li, i = 1, . . . ,m existent.
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2.2 Fonctions continues

Soit E ⊂ Rn un ensemble non vide et f : E → R.

Définition 2.11 (fonction continue en un point). Soit x0 ∈ E.
— Si x0 est un point isolé, on admettra (par définition) que f est continue en x0.
— Si x0 n’est pas isolé (il est donc un point d’accumulation de E) on dit que f est

continue en x0 si limx→x0 f(x) existe et limx→x0 f(x) = f(x0).

De la définition 2.1 de limite d’une fonction ainsi que du théorème 2.2, caractérisant
les limites par les suites, il s’ensuit que, pour tout x0 ∈ E, les trois affirmations suivantes
sont équivalentes :

i. f : E → R est continue en x0 ;

ii. ∀ϵ > 0 ∃δ = δ(ϵ,x0) > 0 : ∀y ∈ E
(
∥y − x0∥ ≤ δ ⇒ |f(y) − f(x0)| ≤ ϵ

)
;

iii. limk→∞ f(x(k)) = f(x0) pour toute suite {x(k)}k∈N ⊂ E qui converge vers x0.

Définition 2.12 (fonction continue sur un ensemble). On dit que f : E → R est continue
sur E si elle est continue en tout point x ∈ E. Dans ce cas, on note f ∈ C0(E) (ou
f ∈ C0(E,R)).

Il en résulte que f est continue en tout x ∈ E si et seulement si

∀ϵ > 0 ∀x ∈ E ∃δ = δ(ϵ,x) > 0 : ∀y ∈ E
(
∥x − y∥ ≤ δ ⇒ |f(x) − f(y)| ≤ ϵ

)
.

Définition 2.13 (fonction uniformément continue). On dit que f : E → R est uniformé-
ment continue sur E si

∀ϵ > 0 ∃δ = δ(ϵ) > 0 : ∀x,y ∈ E
(
∥x − y∥ ≤ δ ⇒ |f(x) − f(y)| ≤ ϵ

)
.

On note que ici δ peut être choisi de manière qui ne dépend pas de x, contrairement à la
caractérisation précédente de continuité sur E.

On remarque qu’une fonction f : E → R uniformément continue sur E est aussi
continue sur E. Le contraire n’est pas nécessairement vrai.

Exemple 2.14. La fonction x 7→ ∥x∥ ∈ R+ est uniformément continue sur Rn (et donc
continue) car, pour tous x,y ∈ Rn,

∣∣∣ ∥x∥ − ∥y∥
∣∣∣ ≤ ∥x − y∥

(inégalité triangulaire inverse, qui découle de l’inégalité triangulaire).

Exemple 2.15. Toute fonction constante x 7→ C ∈ Rm et, pour i ∈ {1, . . . , n} fixé, la
i-ème projection x 7→ xi ∈ R sont des fonctions uniformément continues sur Rn. En effet
|xi − yi| ≤ ∥x − y∥ (norme euclidienne) pour tous x,y ∈ Rn.
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Les définitions de continuité et continuité uniforme s’étendent sans difficultés à des
fonctions f : E ⊂ Rn → Rm.

Définition 2.16. Soit x0 ∈ E.
— Si x0 est un point isolé, on admettra (par définition) que f est continue en x0.
— Si x0 n’est pas isolé, on dit que f est continue en x0 si limx→x0 f(x) existe et

limx→x0 f(x) = f(x0).

Il s’ensuit que, pour tout x0 ∈ E, les quatre affirmations suivantes sont équivalentes :
i. f = (f1, . . . , fm) : E → Rm est continue en x0 ;

ii. ∀ϵ > 0 ∃δ = δ(ϵ,x0) > 0 : ∀y ∈ E
(
∥y − x0∥ ≤ δ ⇒ ∥f(y) − f(x0)∥ ≤ ϵ

)
;

iii. limk→∞ f(x(k)) = f(x0) pour toute suite {x(k)}k∈N ⊂ E qui converge vers x0 ;
iv. pour chaque i ∈ {1, . . . ,m} la fonction fi : E → R est continue en x0.

Il en résulte aussi que f est continue en tout x ∈ E si et seulement si

∀ϵ > 0 ∀x ∈ E ∃δ = δ(ϵ,x) > 0 : ∀y ∈ E
(
∥x − y∥ ≤ δ ⇒ ∥f(x) − f(y)∥ ≤ ϵ

)
.

Dans ce cas, on note f ∈ C0(E,Rm) (ou simplement f ∈ C0(E)).

Définition 2.17. On dira que f : E → Rm est uniformément continue sur E si

∀ϵ > 0 ∃δ = δ(ϵ) > 0 : ∀x,y ∈ E
(
∥x − y∥ ≤ δ ⇒ ∥f(x) − f(y)∥ ≤ ϵ

)
. (2.1)

Remarque 2.18. Soit ∅ ̸= A ⊂ E et la restriction f : A → Rm de f à A (notée aussi
f |A). Si f : E → Rm est continue sur E, alors f : A → Rm est continue sur A.

2.2.1 Propriétés des fonctions continues

Théorème 2.19. Soient f et g deux fonctions de E ⊂ Rn dans R continues en x0 ∈ E.
— ∀α, β ∈ R, αf + βg est continue en x0 ;
— f · g, |f |, |g| sont continues en x0 ;
— si g(x0) ̸= 0, alors f

g est continue en x0.

Théorème 2.20 (Composition de fonctions continues). Soit f : E ⊂ Rn → Rm continue
en x0 ∈ E et g : A ⊂ Rp → Rn continue en y0 ∈ A et telle que x0 = g(y0). Alors
h = f ◦ g : B = {y ∈ A : g(y) ∈ E} → Rm est continue en y0.

Démonstration. Pour toute suite {y(k)}k∈N ⊂ B telle que limk→∞ y(k) = y0, on a
par la continuité de g que g(y(k)) k→∞−−−→ g(y0) = x0 et par la continuité de f en x0,
f(g(y(k))) k→∞−−−→ f(x0). Donc, h(y(k)) k→∞−−−→ f(x0) = f(g(y0)) = h(y0) ce qui montre la
continuité de h en y0.
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2.3 Prolongement de fonctions par continuité

Définition 2.21. Soit f : E ⊂ Rn → Rm et x0 ∈ E\E. Une fonction f̃ : E ∪ {x0} → Rm
est appelée un prolongement par continuité de f en x0 si f̃ = f sur E et f̃ est continue en
x0.

Il est facile de vérifier qu’un prolongement f̃ existe si et seulement si limx→x0 f(x)
existe (dans Rm), auquel cas f̃ est uniquement déterminée par f̃(x) = f(x), ∀x ∈ E et
f̃(x0) = limx→x0 f(x).

Théorème 2.22. Soit E ⊂ Rn un ensemble non vide et f : E → Rm une fonction continue
sur E. Supposons que, pour tout x ∈ Ē \E, la limite limy→x f(y) existe. Alors la fonction
f̃ : Ē → Rm définie par f̃(x) = f(x) si x ∈ E et f̃(x) = limy→x f(y) si x ∈ Ē \ E est
continue et appelée le prolongement de f par continuité sur E.

Démonstration. Soit x ∈ Ē et prouvons la continuité de f̃ en x à l’aide de suites. Soit donc
une suite {x(k)}k∈N ⊂ Ē qui converge vers x. Remplaçons-la par une suite {y(k)}k∈N ⊂ E
qui converge aussi vers x et telle que limk→+∞ ∥f(y(k)) − f̃(x(k))∥ = 0 : si x(k) ∈ E, on
pose y(k) = x(k) et, si x(k) ∈ Ē\E, on choisit y(k) ∈ E tel que

∥y(k) − x(k)∥ ≤ 2−k et ∥f(y(k)) − f̃(x(k))∥ ≤ 2−k.

Par définition de f̃(x), on a limk→+∞ f(y(k)) = f̃(x) ; en effet, si x ∈ E, alors f̃(x) = f(x) et
ceci découle de la continuité de f en x et, si x ∈ Ē\E, ceci découle de la définition de f̃(x).
Donc limk→+∞ f̃(x(k)) = limk→+∞

(
f̃(x(k)) − f(y(k))

)
+ limk→+∞ f(y(k)) = f̃(x).

Le prochain théorème est un résultat important. Il montre que sous l’hypothèse que la
fonction soit uniformément continue sur E, on n’a pas besoin de vérifier l’existence des
limites au bord pour pouvoir prolonger la fonction par continuité. L’hypothèse d’uniforme
continuité est bien plus facile à vérifier que l’existence de la limite en chaque point du
bord. On verra, par exemple, dans le chapitre suivant, que si la fonction est dérivable
sur un ensemble E convexe avec dérivées partielles bornées, alors elle est uniformément
continue sur E.

Théorème 2.23 (Prolongement de fonctions uniformément continues). Soit E ⊂ Rn un
ensemble non vide et f : E → Rm une fonction uniformément continue sur E. Alors f
peut être prolongée par continuité sur E et son prolongement continu f̃ : E → Rm est
uniformément continu.

Démonstration. Vérification que f peut être prolongée par continuité sur E. Il faut vérifier
que limy→x f(x) existe en tout x ∈ E \E (la limite en x ∈ E existe car f est continue sur
E). Par hypothèse, la fonction f est uniformément continue sur E. Pour tout ϵ > 0, soit
δ > 0 la valeur correspondante dans la définition (2.1) de continuité uniforme.

Pour chaque a ∈ E \E, choisissons une suite {a(k)}k∈N ⊂ E qui converge vers a. Pour
a ∈ E\E fixé, la suite choisie {a(k)}k∈N est une suite de Cauchy. Il existe donc N = N(δ) tel
que ∀j, k ≥ N ∥a(j) −a(k)∥ ≤ δ. Il s’ensuit que, pour tous j, k ≥ N , ∥f(a(j))− f(a(k))∥ ≤ ϵ.
D’où {f(a(k))}k∈N est une suite de Cauchy dans Rm, qui admet pour limite un certain
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l = limk→∞ f(a(k)) ∈ Rm. Cette limite ne dépend pas de la suite choisie. En effet, soit
{b(k)}k∈N ⊂ E une autre suite telle que limk→∞ b(k) = a et m = limk→∞ f(b(k)). Alors
il existe Ñ > N : ∀k ≥ Ñ , ∥m − f(b(k))∥ ≤ ϵ, ∥l − f(a(k))∥ ≤ ϵ, ∥a(k) − b(k)∥ ≤ δ. Par
conséquent,

∥l − m∥ ≤ ∥l − f(a(k))∥ + ∥f(a(k)) − f(b(k))∥ + ∥m − f(b(k))∥ ≤ 3ϵ

ce qui implique l = m par l’arbitrarité de ϵ et donc la limite limx→a f(x) existe en tout
a ∈ E et f peut être prolongée par continuité. On dénote f̃ le prolongement par continuité
de f .

Vérification que f̃ est uniformément continue sur E. Soit ϵ > 0 et x,y ∈ E tels que ∥x−
y∥ ≤ δ

3 , où δ = δ(ϵ) est comme ci-dessus. Introduisons deux suites {x(k)}k∈N, {y(k)}k∈N ⊂ E
qui convergent à x et y, respectivement. Alors, il existe M > 0 tel que, pour tout k ≥ M ,
∥x−x(k)∥ ≤ δ

3 et ∥y−y(k)∥ ≤ δ
3 , d’où ∥x(k) −y(k)∥ ≤ ∥x(k) −x∥+∥x−y∥+∥y−y(k)∥ ≤ δ.

Puisque f̃ est continue sur E on a limk→∞ f(x(k)) = f̃(x), limk→∞ f(y(k)) = f̃(y) et il
existe M̃ > M tel que, pour tout k ≥ M̃ , ∥f̃(x) − f(x(k))∥ ≤ ϵ et ∥f̃(y) − f(y(k))∥ ≤ ϵ. On
a alors

∥f̃(x) − f̃(y)∥ ≤ ∥f̃(x) − f(x(k))∥ + ∥f(x(k)) − f(y(k))∥ + ∥f(y(k)) − f̃(y)∥ ≤ 3ϵ.

Ainsi, si x,y ∈ E satisfont ∥x − y∥ ≤ δ
3 , on a ∥f̃(x) − f̃(y)∥ ≤ 3ϵ, ce qui prouve que f̃ est

uniformément continue sur E.

2.4 Fonctions continues sur un compact
On commence par introduire la notion de fonction bornée et de borne supérieure et

inférieure.

Définition 2.24 (fonction bornée). On dit que f : E ⊂ Rn → R est bornée s’il existe
C > 0 tel que |f(x)| ≤ C, ∀x ∈ E.

Définition 2.25 (bornes supérieure et inférieure). Soit E ⊂ Rn non vide et f : E → R.
— Soit M = supx∈E f(x). Si M < +∞, alors on a f(x) ≤ M, ∀x ∈ E et il existe

une suite {x(k)}k∈N ⊂ E telle que limk→∞ f(x(k)) = M . On dit que M est la borne
supérieure ou le supremum de f sur E.

— S’il existe xM ∈ E tel que f(xM ) = M , alors on dit que M est le maximum de f
sur E, M = maxx∈E f(x) et f atteint son maximum au point xM . On dit aussi que
xM (pas nécessairement unique) est un point de maximum de f .

— Si M = +∞, on dit que f n’est pas bornée supérieurement.
— On a des définitions du même type pour la borne inférieure ou l’infimum m =

infx∈E f(x), le minimum m = minx∈E f(x) et un point de minimum xm ∈ E tel que
f(xm) = m.

Théorème 2.26. Soit E ⊂ Rn un ensemble non vide et compact, et f : E → R une
fonction continue. Alors f est bornée et atteint ses bornes, c’est-à-dire, il existe xM ,xm ∈ E
tels que f(xM ) = supx∈E f(x) = maxx∈E f(x) et f(xm) = infx∈E f(x) = minx∈E f(x).
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Démonstration. Similaire au cas des fonctions f : [a, b] → R sur un intervalle fermé et
borné. Montrons d’abord que f est bornée. Ab absurdo, si f n’était pas bornée, alors
∀k ∈ N, ∃x(k) ∈ E : |f(x(k))| > k. Puisque E est compact, on peut extraire une sous-suite
{x(kj)}j∈N qui converge vers un certain x ∈ E. Mais, f étant continue en x, pour tout
ϵ > 0 il existe Kϵ ∈ N tel que |f(x(kj))| ≤ |f(x)| + ϵ pour tout j > Kϵ, ce qui contredit
|f(x(kj))| > kj ≥ j, ∀j.

Soit maintenant M = supx∈E f(x). Il existe une suite {x(k)}k∈N ⊂ E telle que
limk→∞ f(x(k)) = M . A nouveau, on peut extraire une sous-suite {x(kj)}j∈N qui converge
vers un certain xM ∈ E et, par continuité de f , on a f(xM ) = M , ce qui prouve que
M = supx∈E f(x) = f(xM ) = maxx∈E f(x). Idem pour le minimum.

Théorème 2.27. Soit E ⊂ Rn un ensemble non vide, compact et connexe par arcs,
et f : E → R une fonction continue sur E. Alors f atteint toutes les valeurs entre son
minimum m et maximum M sur E, et Im(f) = [m,M ].

Démonstration. Puisque E est compact et f : E → R continue, il existe xm et xM t.q.
f(xm) = minx∈E f(x) et f(xM ) = maxx∈E f(x). Puisque E est connexe par arcs, il existe
un chemin γ(t) = (γ1(t), . . . , γn(t)) avec γi : [0, 1] → R continues et γ(t) ∈ E, ∀t ∈
[0, 1], γ(0) = xm, γ(1) = xM . Soit g : [0, 1] → R, g(t) = f(γ(t)) = f(γ1(t), . . . , γn(t)),
qui est continue sur [0, 1] puisqu’elle est la composition de fonctions continues. D’après
le théorème de la valeur intermédiaire d’Analyse I, Im(g) est un intervalle, et il contient
g(0) = m et g(1) = M , et donc tout [m,M ]. D’où

[m,M ] ⊂ Im(g) ⊂ Im(f) ⊂ [m,M ]

et Im(f) = [m,M ].

Les deux théorèmes précédents montrent deux propriétés importantes des fonctions
continues, qui se généralisent comme suit aux fonctions à valeurs dans Rm.

Soit f : E → Rm continue et ∅ ≠ A ⊂ E ⊂ Rn.
— Si A est compact, alors f(A) ⊂ Rm est aussi compact.
— Si A est connexe (resp. connexe par arcs), alors f(A) est connexe (resp. connexe par

arcs).
On conclut par une propriété importante des fonctions continues sur un compact.

Théorème 2.28 (Cantor-Heine). Soit E ⊂ Rn un ensemble non vide et compact, et
f : E → Rm une fonction continue. Alors f est uniformément continue sur E (théorème
de Cantor-Heine), c-à-d :

∀ϵ > 0 ∃δ = δ(ϵ) > 0 : ∀x,y ∈ E
(
∥x − y∥ ≤ δ ⇒ ∥f(x) − f(y)∥ ≤ ϵ

)
.

Plus généralement, soit E ⊂ Rn un ensemble quelconque, K ⊂ E un sous-ensemble
non vide et compact, et f : E → Rm une fonction continue. Alors

∀ϵ > 0 ∃δ = δ(ϵ) > 0 : ∀x ∈ K ∀y ∈ E
(
∥x − y∥ ≤ δ ⇒ ∥f(x) − f(y)∥ ≤ ϵ

)

(théorème de Cantor-Heine généralisé).



2.4. FONCTIONS CONTINUES SUR UN COMPACT 29

Démonstration. Donnons la preuve de la version générale, le cas particulier K = E non
vide et compact du théorème de Cantor-Heine en découlant. Ab absurdo supposons qu’il
n’est pas vrai que

∀ϵ > 0 ∃δ > 0 : ∀x ∈ K ∀y ∈ E
(
∥x − y∥ ≤ δ ⇒ ∥f(x) − f(y)∥ ≤ ϵ

)
.

Ainsi

∃ϵ > 0 : ∀δ > 0 ∃x ∈ K ∃y ∈ E
(
∥x − y∥ ≤ δ et ∥f(x) − f(y)∥ > ϵ

)
.

Pour un tel ϵ > 0, considérons δ = 1/k avec k ∈ N∗ : il existe x(k) ∈ K, y(k) ∈ E tels que

∥x(k) − y(k)∥ ≤ 1
k

et ∥f(x(k)) − f(y(k))∥ > ϵ.

La suite {x(k)}k∈N∗ étant bornée (puisque K est borné), il existe une sous-suite {x(ki)}i∈N
qui converge vers un certain x ∈ K puisque K est fermé. On a alors

∥y(ki) − x∥ ≤ ∥y(ki) − x(ki)∥ + ∥x(ki) − x∥ ≤ 1
ki

+ ∥x(ki) − x∥ → 0, si i → ∞.

Ainsi limi→∞ y(ki) = x. Puisque f est continue sur E on a

lim
i→∞

f(x(ki)) = f(x) = lim
i→∞

f(y(ki)),

ce qui contredit ∥f(x(k)) − f(y(k))∥ > ϵ pour tout k.
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Chapitre 3

Dérivabilité

On commence ce chapitre en rappelant la notion de dérivée d’une fonction réelle d’une
seule variable réelle, f : E ⊂ R → R, en un point x0 ∈ E̊ :

f ′(x0) = lim
h→0

f(x0 + h) − f(x0)
h

si la limite existe.

Elle représente le taux d’accroissement de la fonction en x0. De la définition, il suit
immédiatement qu’il existe δ > 0 tel que ]x0 − δ, x0 + δ[⊂ E et

∀h ∈] − δ, δ[ f(x0 + h) = f(x0) + f ′(x0)h+ o(|h|)

c’est-à-dire,
f(x0 + h) − f(x0) = f ′(x0)h︸ ︷︷ ︸

application linéaire en h

+o(|h|)

et l’incrément f(x0+h)−f(x0) est bien approché par une application linéaire en h. Ici o(|h|)
dénote une fonction g définie sur un voisinage de 0 et telle que limh→0

g(h)
h = 0 (voir plus loin

pour une définition plus générale). En fait il suffit de poser g(h) = f(x0+h)−f(x0)−f ′(x0)h
pour |h| < δ.

On a donc une double interprétation de la notion de dérivée : comme limite du taux
d’accroissement en x0, ainsi que comme application linéaire approchant localement la
fonction dans un voisinage de x0 En particulier, f dérivable en x0 implique que f est aussi
continue en x0. Dans ce chapitre, on va généraliser ces deux notions pour des fonctions
f : Rn → R ou f : Rn → Rm de plusieurs variables réelles.

3.1 Dérivées partielles, dérivées directionnelles, différentielle

Définition 3.1. Soit f : E ⊂ Rn → R une fonction de n variables réelles, x0 ∈ E̊ un
point intérieur de E et v un vecteur arbitraire de Rn. On dit que f est dérivable dans la
direction v au point x0 si la limite limt→0

f(x0+tv)−f(x0)
t existe. Dans ce cas on pose

Dvf(x0) = lim
t→0

f(x0 + tv) − f(x0)
t

31
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Si ∥v∥ = 1 pour la norme euclidienne, on appelle Dvf(x0) la dérivée directionnelle de
f dans la direction v au point x0.

Si on définit la fonction f̃(t) = f(x0 + tv) dans un voisinage de 0 (ce qui est toujours
possible car x0 est un point intérieur de E), alors Dvf(x0) = f̃ ′(0). On peut donc
interpréter la dérivée directionnelle Dvf(x0) comme la limite du taux d’accroissement
en suivant la direction v. En particulier, si on prend v = ei, le i-ème vecteur de la base

Figure 3.1 – Interprétation géométrique de dérivée directionnelle pour une fonction f(x, y) de
deux variables réelles

canonique de Rn, alors la dérivée directionnelle correspondante est appelée i-ème dérivée
partielle et est notée

∂f

∂xi
(x0) = Deif(x0) = lim

t→0

f(x0 + tei) − f(x0)
t

.

Autrement dit, pour x = (x1, . . . , xn) ∈ E̊ point intérieur,

∂f

∂xi
(x) = lim

t→0

f(x1, . . . , xi + t, . . . , xn) − f(x1, . . . , xi, . . . , xn)
t

,

ce qui revient à calculer la dérivée de la fonction xi 7→ f(·, xi, ·) pensée comme une fonction
uniquement de la variable xi, en traitant les autres variables x1, . . . , xi−1, xi+1, . . . , xn
comme des paramètres. Pour cela, on peut donc utiliser les règles de dérivation des fonctions
d’une seule variable réelle.

Définition 3.2 (vecteur gradient). Soit f : E ⊂ Rn → R et x0 un point intérieur de
E. Si toutes les dérivées partielles de f existent en x0, on appelle matrice jacobienne
Df(x0) ∈ R1×n (vecteur ligne) le vecteur

Df(x0) =
[
∂f
∂x1

(x0), . . . , ∂f∂xn
(x0)

]
=
(
∂f
∂x1

(x0) . . . ∂f
∂xn

(x0)
)
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et vecteur gradient, noté ∇f(x0) ∈ Rn×1, son transposé

∇f(x0) = Df(x0)⊤ =




∂f
∂x1

(x0)
...

∂f
∂xn

(x0)


 =




∂f
∂x1

(x0)
...

∂f
∂xn

(x0)


 .

Exemple 3.3. Soit f(x, y) = x2 cos y. Alors

∂f

∂x
(x, y) = 2x cos y, ∂f

∂y
(x, y) = −x2 sin y, ∇f(x, y) =

[
2x cos y

−x2 sin y

]
.

Une fonction peut avoir des dérivées partielles ou directionnelles en un point x0 sans
pour autant être continue en ce point, comme les exemples suivants le montrent.

Exemple 3.4. Soit f : R2 → R donnée par

f(x, y) =
{

xy
x2+y2 , (x, y) ̸= (0, 0)
0, (x, y) = (0, 0).

Alors,

∂f

∂x
(0, 0) = lim

t→0

f(t, 0) − f(0, 0)
t

= 0, ∂f

∂y
(0, 0) = lim

t→0

f(0, t) − f(0, 0)
t

= 0

mais f n’est pas continue en (0, 0). En effet, on a limt→0 f(t, t) = limt→0
t2

2t2 = 1
2 ≠ 0.

Pour cette fonction, les autres dérivées directionnelles n’existent pas :

lim
t→0

f(tv1, tv2) − f(0, 0)
t

= lim
t→0

t2v1v2
t3(v2

1 + v2
2) = lim

t→0

v1v2
t(v2

1 + v2
2)

n’existe pas si v1v2 ̸= 0 (ici v = (v1, v2) ∈ R2, ∥v∥ = 1 pour la norme euclidienne)

Exemple 3.5. Soit f : R2 → R donnée par

f(x, y) =





xy2

x2+y4 , si (x, y) ̸= (0, 0)
0, si (x, y) = (0, 0).

Toutes les dérivées directionnelles existent. En effet,

Dvf(0, 0) = lim
t→0

v1v2
2

v2
1 + t2v4

2
=




v2

2
v1
, si v1 ̸= 0,

0, si v1 = 0.

Toutefois, f n’est pas continue en (0, 0) car limt→0 f(t2, t) = 1
2 ̸= f(0, 0).
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Comme l’exemple précédent le montre, la notion de dérivée partielle est trop faible et
n’implique pas la continuité de la fonction. Si on veut introduire une notion de dérivabilité
qui permet d’approcher une fonction au voisinage de x0 par une fonction affine, on a besoin
d’une définition de dérivée plus forte. On rappelle qu’une application linéaire L : Rn → Rm
est telle que L(αx + βy) = αL(x) + βL(y), ∀x,y ∈ Rn et ∀α, β ∈ R. Elle peut être
représentée par la matrice A ∈ Rm×n (m lignes et n colonnes) telle que L(ei) est la ième

colonne de A, où {ei}ni=1 est la base canonique de Rn, de telle sorte que L(x) = A ·x = Ax,
∀x ∈ Rn (produit matriciel entre une matrice m× n et un vecteur colonne dans Rn). Le
produit matriciel Ax ∈ Rm donne dans cette formule un vecteur colonne.
Définition 3.6 (Dérivabilité et différentielle). Soit f : E ⊂ Rn → R et x0 un point
intérieur de E. On dit que f est différentiable (ou dérivable) en x0 s’il existe une application
linéaire L : Rn → R et une fonction g : E → R tels que

∀x ∈ E f(x) = f(x0) + L(x − x0) + g(x), et lim
x→x0

g(x)
∥x − x0∥ = 0.

L’application linéaire L est alors appelée la différentielle de f en x0.
On remarque que la fonction g satisfait nécessairement g(x0) = 0 et est continue en x0.

Notation. Pour p ≥ 0, on utilise souvent la notation g(x) = o(∥x − x0∥p) pour indiquer
une fonction g définie au moins sur B(x0, δ)\{x0} pour un certain δ > 0 et telle que
limx→x0

g(x)
∥x−x0∥p = 0.

Avec la notation o(·), dans la définition 3.6 on peut ainsi écrire f(x) = f(x0) + L(x −
x0) + o(∥x − x0∥) sur E (ici p = 1 et g est définie sur E).

Le théorème suivant met en relation l’application linéaire L de la définition précédente
avec la matrice jacobienne (ou bien le gradient) de f en x0 et montre aussi que la
différentielle de f en x0, si elle existe, est unique.
Théorème 3.7. Soit f : E → R différentiable en x0 ∈ E̊. Alors, toutes les dérivées
partielles de f existent en x0 et la différentielle de f en x0 est unique, donnée par

L(x − x0) = Df(x0) · (x − x0) = Df(x0)(x − x0)
(produit matriciel entre un vecteur ligne et un vecteur colonne), ce qui s’écrit aussi
L(x − x0) = ∇f(x0)⊤ · (x − x0) = ∇f(x0)⊤(x − x0) (produit matriciel). On peut aussi
utiliser le produit scalaire usuel entre deux vecteurs colonnes : L(x−x0) = ∇f(x0) ·(x−x0)
(produit scalaire). De plus, f est continue en x0.
Démonstration. On note ai = L(ei) de sorte que L(x − x0) = ∑n

i=1 ai(xi − x0i). Par
définition de la différentiabilité en x0, on a f(x0 + tei) = f(x0) + tL(ei) + g(x0 + tei) et,
si on note xt = x0 + tei,

∂f

∂xi
(x0) = lim

t→0

f(x0 + tei) − f(x0)
t

= L(ei) + lim
t→0

g(x0 + tei)
t

= L(ei) + lim
t→0

sign(t)g(xt)
∥xt − x0∥︸ ︷︷ ︸

=0

= ai,
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donc toutes les dérivées partielles existent et L(x − x0) = Df(x0) · (x − x0). De plus, on a

lim
x→x0

f(x) = f(x0) +
n∑

i=1
lim

x→x0

∂f

∂xi
(x0)(xi − x0i)

︸ ︷︷ ︸
=0

+ lim
x→x0

g(x)
︸ ︷︷ ︸

=0

= f(x0),

ce qui montre que f est continue en x0.

Une conséquence immédiate du théorème précédent est que, si f : E ⊂ Rn → R est
différentiable en x0 ∈ E̊, alors toutes les dérivées directionnelles existent et Dvf(x0) =
Df(x0) · v = ∇f(x0)⊤v (produit matriciel). En effet,

Dvf(x0) = lim
t→0

f(x0 + tv) − f(x0)
t

= L(v) + lim
t→0

g(x0 + tv)
t︸ ︷︷ ︸

=0

= L(v) = ∇f(x0)⊤v.

En particulier, Dvf(x0) est dans ce cas une application linéaire en v. On a de plus, pour
la norme euclidienne,

∥∇f(x0)∥ = max
v∈Rn

∥v∥=1

∇f(x0)⊤v = max
v∈Rn

∥v∥=1

Dvf(x0),

le maximum étant atteint en v = ∇f(x0)
∥∇f(x0)∥ si ∇f(x0) n’est pas nul. S’il n’est pas nul, le

vecteur gradient donne donc la direction de croissance maximale au point x0 pour la
fonction f . On a aussi que toute direction w ⊥ ∇f(x0) est une direction de croissance
nulle au point x0.
Exemple 3.8. Considérons la fonction f : R2 → R, f(x, y) = x2 + y2. Son gradient
est donné par ∇f(x, y) = (2x, 2y)⊤. En (x, y) ∈ R2\{(0, 0)}, la direction de croissance

maximale au point (x, y) est v = ∇f(x,y)
∥∇f(x,y)∥ =

(
x√
x2+y2

, y√
x2+y2

)⊤
(norme euclidienne

normalisée à 1 ici), la direction de croissance minimale au point (x, y) est v = − ∇f(x,y)
∥∇f(x,y)∥ =

−
(

x√
x2+y2

, y√
x2+y2

)⊤
, tandis que la direction de croissance nulle au point (x, y) est

w = ±
(

− y√
x2+y2

, x√
x2+y2

)⊤
.

Enfin, si f est différentiable en x0, on peut construir l’hyperplan tangent au graphe de
f en (x0, f(x0)), ainsi qu’un vecteur normal au graphe de f en (x0, f(x0)).
Définition 3.9. Soit f : E ⊂ Rn → R différentiable en x0 ∈ E̊ et notons y0 = f(x0) et
Gf = {(x, y) ∈ Rn+1 : x ∈ E, y = f(x)} le graphe de f . On définit l’hyperplan tangent
à Gf en (x0, y0) comme le sous-ensemble de Rn+1

Π(x0,y0)(Gf ) = {(x, y) ∈ Rn+1 : y = y0 + ∇f(x0)⊤(x − x0)}
Le vecteur

n = 1√
1 + ∥∇f(x0)∥2

(
− ∂f

∂x1
(x0), · · · ,− ∂f

∂xn
(x0), 1

)⊤
⊂ Rn+1

est un vecteur normal au graphe de f en (x0, y0).



36 CHAPITRE 3. DÉRIVABILITÉ

En effet, on vérifie facilement que le vecteur n est normal à l’hyperplan tangent
Π(x0,y0)(Gf ) en (x0, y0), c’est-à-dire, il satisfait

n · ((x, y) − (x0, y0)) = 0, ∀(x, y) ∈ Π(x0,y0)(Gf ).

De plus n est de norme euclidienne 1, comme d’ailleurs −n.
Les définitions de différentiabilité et dérivées partielles/directionnelles s’étendent sans

difficultés aux fonctions à valeurs dans Rm.

Définition 3.10. Soit f : E ⊂ Rn → Rm,

f(x) = (f1(x), . . . , fm(x))⊤ =




f1(x)
...

fm(x)


 =



f1(x)
. . .

fm(x)


 ,

noté aussi sous forme ligne (nous préciserons si nécessaire)

f(x) = (f1(x), . . . , fm(x)) =
[
f1(x) . . . fm(x)

]
=
(
f1(x) . . . fm(x)

)
,

et soit x0 ∈ E̊. On appelle dérivée partielle de la i-ème composante de f par rapport à la
j-ème variable en x0, notée ∂fi

∂xj
(x0), la quantité

∂fi
∂xj

(x0) = lim
t→0

fi(x0 + tej) − fi(x0)
t

,

si la limite existe, et matrice jacobienne de f en x0 la matrice Df(x0) ∈ Rm×n de
composantes (Df(x0))ij = ∂fi

∂xj
(x0), autrement dit,

Df(x0) =




∂f1
∂x1

(x0) ∂f1
∂x2

(x0) · · · ∂f1
∂xn

(x0)

∂f2
∂x1

(x0)
...

...
...

∂fm

∂x1
(x0) · · · · · · ∂fm

∂xn
(x0)




=




∂f1
∂x1

(x0) ∂f1
∂x2

(x0) · · · ∂f1
∂xn

(x0)

∂f2
∂x1

(x0)
...

...
...

∂fm

∂x1
(x0) · · · · · · ∂fm

∂xn
(x0)




,

si toutes les dérivées partielles existent.

De façon similaire, on introduit la notion de différentiabilité.

Définition 3.11. On dit que f : E ⊂ Rn → Rm est différentiable (ou dérivable) en x0 ∈ E̊
s’il existe une application linéaire L : Rn → Rm et une fonction g : E → Rm telles que

∀x ∈ E f(x) = f(x0) + L(x − x0) + g(x)

et g(x) = o(∥x − x0∥), c.-à-d. limx→x0
∥g(x)∥
∥x−x0∥ = 0.
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Si plus généralement ∥g(x)∥ = o(∥x − x0∥p) dans le sens déjà introduit, on notera
simplement g(x) = o(∥x − x0∥p). Si f est différentiable en x0, alors toutes les dérivées
partielles et directionnelles existent, et f est continue en x0. De plus, l’application linéaire
L est unique et donnée par

L(x − x0) =
m∑

i=1

n∑

j=1

∂fi
∂xj

(x0)(xj − x0j )ei

où ei est le ième vecteur de la base canonique de Rm. Ceci s’écrit aussi

L(x − x0) = Df(x0) · (x − x0) = Df(x0)(x − x0),

où intervient ici le produit matriciel entre une matrice Rm×n et un vecteur colonne dans
Rn, ce qui donne un vecteur colonne dans Rm. La dérivée de f dans la direction v au point
x0, v 7→ Dvf(x0) = L(v) = Df(x0)v, est linéaire en v ∈ Rn (si f est différentiable en x0).

La condition de différentiabilité d’une fonction f : E ⊂ Rn → R (ou f : Rn → Rm)
n’est pas immédiate à vérifier. Heureusement, on a une condition suffisante, facile à vérifier,
qui nous permet de conclure si f est différentiable en x0 ∈ E̊. On donne ici la version du
résultat pour une fonction à valeurs dans R mais le résultat se généralise sans difficulté au
cas d’une fonction à valeurs dans Rm.

Théorème 3.12. Soit f : E ⊂ Rn → R et x0 ∈ E̊. S’il existe δ > 0 tel que B(x0, δ) ⊂ E
et les dérivées partielles ∂f

∂xi
(x) existent pour tout x ∈ B(x0, δ) et sont continues en x0,

alors f est différentiable en x0.

Démonstration. On utilise la norme euclidienne et, pour alléger la notation, on renomme
x0 = a = (a1, . . . , an). Pour un x = (x1, . . . , xn) ∈ B(a, δ) donné, on introduit la notation
xk = (x1, . . . , xk, ak+1, . . . , an) de sorte que xn = x et x0 = a. Alors, la différence
f(x) − f(a) peut être écrite comme somme télescopique

f(x) − f(a) =
n∑

k=1
(f(xk) − f(xk−1)).

Par le théorème des accroissements finis on a que ∀k = 1, . . . , n, il existe un θk ∈]0, 1[ tel
que

f(xk) − f(xk−1) = f(x1, . . . , xk−1, xk, ak+1, . . . , an) − f(x1, . . . , xk−1, ak, ak+1, . . . , an)

= ∂f

∂xk
(x1, . . . , xk−1, ak + θk(xk − ak), ak+1, . . . , an)(xk − ak)

= ∂f

∂xk
(xk−1 + θk(xk − xk−1))(xk − ak).

Puisque les dérivées partielles sont continues en a, on a que

gk(x) := ∂f

∂xk
(xk−1 + θk(xk − xk−1)) − ∂f

∂xk
(a) x→a−−−→ 0.
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En effet, la continuité de ∂f
∂xk

en a implique que

∀ϵ > 0 ∃δ̃ ∈]0, δ/2] : ∀y ∈ B(a, 2δ̃)
∣∣∣∣
∂f

∂xk
(y) − ∂f

∂xk
(a)
∣∣∣∣ < ϵ,

et de plus, pour y(x) = xk−1 + θk(xk − xk−1) avec 1 ≤ k ≤ n, on a

∥y(x) − a∥ = ∥(1 − θk)(xk−1 − a) + θk(xk − a)∥ ≤ ∥xk−1 − a∥ + ∥xk − a∥ ≤ 2∥x − a∥

et donc

∀ϵ > 0 ∃δ̃ ∈]0, δ/2] : ∀x ∈ B(a, δ̃) |gk(x)| =
∣∣∣∣
∂f

∂xk
(y(x)) − ∂f

∂xk
(a)
∣∣∣∣ < ϵ,

ce qui montre que limx→a gk(x) = 0 pour tout k = 1, . . . , n. Ainsi,

f(x) − f(a) =
n∑

k=1
(f(xk) − f(xk−1))

=
n∑

k=1

∂f

∂xk
(xk−1 + θk(xk − xk−1))(xk − ak)

=
n∑

k=1

(
∂f

∂xk
(a)(xk − ak) + gk(x)(xk − ak)

)

= Df(a) · (x − a) + g(x)

(produit matriciel entre un vecteur ligne et un vecteur colonne), avec g(x) = ∑n
k=1 gk(x)(xk−

ak). Par l’inégalité de Cauchy-Schwarz, on a |g(x)| ≤ (∑n
k=1 gk(x)2) 1

2 ∥x − a∥ et donc

lim
x→a

|g(x)|
∥x − a∥ ≤ lim

x→a

√√√√
n∑

k=1
gk(x)2 = 0

ce qui montre que g(x) = o(∥x − a∥).

3.1.1 L’espace C1

Le théorème 3.12 montre que si toutes les dérivées partielles existent dans un voisinage
d’un point intérieur x0 et sont continues en x0, alors la fonction est différentiable (et
continue) en x0 et donc toutes les dérivées directionnelles existent en x0.

Définition 3.13 (Espace C1). Soit E ⊂ Rn ouvert non vide. On dit que f : E → R est
continûment différentiable sur E si toutes les dérivées partielles ∂f

∂xi
pour i = 1, . . . , n,

existent et sont continues en tout point x ∈ E. Dans ce cas on note f ∈ C1(E) (f est de
classe C1). De même, on dit que f : E → Rm est de classe C1, f ∈ C1(E,Rm), si chaque
composante de f = (f1, . . . , fm) satisfait fk ∈ C1(E), k = 1, . . . ,m.
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Grâce au théorème 3.12, si f ∈ C1(E) alors f est différentiable en tout point x0 ∈ E
(E étant ouvert) et donc elle est aussi continue, c’est-à-dire f ∈ C1(E) ⇒ f ∈ C0(E) ;
de même, on a C1(E,Rm) ⊂ C0(E,Rm). De plus, toutes les dérivées directionnelles Dvf
existent et sont continues sur E.

On vérifie facilement que C1(E) a une structure d’espace vectoriel réel. En effet, pour
tous f, g ∈ C1(E) et toutes constantes λ, µ ∈ R on a λf + µg ∈ C1(E). On vérifie aussi
facilement les règles de dérivation suivantes : Soit E ⊂ Rn ouvert, f, g ∈ C1(E) et des
constantes λ, µ ∈ R. Alors

i) λf + µg ∈ C1(E), D(λf + µg)(x) = λDf(x) + µDg(x), ∀x ∈ E,

ii) fg ∈ C1(E), D(fg)(x) = Df(x)g(x) + f(x)Dg(x), ∀x ∈ E.

3.2 Dérivation de fonctions composées

Soit f : E ⊂ Rn → Rm et g : F ⊂ Rm → Rp avec E,F ouverts non vides. Si Im(f) ⊂ F ,
on peut définir la fonction composée

φ = g ◦ f : E → Rp, φ(x) = g(f(x)), ∀x ∈ E.

Par composantes :

x = (x1, . . . , xn), f(x) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)),
y = (y1, . . . , ym), g(y) = (g1(y1, . . . , ym), . . . , gp(y1, . . . , ym)),

φ(x) =
(
g1(f1(x), . . . , fm(x)) , . . . , gp(f1(x), . . . , fm(x))

)
.

Théorème 3.14. Soient f : E ⊂ Rn → Rm,g : F ⊂ Rm → Rp ; E,F des ouverts
contenant respectivement x0 et y0 ; Im(f) ⊂ F et y0 = f(x0). Si f est différentiable en x0
et g est différentiable en y0, alors φ = g ◦ f : E → Rp est différentiable en x0 et

Dφ(x0) = Dg(f(x0)) ·Df(x0) = Dg(f(x0))Df(x0).

(produit matriciel des matrices jacobiennes). Par composantes on a :

∀i ∈ {1, . . . , p} ∀j ∈ {1, . . . , n} ∂φi
∂xj

(x0) =
m∑

k=1

∂gi
∂yk

(f(x0))∂fk
∂xj

(x0).

Si de plus f ∈ C1(E,Rm) et g ∈ C1(F,Rp) alors φ ∈ C1(E,Rp).

Démonstration. Par hypothèse on a

f(x) = f(x0) +Df(x0) · (x − x0) + Rf (x), lim
x→x0

Rf (x)
∥x − x0∥ = 0,

g(y) = g(y0) +Dg(y0) · (y − y0) + Rg(y), lim
y→y0

Rg(y)
∥y − y0∥ = 0.
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On écrit

Rf (x) = ∥x − x0∥rf (x) avec lim
x→x0

rf (x) = 0 et rf (x0) := 0,

Rg(y) = ∥y − y0∥rg(y) avec lim
y→y0

rg(y) = 0 et rg(y0) := 0.

On veut montrer qu’il existe une application linéaire Lφ : Rn → Rp et une fonction
Rφ : E → Rp telles que

φ(x) = φ(x0) + Lφ(x − x0) + Rφ(x) et lim
x→x0

Rφ(x)
∥x − x0∥ = 0.

On a :

φ(x) = g(f(x)) = g
(
f(x0) +

h(x)︷ ︸︸ ︷
Df(x0) · (x − x0) + ∥x − x0∥rf (x)

)

= g(y0) +Dg(y0) · h(x) + ∥h(x)∥rg(f(x))
= g(y0) +Dg(y0) ·Df(x0) · (x − x0) + ∥x − x0∥Dg(y0) · rf (x)︸ ︷︷ ︸

A(x)

+ ∥h(x)∥rg(f(x))︸ ︷︷ ︸
B(x)

.

Il faut montrer que Rφ(x) := A(x) + B(x) satisfait limx→x0
Rφ(x)

∥x−x0∥ = 0. Pour A(x) on a

lim
x→x0

∥A(x)∥
∥x − x0∥ = lim

x→x0
∥Dg(y0) · rf (x)∥ ≤ |||Dg(y0)||| lim

x→x0
∥rf (x)∥ = 0,

où on a noté |||C||| la norme matricielle |||C||| = sup y∈Rm

y̸=0

∥Cy∥
∥y∥ < +∞ pour C ∈ Rp×m (et

on utilise finalement le théorème des deux gendarmes).
Pour B(x) on a pour tout x0 ̸= x ∈ E

∥B(x)∥
∥x − x0∥ = ∥h(x)∥

∥x − x0∥∥rg(f(x))∥

≤ ∥Df(x0) · (x − x0)∥ + ∥x − x0∥∥rf (x)∥
∥x − x0∥ ∥rg(f(x))∥

≤ (|||Df(x0)||| + ∥rf (x)∥)∥rg(f(x))∥

Puisque f est continue en x0 et rg en y0 = f(x0), la composée rg ◦ f est continue en x0.
D’où limx→x0 rg(f(x)) = rg(f(x0)) = rg(y0) = 0. D’autre part limx→x0 rf (x) = 0 (par
hypothèse) et on conclut que

lim
x→x0

∥B(x)∥
∥x − x0∥ ≤ (|||Df(x0)||| + lim

x→x0
∥rf (x)∥) lim

x→x0
∥rg(f(x))∥ = 0.

On a donc montré que

φ(x) = φ(x0) +Dg(f(x0)) ·Df(x0) · (x − x0) + Rφ(x) où lim
x→x0

Rφ(x)
∥x − x0∥ = 0.
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On conclut donc que φ est différentiable en x0 et

Dφ(x0) = Dg(f(x0)) ·Df(x0).

Si maintenant f ∈ C1(E,Rm) et g ∈ C1(F,Rp), alors chaque composante des matrices
Df(x) et Dg(y) est une fonction continue de x (resp. y) et Dφ(x) = Dg(f(x)) ·Df(x) est
continue en x pour tout x ∈ E. Donc φ ∈ C1(E,Rp).

Remarque 3.15. Dans cette preuve, on a utilisé la norme matricielle |||C||| = sup y∈Rm

y ̸=0

∥Cy∥
∥y∥ <

+∞ pour C ∈ Rp×m. C’est effectivement une norme sur l’espace vectoriel des matrices
Rp×m, appelée plus spécifiquement la norme “spectrale”. Il y a d’autres normes matricielles
possibles sur Rp×m.
Exemple 3.16. Soient f : R2 → R3 et g : R3 → R2 donnés par

f(x, y) =




xy
x+ 2y
sin x


 , g(u, v, w) =

[
u+ w
v2

]
,

avec matrices jacobiennes

Df(x, y) =




y x
1 2

cosx 0


 ∈ R3×2, Dg(u, v, w) =

[
1 0 1
0 2v 0

]
∈ R2×3.

Alors,

φ(x, y) = g ◦ f(x, y) =
[
xy + sin x
(x+ 2y)2

]
: R2 → R2

et

Dφ(x, y) =
[
y + cosx x
2(x+ 2y) 4(x+ 2y)

]
= Dg(f(x, y))·Df(x, y) =

[
1 0 1
0 2v 0

]∣∣∣∣∣
v=x+2y




y x
1 2

cosx 0


 .

Un cas particulier du théorème 3.14 est celui de la composition d’une fonction f : E ⊂
Rn → R, de classe C1 sur l’ouvert non vide E et un chemin dans E, γ : I ⊂ R → E, I
ouvert non vide et t 7→ γ(t) = (γ1(t), . . . , γn(t)), avec γi ∈ C1(I), ∀i = 1, . . . , n. Dans ce
cas, la fonction composée φ = f ◦ γ : I → R, t 7→ φ(t) = f(γ1(t), . . . , γn(t)) est dérivable
sur I, φ ∈ C1(I) et

d

dt
φ(t) = Df(γ(t)) ·Dγ(t)

=
[
∂f
∂x1

(γ(t)), . . . , ∂f
∂xn

(γ(t))
]



γ̇1(t)
...

γ̇n(t)




=
n∑

i=1

∂f

∂xi
(γ(t))γ̇i(t).

La quantité d
dtφ(t) = d

dtf(γ1(t), . . . , γn(t)) est appelée la dérivée totale de f le long du
chemin γ(t).
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3.3 Théorème des accroissements finis

On rappelle d’abord le théorème des accroissements finis pour une fonction réelle d’une
seule variable réelle : soit f : [a, b] → R continue et dérivable sur ]a, b[, alors il existe
c ∈ ]a, b[ tel que f(b) − f(a) = f ′(c)(b − a). On vise à généraliser ce résultat pour des
fonctions f : E ⊂ Rn → R ou f : E ⊂ Rn → Rm de plusieurs variables réelles.

On introduit la notation suivante : pour x,y ∈ Rn, x ̸= y, on note [x,y] le segment
fermé d’origine x et d’extrémité y : [x,y] = {z ∈ Rn : z = x + t(y − x), t ∈ [0, 1]} et par
]x,y[ le segment “ouvert” ]x,y[ = {z ∈ Rn : z = x + t(y − x), t ∈ ]0, 1[} (si n ≥ 2, ]x,y[
n’est ni ouvert ni fermé). Lorsque x = y, on pose [x,x] = {x}.

Théorème 3.17. Soit E ⊂ Rn un ouvert non vide et f : E → R une fonction dérivable
sur E. Si x,y ∈ E distincts sont tels que [x,y] ⊂ E, alors il existe z ∈ ]x,y[, tel que

f(y) − f(x) = Df(z)(y − x)

(produit matriciel entre un vecteur ligne et un vecteur colonne).

Démonstration. On pose g(t) = f(x + t(y − x)) avec t ∈ [0, 1]. Alors g est continue sur
[0, 1] et dérivable sur ]0, 1[, car composée de fonctions dérivables : g(t) = f(v(t)), où
v(t) = x + t(y − x). Par la règle de dérivation d’une composée, g′(t) = Df(v(t))v′(t) =
Df(x + t(y − x))(y − x) . Par le théorème des accroissements finis pour des fonctions
d’une seule variable, il existe θ ∈ ]0, 1[ t.q. g(1) − g(0) = g′(θ) ce qui équivaut à

f(y) − f(x) = Df(x + θ(y − x))(y − x), θ ∈ ]0, 1[
= Df(z)(y − x), z = x + θ(y − x) ∈ ]x,y[.

Dans la démonstration ci-dessus on a g′(t) = Df(x + t(y − x))(y − x). Si on suppose,
maintenant, que f est de classe C1, on a g ∈ C1(]0, 1[) et g(1) − g(0) =

∫ 1
0 g

′(t)dt. On en
déduit

f(y) − f(x) =
∫ 1

0
Df(x + t(y − x))(y − x)dt. (3.1)

Considérons maintenant une fonction f : E ⊂ Rn → Rm avec E ouvert non vide et f
dérivable sur E. L’analogue du théorème des accroissements finis pour une telle fonction
vectorielle est en défaut ! En fait, on peut appliquer le théorème à chaque composante
fk, k = 1, . . . ,m de f . Donc il existe zk ∈ ]x,y[, k = 1, . . . ,m tels que

fk(y) − fk(x) = Dfk(zk)(y − x).

Toutefois, on n’a aucune garantie que les zk coïncident. On ne peut donc pas trouver, en
général, un seul z pour lequel f(y) − f(x) = Df(z)(y − x) (produit matriciel entre une
matrice m× n et un vecteur colonne dans Rn, ce qui donne un vecteur colonne dans Rm).
Néanmoins, la formule (3.1) se généralise pour toute fonction vectorielle f : E ⊂ Rn → Rm
de classe C1.
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Lemme 3.18. Soit f : E ⊂ Rn → Rm de classe C1 sur E ouvert non vide et x,y ∈ E
tels que [x,y] ⊂ E. Alors

f(y) − f(x) =
∫ 1

0
Df(x + t(y − x))(y − x)dt.

Ici l’intégrale d’une fonction continue [0, 1] → Rm est comprise comme le vecteur dans
Rm obtenu en prenant l’intégrale de chaque composante (chaque composante étant une
fonction continue [0, 1] → R).

Le Lemme précédent, demande que la fonction f soit de classe C1 sur E. On peut
obtenir une version faible du théorème des accroissements finis qui demande uniquement
que les dérivées partielles existent et soient bornées sur le segment [x,y].

Lemme 3.19. Soit f : E ⊂ Rn → Rm dérivable sur E ouvert non vide et x,y ∈ E
distincts tels que [x,y] ∈ E. S’il existe M > 0 tel que |||Df(z)||| ≤ M, ∀z ∈]x,y[, alors

∥f(y) − f(x)∥ ≤ M∥y − x∥.

Démonstration. Le résultat est évident si f(y)− f(x) = 0. Supposons donc f(y)− f(x) ̸= 0
et considérons f(u) comme un vecteur colonne, u ∈ E. Soit un vecteur ligne w ∈ Rm fixé
et considérons la fonction fw : E → R définie par fw(u) = wf(u) pour u ∈ E, où apparaît
le produit matriciel entre w et f(u). On sait alors qu’il existe z ∈]x,y[ (qui peut dépendre
de w) tel que fw(y) − fw(x) = Dfw(z)(y − x), c’est-à-dire

w(f(y) − f(x)) = wDf(z)(y − x).

Choisissons w = (f(y) − f(x))⊤, ce qui donne

∥f(y) − f(x)∥2 = wDf(z)(y − x) ≤ ∥w∥ ∥Df(z)(y − x)∥

≤ ∥w∥ |||Df(z)|||∥y − x∥ ≤ ∥f(y) − f(x)∥M ∥y − x∥,
et donc ∥f(y) − f(x)∥ ≤ M∥y − x∥.
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Chapitre 4

Dérivées d’ordres supérieurs

4.1 Dérivées secondes
Soit E ⊂ Rn ouvert, une fonction f : E → R et un indice j ∈ {1, . . . , n} fixé, tels que

∂f
∂xj

(x) existe en tout x ∈ E. On considère maintenant la fonction ∂f
∂xj

: E → R et soit
k ∈ {1, . . . , n} fixé. Si cette fonction admet une dérivée partielle par rapport à xk en tout

x ∈ E, on peut définir la dérivée partielle seconde
∂

(
∂f

∂xj

)

∂xk
: E → R. On utilise la notation

∂2f
∂xk∂xj

(x) :=
∂

(
∂f

∂xj

)

∂xk
(x). Pour k = j on utilise la notation ∂2f

∂x2
j
(x) =

∂

(
∂f

∂xj

)

∂xj
(x).

Définition 4.1 (matrice hessienne). Soit E ⊂ Rn ouvert non vide et f : E → R telle que
toutes les dérivées partielles secondes ∂2f

∂xi∂xj
: E → R, i, j = 1, . . . , n existent. On appelle

matrice hessienne de f en x ∈ E la matrice Hf (x) ∈ Rn×n :

Hf (x) =




∂2f
∂x2

1
(x) ∂2f

∂x1∂x2
(x) . . . ∂2f

∂x1∂xn
(x)

...
...

∂2f
∂xn∂x1

(x) · · · · · · ∂2f
∂x2

n
(x)




=




∂2f
∂x2

1
(x) ∂2f

∂x1∂x2
(x) . . . ∂2f

∂x1∂xn
(x)

...
...

∂2f
∂xn∂x1

(x) · · · · · · ∂2f
∂x2

n
(x)


 .

Définition 4.2 (espace C2(E)). Soit E ⊂ Rn ouvert non vide. On dit que f : E → R est
de classe C2, f ∈ C2(E), si toutes les dérivées partielles secondes ∂2f

∂xi∂xj
: E → R, i, j =

1, . . . , n existent et sont continues sur E.
On peut aussi définir les dérivées directionnelles mixtes : soit f : E → R différentiable

sur E et Dvf(x) = ∇f(x)⊤v la dérivée directionnelle de f dans la direction fixée v ∈
Rn, ∥v∥ = 1 (norme euclidienne). Si Dvf : E → R admet une dérivée directionnelle dans
la direction fixée w en tout point x ∈ E, on note

D2
wvf(x) = Dw(Dvf)(x)

45
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la dérivée directionnelle mixte.

Lemme 4.3. Soit f ∈ C2(E), E ⊂ Rn ouvert non vide et v,w ∈ Rn, ∥v∥ = ∥w∥ = 1.
Alors

D2
wvf(x) = w⊤Hf (x)v,

où il y a deux produits matriciels, et v et w sont des vecteurs colonnes. Ceci s’écrit aussi

D2
wvf(x) =

n∑

i,j=1

∂2f

∂xi∂xj
(x)vjwi.

Démonstration. Puisque f ∈ C2(E), toutes les dérivées partielles ∂f
∂xj

, j = 1, . . . , n sont
continues sur E et f est différentiable sur E. Donc Dvf(x) = Df(x) · v = ∑n

j=1
∂f
∂xj

(x)vj
et Dvf : E → R est continue. De plus, ses dérivées partielles ∂(Dvf)

∂xi
, i = 1, . . . , n existent

et sont continues sur E car

∂(Dvf)
∂xi

=
∂
(∑n

j=1
∂f
∂xj

vj
)

∂xi
=

n∑

j=1

∂2f

∂xi∂xj
vj

et ∂2f
∂xi∂xj

∈ C0(E) pour tout i, j = 1, . . . , n puisque f ∈ C2(E). Donc Dvf ∈ C1(E) et

Dw(Dvf)(x) =
n∑

i=1

∂(Dvf)
∂xi

(x)wi =
n∑

i,j=1

∂2f

∂xi∂xj
(x)vjwi = w⊤Hf (x)v.

Exemple 4.4. Soit f : R2 → R, (x, y) 7→ f(x, y) = x2y, et considérons les deux directions
v = ( 1√

2 ,
1√
2) et w = (1

2 ,−
√

3
2 ). On a

∂f

∂x
(x, y) = 2xy, ∂f

∂y
(x, y) = x2,

∂2f

∂x2 (x, y) = 2y, ∂2f

∂y∂x
(x, y) = 2x, ∂2f

∂x∂y
(x, y) = 2x, ∂2f

∂y2 (x, y) = 0.

Donc
Df(x, y) = (2xy, x2), Hf (x, y) =

[
2y 2x
2x 0

]

et

D2
wvf(x, y) = w⊤Hf (x, y)v =

[
1
2 −

√
3

2

] [2y 2x
2x 0

] [ 1√
2

1√
2

]
= 1√

2
(x(1 −

√
3) + y).

On remarque de plus que D2
wvf(x, y) = D2

vwf(x, y) puisque Hf est symétrique.

Dans l’exemple précédent on a ∂2f
∂x∂y = ∂2f

∂y∂x . Sous des conditions assez générales, on
aura toujours ∂2f

∂xi∂xj
= ∂2f

∂xj∂xi
, i, j = 1, . . . , n. Ceci est garanti par l’important résultat

suivant :
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Théorème 4.5 (de Schwarz). Soit deux indices fixés i, j ∈ {1, . . . , n}, E ⊂ Rn ouvert non
vide avec n ≥ 2, x ∈ E fixé et f : E → R telle que ∂f

∂xi
, ∂f∂xj

, ∂2f
∂xi∂xj

, ∂2f
∂xj∂xi

existent dans E
et ∂2f

∂xi∂xj
, ∂2f
∂xj∂xi

sont continues en cet x ∈ E. Alors ∂2f
∂xi∂xj

(x) = ∂2f
∂xj∂xi

(x).

Démonstration. Soient s, t > 0 fixés suffisamment petits de sorte que le rectangle rempli
fermé de sommets x,x + sei,x + tej ,x + sei + tej est contenu dans E. Ceci est toujours
possible car x est un point intérieur de E. On considère la quantité

∆(s, t) = f(x + sei + tej) − f(x + sei) − f(x + tej) + f(x)

et les deux fonctions auxiliaires

g(ξ) = f(x+ξei+tej)−f(x+ξei), ξ ∈ [0, s], h(ξ) = f(x+sei+ξej)−f(x+ξej), ξ ∈ [0, t].

La fonction g est dérivable dans ]0, s[ par hypothèse ( ∂f∂xi
existe dans E) et donc, par le

théorème des accroissements finis, il existe s̃ ∈ ]0, s[ tel que

g(s) − g(0) = g′(s̃)s =
(
∂f

∂xi
(x + s̃ei + tej) − ∂f

∂xi
(x + s̃ei)

)
s.

Soit maintenant
φ(η) = ∂f

∂xi
(x + s̃ei + ηej), η ∈ [0, t].

La fonction φ est dérivable dans ]0, t[ car ∂2f
∂xj∂xi

existe dans E, et donc il existe t̃ ∈ ]0, t[
tel que

φ(t) − φ(0) = φ′(t̃)t = ∂2f

∂xj∂xi
(x + s̃ei + t̃ej)t.

On a finalement

∆(s, t) = g(s) − g(0) = g′(s̃)s =
(
φ(t) − φ(0)

)
s = φ′(t̃)st = ∂2f

∂xj∂xi
(x + s̃ei + t̃ej)st.

On répète maintenant les mêmes arguments pour la fonction h :

∃t̂ ∈ ]0, t[ : ∆(s, t) = h(t) − h(0) = h′(t̂)t =
(
∂f

∂xj
(x + sei + t̂ej) − ∂f

∂xj
(x + t̂ej)

)
t

Soit ψ(η) = ∂f
∂xj

(x + ηei + t̂ej), η ∈ [0, s], alors

∃ŝ ∈ ]0, s[ : ψ(s) −ψ(0) = ∂f

∂xj
(x + sei + t̂ej) − ∂f

∂xj
(x + t̂ej) = ∂2f

∂xi∂xj
(x + ŝei + t̂ej)s

et donc
∆(s, t) = ∂2f

∂xi∂xj
(x + ŝei + t̂ej)st = ∂2f

∂xj∂xi
(x + s̃ei + t̃ej)st.
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Si on prend maintenant s = t → 0+, on obtient ŝ, s̃ → 0+ et t̂, t̃ → 0+. Puisque ∂2f
∂xi∂xj

et
∂2f

∂xj∂xi
sont continues en x, on a

lim
s→0+

1
s2 ∆(s, s) = ∂2f

∂xi∂xj
(x) = ∂2f

∂xj∂xi
(x).

Corollaire 4.6. Soit E ⊂ Rn ouvert non vide avec n ≥ 2 et f ∈ C2(E). Alors

∂2f

∂xi∂xj
(x) = ∂2f

∂xj∂xi
(x), ∀x ∈ E, ∀i, j = 1, . . . , n.

Le résultat du théorème de Schwarz n’est pas forcément vrai sans l’hypothèse de
continuité des dérivées partielles secondes, comme l’exemple suivant le montre.

Exercice 4.7. Considérons la fonction f : R2 → R définie par

f(x, y) =





xy3

x2+y2 , (x, y) ̸= (0, 0),
0, (x, y) = (0, 0).

On vérifie que ∂2f
∂x∂y (0, 0), ∂2f

∂y∂x(0, 0) existent mais elles ne sont pas égales.

Grâce au théorème de Schwarz on a que si f : E → R admet toutes les dérivées
partielles secondes ∂2f

∂xi∂xj
: E → R i, j = 1, . . . , n et qu’elles sont continues en x ∈ E, alors

Hf (x) est une matrice symétrique. Donc, en fait, il suffit de calculer seulement n(n+1)
2

dérivées partielles secondes au lieu de n2. Si de plus f est de classe C2(E), il s’ensuit aussi
que les dérivées directionnelles secondes Dvwf(x) existent pour tout v,w ∈ Rn de norme
1 et que Dvwf(x) = Dwvf(x).

4.2 Dérivées partielles d’ordres supérieurs à 2

Soit f : E → R, avec E ⊂ Rn ouvert non vide, et (i1, . . . , ip) ∈ {1, . . . , n}p. On
généralise facilement la notion de dérivée partielle d’ordre p de f par rapport aux variables
xi1 , . . . , xip :

∂pf

∂xip∂xip−1 . . . ∂xi1
(x) =

∂



∂

(
...

(
∂f

∂xi1

)
...

)

∂xip−1




∂xip
(x).

Définition 4.8 (espace Cp(E)). Soit E ⊂ Rn ouvert non vide et f : E → R. On dit que f
est de classe Cp, f ∈ Cp(E), si toutes les dérivées partielles d’ordre p, ∂pf

∂xi1 ··· ∂xip
: E → R,

existent pour tout (i1, . . . , ip) ∈ {1, . . . , n}p et sont continues sur E.
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Grâce au théorème de Schwarz, si f ∈ Cp(E), alors

∂pf

∂xi1 · · · ∂xip
= ∂pf

∂xiσ(1) · · · ∂xiσ(p)

où σ(1), . . . , σ(p) est une permutation arbitraire des indices 1, . . . , p. Autrement dit, l’ordre
de dérivation n’est pas importante si f ∈ Cp(E).

On remarque que si f ∈ Cp(E), alors f ∈ Cq(E), ∀0 ≤ q ≤ p, c.-à-d., Cp(E) ⊂
Cp−1(E) ⊂ · · · ⊂ C1(E) ⊂ C0(E).

Notation par multi-entiers. Considérons une dérivée partielle d’ordre p, ∂pf
∂xi1 ··· ∂xip

.
Soit α = (α1, . . . , αn) où l’entier αj ≥ 0 est le nombre de fois que l’indice j ∈ {1, . . . , n}
apparaît dans la suite i1, . . . , ip. On note |α| = ∑n

j=1 αj (dans ce cas |α| = p). On utilise
souvent la notation

∂|α|f
∂xα = ∂|α|f

∂xα1
1 · · · ∂xαn

n
= ∂pf

∂xi1 · · · ∂xip
où ∂x

αj

j signifie qu’on dérive αj fois par rapport à xj . Cette notation ne distingue pas
l’ordre de dérivation.

Exemple 4.9. f(x) = x1x2
2x

3
3. Calculons ∂|α|f

∂xα pour α = (1, 2, 0) et α = (1, 1, 1).

α = (1, 2, 0) ⇒ ∂3f

∂x1∂x2
2

= ∂3f

∂x1∂x2∂x2
= ∂3f

∂x2∂x1∂x2
= ∂3f

∂x2∂x2∂x1
= 2x3

3

α = (1, 1, 1) ⇒ ∂3f

∂x1∂x2∂x3
= ∂3f

∂x3∂x1∂x2
= ∂3f

∂x2∂x3∂x1
= ∂3f

∂x1∂x3∂x2

= ∂3f

∂x2∂x1∂x3
= ∂3f

∂x3∂x2∂x1
= 6x2x

2
3

Remarquons que le nombre de dérivées partielles d’ordre |α| qui correspondent à un
multi-entier α ∈ Nn, est (

|α|
α

)
= |α|!
α1! · · ·αn! .

4.3 Développement limité et Formule de Taylor
Rappelons d’abord la formule de Taylor pour une fonction d’une seule variable réelle

définie sur un intervalle ouvert I =]a, b[⊂ R et p fois continûment dérivable sur I, f ∈ Cp(I) :
∀x, y ∈ I

f(y) = f(x) + f ′(x)(y − x) + f ′′(x)
2 (y − x)2 + · · · + f (p)(x)

p! (y − x)p +Rp(y)

=
p∑

k=0

f (k)(x)
k! (y − x)k

︸ ︷︷ ︸
=T p

x (y)

+Rp(y)
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où T px (y) = ∑p
k=0

f (k)(x)
k! (y−x)k est le polynôme de Taylor de degré p et Rp(y) est le reste de

la formule de Taylor t.q. limy→x
Rp(y)
|y−x|p = 0 (ou avec notation “petit o”, Rp(y) = o(|y−x|p)).

La formule de Taylor donne donc le développement limité d’ordre p de la fonction f autour
de x. Si, de plus, la dérivée d’ordre p+ 1 existe sur I et est continue, alors le reste de la
formule peut être caractérisé par

Reste de Lagrange : Rp(y) = f (p+1)(x+ θ(y − x))
(p+ 1)! (y − x)p+1 pour un θ ∈ ]0, 1[,

Reste (sous forme d’) intégrale : Rp(y) =
∫ 1

0
(1 − s)p f

(p+1)(x+ s(y − x))
p! (y − x)p+1ds.

Considérons maintenant le cas n ≥ 2. Pour un multi-entier α = (α1, . . . , αn) ∈ Nn,
on utilise les notations suivantes :

α! =
n∏

i=1
αi!, xα =

n∏

i=1
xαi
i .

Un polynôme de degré p dans les variables x = (x1, . . . , xn) s’écrit

q(x) =
∑

α∈Nn

|α|≤p

cαxα, cα ∈ R.

Définition 4.10. Soit f : E → R et x ∈ E̊. S’il existe un polynôme y = (y1, . . . , yn) 7→
q(y) = ∑

α∈Nn

|α|≤p
cα(y − x)α de degré p en y et une fonction Rp : E → R tels que

f(y) = q(y) +Rp(y), ∀y ∈ E (4.1)

et limy→x
Rp(y)

∥y−x∥p = 0, alors on dit que (4.1) est un développement limité d’ordre p de f
autour de x.

Observons que Rp(y) est défini à partrir de f(y) et q(y) pour tout y ∈ E par Rp(y) =
f(y) − q(y) mais la propriété qui le caractérise est limy→x

Rp(y)
∥y−x∥p = 0 ; nous verrons, sous

certaines conditions, des formules plus explicites pour Rp(y) si y est suffisamment proche
de x. Comme pour les fonctions d’une seule variable réelle, si un développement limité
d’ordre p de f autour d’un point existe, alors il est unique et peut être construit en utilisant
la formule de Taylor. On va détailler sa dérivation pour une fonction f ∈ Cp+1(E), avec
E ⊂ Rn ouvert non vide.

Soit x,y ∈ E tels que le segment [x,y] = {z = x + t(y − x), t ∈ [0, 1]} ⊂ E. On note
g(t) = f(x + t(y − x)), qui est bien définie et de classe Cp+1 sur un intervalle ouvert
I =] − δ, 1 + δ[ qui contient [0, 1], grâce au fait que x,y ∈ E sont des points intérieurs.
L’idée pour dériver une formule de Taylor pour f est d’utiliser la formule de Taylor pour
g : I → R :

g(t) = g(0) + g′(0)t+ g′′(0)
2 t2 + · · · + gp(0)

p! tp +Rgp(t), t ∈ [0, 1]
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où
Rgp(t) =

∫ 1

0

(1 − s)p
p! g(p+1)(st)tp+1ds = g(p+1)(θ)

(p+ 1)! t
p+1 pour un θ ∈ ]0, t[.

Or, si on note xt = x + t(y − x) :
g(t) = f(xt)

g′(t) =
n∑

i1=1

∂f

∂xi1
(x + t(y − x))(yi1 − xi1) =

∑

|α|=1

∂|α|f
∂xα (xt)(y − x)α

g′′(t) =
n∑

i2=1

∂

∂xi2




n∑

i1=1

∂f

∂xi1
(x + t(y − x))(yi1 − xi1)


 (yi2 − xi2)

=
n∑

i1,i2=1

∂2f

∂xi1∂xi2
(xt)(yi1 − xi1)(yi2 − xi2)

=
∑

|α|=2

2!
α!
∂|α|f
∂xα (xt)(y − x)α

...

g(p)(t) =
n∑

i1,...,ip=1

∂pf

∂xi1 · · · ∂xip
(x + t(y − x))(yi1 − xi1) · · · (yip − xip)

=
∑

|α|=p

p!
α!
∂|α|f
∂xα (xt)(y − x)α.

Finalement, on peut écrire la formule de Taylor

f(y) = g(1) =
p∑

k=0

1
k!g

(k)(0) +Rgp(1)

=
p∑

k=0

1
k!

∑

|α|=k

k!
α!
∂|α|f
∂xα (x)(y − x)α +Rp(y)

=
∑

|α|≤p

1
α!
∂|α|f
∂xα (x)(y − x)α

︸ ︷︷ ︸
=T p

x (y)

+Rp(y),

où on identifie :

T px(y) =
∑

|α|≤p

1
α!
∂|α|f
∂xα (x)(y − x)α (polynôme de Taylor de degré p)

et

Rp(y) =
∑

|α|=p+1

1
α!
∂(p+1)f

∂xα (x + θ(y − x))(y − x)α pour un θ ∈]0, 1[ (reste de Lagrange),

=
∑

|α|=p+1

(p+ 1)
α!

∫ 1

0
(1 − s)p∂

|α|f
∂xα (x + s(y − x))(y − x)αds (reste intégrale).
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4.3.1 Formule de Taylor pour des fonctions vectorielles

Soit E ⊂ Rn ouvert non vide, f ∈ Cp+1(E,Rm) et x,y ∈ E t.q. [x,y] ⊂ E. On peut
appliquer la formule de Taylor à chaque composante fk de f = (f1, . . . , fm) : il existe
θ1, θ2, . . . , θm ∈ ]0, 1[ t.q.

fk(y) =
∑

|α|≤p

1
α!
∂|α|fk
∂xα (x)(y − x)α +

∑

|α|=p+1

1
α!
∂(p+1)fk
∂xα (x + θk(y − x))(y − x)α.

Toutefois, en général, les θ1, . . . , θm ne sont pas égaux entre eux et on ne peut pas trouver
un seul θ ∈]0, 1[ tel que Rp(y) = ∑

|α|=p+1
1
α!
∂(p+1)f
∂xα (x+θ(y−x))(y−x)α. D’un autre côté,

la formule de Taylor avec reste intégrale est valable aussi pour des fonctions vectorielles :

f(y) =
∑

|α|≤p

1
α!
∂|α|f
∂xα (x)(y−x)α+

∑

|α|=p+1

p+ 1
α!

∫ 1

0
(1−s)p∂

(p+1)f
∂xα (x+s(y−x))(y−x)αds

et fournit le développement limité d’ordre p de f autour de x.



Chapitre 5

Intégrales qui dépendent de
paramètres

Soit I ⊂ R un intervalle avec une infinité de points et E ⊂ R un ensemble non vide.
On considère une fonction f : I × E → R, (t,x) 7→ f(t,x) telle que, pour tout x ∈ E,
l’intégrale (éventuellement généralisée)

g(x) =
∫

I
f(t,x)dt

existe. On se pose la question si certaines propriétés de la fonction g : E → R comme, par
exemple, la continuité ou la dérivabilité, peuvent se déduire de celles de f et si on peut
passer les opérations de limite et dérivation sous le signe de l’intégrale :

lim
x→x0

g(x) ?=
∫

I
lim

x→x0
f(t,x)dt, ∂g

∂xi
(x) ?=

∫

I

∂f

∂xi
(t,x)dt.

Que ceci ne soit pas toujours le cas est illustré par l’exemple suivant.

Exemple 5.1. Soit f : R × R → R, f(t, x) = x2e−x2t. On considère l’intégrale généralisée

g(x) =
∫ ∞

0
f(t, x)dt =

∫ ∞

0
x2e−x2tdt, ∀x ∈ R.

Clairement, f est continue sur R × R et l’intégrale généralisée g(x) existe pour tout x ∈ R.
Toutefois, par calcul direct, on trouve

g(x) =
{

1, x ̸= 0
0, x = 0

ce qui montre que la fonction g n’est pas continue sur R et limx→0
∫∞

0 f(t, x)dt ̸=∫∞
0 f(t, 0)dt.

Exemple 5.2. Soit f : ]0, 1[ × [0, 1] → R,

f(t, x) =
{ 1
xe

− t
x t ∈ ]0, 1[, x ∈ ]0, 1]

0 t ∈ ]0, 1[, x = 0.

53
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On vérifie que f est contine sur ]0, 1[ × [0, 1]. L’intégrale généralisée g(x) =
∫ 1

0 f(t, x)dt
existe pour tout x ∈ [0, 1] et vaut

g(x) =
{

1 − e− 1
x , x ∈ ]0, 1]

0, x = 0.

On a donc limx→0+
∫ 1

0 f(t, x)dt = limx→0+ g(x) = 1 ̸= g(0) =
∫ 1

0 limx→0 f(t, x)dt.

5.1 Intégrales sur un intervalle fermé et borné
Le fait que dans l’exemple 5.2 la continuité de la fonction f n’implique pas la continuité

de la fonction g est dû à un manque d’uniformité dans la continuité de f .
On va d’abord se restreindre au cas où le domaine d’intégration est un intervalle fermé

et borné (compact).
Théorème 5.3. Soient a, b ∈ R, a < b et E ⊂ Rn non vide. Si f : [a, b] × E → R est
continue, alors la fonction g(x) =

∫ b
a f(t,x)dt est bien définie ∀x ∈ E et continue sur E.

En particulier, pour tout x0 ∈ E qui n’est pas isolé :

lim
x→x0

g(x) = g(x0) =
∫ b

a
f(t,x0)dt =

∫ b

a
lim

x→x0
f(t,x)dt.

Démonstration. Fixons d’abord x0 dans E et ensuite ϵ > 0. D’après le théorème de Cantor-
Heine généralisé 2.28 appliqué au sous-ensemble compact K = [a, b] × {x0} ⊂ [a, b] ×E, il
existe δ > 0 tel que,

∀t0 ∈ [a, b] ∀(t,x) ∈ [a, b] ×E
(
|t− t0| + ∥x − x0∥ ≤ δ ⇒ |f(t,x) − f(t0,x0)| ≤ ϵ

b− a

)
.

En choisissant t = t0 ∈ [a, b], ceci donne

∀(t,x) ∈ [a, b] × E
(
∥x − x0∥ ≤ δ ⇒ |f(t,x) − f(t,x0)| ≤ ϵ

b− a

)
.

Pour tout x ∈ E, la fonction t 7→ f(t,x) est continue sur l’intervalle fermé [a, b], donc
l’intégrale g(x) =

∫ b
a f(t,x)dt existe. De plus, pour tout x ∈ B(x0, δ) ∩ E,

|g(x) − g(x0)| =
∣∣∣∣∣

∫ b

a
(f(t,x) − f(t,x0))dt

∣∣∣∣∣

≤
∫ b

a

ϵ

b− a
dt = ϵ,

ce qui prouve la continuité de g en x0 ∈ E. Puisque x0 est arbitraire, g est continue
sur E.

Exercice 5.4. Soit f : R2 → R, (x, y) 7→ f(x, y) = ex2y

x2+y2+1 , et g(y) =
∫ 1

−1 f(x, y)dx.
Calculer limy→0 g(y).
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On considère maintenant la dérivabilité de la fonction g(x) =
∫ b
a f(t,x)dt.

Théorème 5.5. Soient a, b ∈ R, a < b, E ⊂ Rn ouvert non vide, f : [a, b] × E → R
continue et g(x) =

∫ b
a f(t,x)dt, ∀x ∈ E. Soit encore i ∈ {1, . . . , n} fixé. Si ∂f

∂xi
: [a, b]×E →

R existe et est continue, alors ∂g
∂xi

existe pour tout x ∈ E et ∂g
∂xi

(x) =
∫ b
a
∂f
∂xi

(t,x)dt est
continue en tout x ∈ E.

Démonstration. Comme dans la démonstration du Théorème 5.3, soit x0 ∈ E arbitraire,
ϵ > 0 et K = [a, b] × {x0}. Alors, il existe δ > 0 tel que

∀(t,x) ∈ [a, b] × E

(
∥x − x0∥ ≤ δ ⇒

∣∣∣∣
∂f

∂xi
(t,x) − ∂f

∂xi
(t,x0)

∣∣∣∣ ≤ ϵ

b− a

)
.

Quitte à diminuer δ > 0, on peut encore supposer que B(x0, δ) ⊂ E, car E est ouvert. On
a alors pour tout 0 < |s| ≤ δ,
∣∣∣∣∣
g(x0 + sei) − g(x0)

s
−
∫ b

a

∂f

∂xi
(t,x0)dt

∣∣∣∣∣ =
∣∣∣∣∣

∫ b

a

(
f(t,x0 + sei) − f(t,x0)

s
− ∂f

∂xi
(t,x0)

)
dt

∣∣∣∣∣

=
∣∣∣∣∣

∫ b

a

1
s

(∫ s

0

(
∂f

∂xi
(t,x0 + σei) − ∂f

∂xi
(t,x0)

)
dσ

)
dt

∣∣∣∣∣

≤
∫ b

a

1
|s|

∣∣∣∣
∫ s

0

∣∣∣∣
∂f

∂xi
(t,x0 + σei) − ∂f

∂xi
(t,x0)

∣∣∣∣ dσ
∣∣∣∣ dt ≤ ϵ,

ce qui montre que ∂g
∂xi

(x0) = lims→0
g(x0+sei)−g(x0)

s existe et vaut
∫ b
a
∂f
∂xi

(t,x0)dt. Puisque
∂f
∂xi

est continue sur [a, b] × E, ∂g
∂xi

est continue sur E.

5.2 Intégrales avec des bornes variables
Considérons maintenant le cas où les bornes d’intégration dépendent aussi de x :

g(x) =
∫ b(x)

a(x)
f(t,x)dt

avec a, b : E ⊂ Rn →]α, β[⊂ R et f :]α, β[×E → R.

Théorème 5.6. Soit −∞ ≤ α < β ≤ +∞, E ⊂ Rn ouvert non vide, a, b ∈ C1(E) tels que
Im(a), Im(b) ⊂]α, β[ et f :]α, β[×E → R continue, avec dérivées partielles ∂f

∂xi
:]α, β[×E →

R, i = 1, . . . , n continues. Alors g ∈ C1(E) et

∂g

∂xi
(x) = ∂b

∂xi
(x)f(b(x),x) − ∂a

∂xi
(x)f(a(x),x) +

∫ b(x)

a(x)

∂f

∂xi
(t,x)dt.

Démonstration. Soit c ∈]α, β[ et définissons la fonction G(s,x) =
∫ s
c f(t,x)dt, (s,x) ∈

]α, β[×E. Alors

g(x) =
∫ c

a(x)
f(t,x)dt+

∫ b(x)

c
f(t,x)dt = G(b(x),x) −G(a(x),x).
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Montrons que la fonction G(s,x) a toutes les dérivées partielles en tout (s,x) ∈]α, β[×E.
Par un résultat fondamental d’analyse I, ∂G

∂s (s,x) existe et vaut f(s,x).
Pour s ∈]c, β[, le Théorème 5.5 assure que ∂G

∂xi
(s,x) existe et vaut

∫ s
c
∂f
∂xi

(t,x)dt.
La même conclusion est vraie pour s ∈]α, c[ car la fonction x 7→ ∫ c

s f(t,x)dt admet
une dérivée partielle en xi et qu’elle vaut

∫ c
s
∂f
∂xi

(t,x)dt. Ainsi ∂G
∂xi

(s,x) existe et vaut
∫ s
c
∂f
∂xi

(t,x)dt. Enfin, pour s = c on a G(c,x) = 0 sur E et donc ∂G
∂xi

(c,x) existe et est nul
et ∂G

∂xi
(c,x) = 0 =

∫ c
c
∂f
∂xi

(t,x)dt. En résumé, pour tout s ∈]α, β[ et x ∈ E, ∂G
∂xi

(s,x) existe
et vaut

∫ s
c
∂f
∂xi

(t,x)dt.
Montrons que les dérivées partielles sont continues sur ]α, β[×E. Ceci est vrai pour

∂G
∂s (s,x) = f(s,x). Pour i ∈ {1, . . . , n} fixé, on a

∂G

∂xi
(s,x) =

∫ s

c

∂f

∂xi
(t,x)dt =

∫ 1

0

∂f

∂xi
(c+ (s− c)τ,x)(s− c)dτ.

Cette dernière expression est continue en (s,x) en tant qu’intégrale sur τ dans le compact
[0, 1] d’une fonction continue en (τ, s,x). Voir le théorème 5.3.

A ce stade, nous avons donc prouvé que G est de classe C1 sur ]α, β[×E. Par les
propriétés de dérivation de fonctions composées on a que g(x) = G(b(x),x) −G(a(x),x)
est de classe C1 sur E et

∂g

∂xi
(x) = ∂G

∂s
(b(x),x) ∂b

∂xi
(x) + ∂G

∂xi
(b(x),x) − ∂G

∂s
(a(x),x) ∂a

∂xi
(x) − ∂G

∂xi
(a(x),x)

= f(b(x),x) ∂b
∂xi

(x) +
∫ b(x)

c

∂f

∂xi
(t,x)dt− f(a(x),x) ∂a

∂xi
(x) −

∫ a(x)

c

∂f

∂xi
(t,x)dt

= f(b(x),x) ∂b
∂xi

(x) − f(a(x),x) ∂a
∂xi

(x) +
∫ b(x)

a(x)

∂f

∂xi
(t,x)dt.

Exercice 5.7. Soit g(y) =
∫√

y
1

e−xy

x dx, y > 0. Calculer g′(y) si elle existe.

5.3 Intégrales généralisées dépendant de paramètres

On considère maintenant le cas où l’intégrale est définie sur un intervalle non compact.
On se limite à discuter le cas d’un intervalle de la forme [a, b[ où b pourrait être +∞ mais
tous les autres cas se traitent de façon similaire.

Soit donc E ⊂ Rn un ensemble non vide, et f : [a, b[×E → R une fonction continue
telle que l’intégrale généralisée

g(x) =
∫ b

a
f(t,x)dt
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converge pour tout x ∈ E, c-à-d, limc→b−
∫ c
a f(t,x)dt existe pour tout x ∈ E. Comme

dans la section précédente, pour pouvoir établir la continuité de la fonction g, on a besoin
de quelque forme d’uniformité en x pour la convergence de l’intégrale.

Définition 5.8. Soit E ⊂ Rn un sous-ensemble non vide et f : [a, b[×E → R une fonction
continue. On dit que l’intégrale

∫ b
a f(t,x)dt converge uniformément sur E si elle converge

pour tout x ∈ E et si

∀ϵ > 0 ∃c̄ ∈]a, b[: ∀c ∈ [c̄, b[ ∀x ∈ E

∣∣∣∣∣

∫ b

c
f(t,x)dt

∣∣∣∣∣ ≤ ϵ.

Avec cette définition, on peut établir le résultat suivant.

Théorème 5.9. Soient −∞ < a < b ≤ +∞ et E ⊂ Rn non vide. Si f : [a, b[×E → R
est continue et l’intégrale

∫ b
a f(t,x)dt converge uniformément sur E, alors la fonction

g(x) =
∫ b
a f(t,x)dt est continue sur E.

Démonstration. Soit x0 ∈ E quelconque et ϵ > 0. Alors, il existe c̄ ∈]a, b[ t.q. | ∫ bc̄ f(t,x)dt| ≤
ϵ, ∀x ∈ E, grâce à la convergence uniforme de l’intégrale. En utilisant le théorème de
Cantor-Heine généralisé 2.28, il existe δ > 0 t.q. |f(t,x) − f(t,x0)| ≤ ϵ

c̄−a , ∀t ∈ [a, c̄], x ∈
B(x0, δ) ∩ E. Donc, pour tout x ∈ B(x0, δ) ∩ E,

|g(x) − g(x0)| ≤
∣∣∣∣
∫ c̄

a
(f(t,x) − f(t,x0))dt

∣∣∣∣+
∣∣∣∣∣

∫ b

c̄
f(t,x)dt

∣∣∣∣∣+
∣∣∣∣∣

∫ b

c̄
f(t,x0)dt

∣∣∣∣∣ ≤ 3ϵ,

ce qui montre la continuité de g en tout x0 ∈ E.

On a un résultat similaire pour la dérivabilité de g qu’on énonce sans démonstration.

Théorème 5.10. Soit −∞ < a < b ≤ +∞ et E ⊂ Rn ouvert non vide. Si f ∈ C1([a, b[×E)
et les intégrales

∫ b
a f(t,x)dt,

∫ b
a
∂f
∂xi

(t,x)dt, i = 1, . . . , n, convergent uniformément sur E,
alors la fonction g(x) =

∫ b
a f(t,x)dt est de classe C1 sur E et ∂g

∂xi
(x) =

∫ b
a
∂f
∂xi

(t,x)dt.

Vérifier la condition de convergence uniforme de l’intégrale n’est parfois pas immédiat.
Voici un critère de majoration qui est souvent plus simple à vérifier.

Théorème 5.11. Soit −∞ < a < b ≤ +∞ et E ⊂ Rn ouvert non vide. Si f : [a, b[×E →
R est continue et il existe une fonction h : [a, b[→ R+ telle que

∫ b
a h(t)dt converge et

|f(t,x)| ≤ h(t), ∀(t,x) ∈ [a, b[×E, alors la fonction g(x) =
∫ b
a f(t,x)dt est continue sur

E.
Si en plus f est de classe C1 et il existe h1, . . . , hn : [a, b[→ R t.q. pour tout i = 1, . . . , n,∫ b

a hi(t)dt existe et | ∂f∂xi
(t,x)| ≤ hi(t), ∀(t,x) ∈ [a, b[×E, alors g ∈ C1(E).

Démonstration. Il suffit de remarquer que la condition de majoration du théorème implique
que l’intégrale

∫ b
a f(t,x)dt converge uniformément. En effet, puisque

∫ b
a h(t)dt converge,

pour tout ϵ > 0 il existe c̄ ∈]a, b[ t.q.
∫ b
c h(t)dt ≤ ϵ, ∀c ∈ [c̄, b[, et donc | ∫ bc f(t,x)dt| ≤ ϵ, ce

qui implique que l’intégrale
∫ b
a f(t,x)dt converge uniformément. Une remarque analogue

est valable pour chacune des intégrales
∫ b
a
∂f
∂xi

(t,x)dt.
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Remarque 5.12. Dans les théorèmes 5.9 et 5.10, la condition d’intégrabilité uniforme de∫ b
a f(t,x)dt et

∫ b
a
∂f
∂xi

(t,x)dt, 1 ≤ i ≤ n, sur tout l’ensemble E est parfois trop contraignante.
Elle peut être affaiblie de la façon suivante :

Il existe un recouvrement {Uα}α de E, avec Uα ouverts et E ⊂ ⋃
α Uα, tel que, pour

tout α, les intégrales
∫ b
a f(t,x)dt et

∫ b
a
∂f
∂xi

(t,x)dt, 1 ≤ i ≤ n, convergent uniformément sur
Uα ∩ E.

Alors, les conclusions des théorèmes 5.9, 5.10 sont encore valables. Pour généraliser
leur démonstration il suffit de remarquer que, pour tout x0 ∈ E, il existe α tel que x0 ∈ Uα
(puisque {Uα}α est un recouvrement de E). Les intégrales

∫ b
a f(t,x)dt et

∫ b
a
∂f
∂xi

(t,x)dt étant
uniformément convergentes sur Uα ∩E, on conclut que g(x) est continue / différentiable
sur Uα ∩ E pour tout α et donc sur E = ⋃

α(Uα ∩ E).
Le même raisonnement s’applique au théorème 5.11 où on peut remplacer la condition

de majoration par la suivante :

Il existe un recouvrement {Uα}α de E, avec Uα ouverts et E ⊂ ⋃
α Uα, et, pour chaque

α, des fonctions hi,α : [a, b[→ R+, i = 0, . . . , n, telles que
∫ b
a hi,α(t)dt converge et

• |f(t,x)| ≤ h0,α(t) pour tout (t,x) ∈ [a, b[×(Uα ∩ E),
• | ∂f∂xi

(t,x)| ≤ hi,α(t) pour tout (t,x) ∈ [a, b[×(Uα ∩ E) et tout i ∈ {1, . . . , n}.



Chapitre 6

Difféomorphismes locaux et
fonctions implicites

6.1 Fonctions bijectives et difféomorphismes locaux
Considérons une fonction f : E ⊂ Rn → F ⊂ Rn bijective. Alors on peut définir

l’application inverse (ou “réciproque”) g : F → E telle que

g ◦ f = idE : ∀x ∈ E g(f(x)) = x
f ◦ g = idF : ∀y ∈ F f(g(y)) = y.

E F

x y

f

g

Un premier intérêt à étudier la bijectivité d’une fonction est de pouvoir garantir
l’existence d’une solution unique x = g(y) du système d’équations non-linéaires

f(x) = y, ⇐⇒





f1(x1, . . . , xn) = y1
...

fn(x1, . . . , xn) = yn

pour tout y = (y1, . . . , yn) ∈ F . Souvent, on souhaite avoir aussi de bonnes propriétés de
stabilité aux petites perturbations, i.e. si x̃ = g(ỹ) et ỹ → y on souhaite que x̃ → x ce
qui revient à demander la continuité de la fonction inverse (en plus de la continuité de f).
On parle d’homéomorphisme lorsque f est une bijection continue avec inverse continu.

Définition 6.1 (Homéomorphisme). Soient E,F ⊂ Rn ouverts non vides. Une application
f : E → F est un homéomorphisme si elle est bijective et si f et son inverse g sont
continues.

Un autre intérêt d’étudier des bijections est pour introduire un changement de variables.
Soit f : E → F une bijection et ϕ : F → R, y 7→ ϕ(y) = ϕ(y1, . . . , yn), une fonction réelle.

59
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Grâce à l’application f , on peut exprimer ϕ en fonction des variables x = (x1, . . . , xn) ∈ E :

ϕ̃ = ϕ ◦ f : E → R, ϕ̃(x) = ϕ(f(x)), x ∈ E

et vice versa, étant donné ϕ̃ : E → R, on peut l’exprimer en fonction des variables y :

ϕ = ϕ̃ ◦ g : F → R, ϕ(y) = ϕ̃(g(y)), y ∈ F,

où g : F → E est l’inverse de f . Dans ce cas, si ϕ est une fonction régulière, par exemple de
classe Ck, on souhaite que la fonction transformée ϕ̃ soit aussi de classe Ck, et vice-versa.
Ceci est garanti si le changement de variables f et son inverse sont de classe Ck.
Exemple 6.2. Transformation en coordonnées polaires :
(
x
y

)
= f(ρ, θ) =

(
ρ cos θ
ρ sin θ

)
f : ]0,+∞[ × ]−π, π[ → R2 \ {(x, y) ∈ R2 : x ≤ 0, y = 0}.

Cette transformation est continue, même de classe C∞, et inversible. De plus, l’application
inverse est continue, même de classe C∞, sur R2 \ {(x, y) ∈ R2 : x ≤ 0, y = 0} →
]0,+∞[ × ]−π, π[.

On va étudier dans ce chapitre des bijections continûment différentiables avec applica-
tion inverse continûment différentiable. Ces applications sont appelées difféomorphismes.
Définition 6.3 (Difféomorphisme). Soient E,F ⊂ Rn ouverts non vides. Une application
f : E → F inversible de classe C1, f ∈ C1(E,Rn), est un difféomorphisme si l’application
inverse g : F → E (t.q. g ◦ f = idE et f ◦ g = idF ) est de classe C1 sur F , g ∈ C1(F,Rn).
De plus, on dit que f est un k-difféomorphisme si f ∈ Ck(E,Rn) et l’application inverse
g ∈ Ck(F,Rn).
Remarque 6.4. A strictement parler, f : E → F est un difféomorphisme (E et F étant
des ouverts non vides) si f est différentiable en tout point de E, bijective et son inverse
g : F → E est différentiable en tout point de F . Dans ce cours, sauf mention contraire,
nous rajouterons l’hypothèse que f et g sont de classe C1.

Établir si une application f : E → F est un difféomorphisme est souvent compliqué.
On introduit une définition plus faible qui est plus facile à vérifier :
Définition 6.5 (Difféomorphisme local). Soit E ⊂ Rn ouvert non vide, x0 ∈ E et
f : E → Rn une application de classe C1. On dit que f est un difféomorphisme local en
x0 s’il existe un ouvert U ⊂ E contenant x0 et un ouvert V ⊂ Rn contenant f(x0) tels
que f : U → V est un difféomorphisme (fonction bijective avec inverse g : V → U de
classe C1). Si f et g sont de classe Ck sur U et V respectivement, on dit que f est un
k-difféomorphisme local. (Nous appellerons g un inverse local de f restreinte à un voisinage
de x0.)

Soient E,F,G ⊂ Rn ouverts non vides. Il est facile de montrer (exercice !) que si
f : E → F est un difféomorphisme local en x0 ∈ E et h : F → G est un difféomorphisme
local en y0 = f(x0) ∈ F , alors h ◦ f est un difféomorphisme local en x0.

On pourrait penser que si f : E → F , avec E,F ⊂ Rn ouvert, est un difféomorphisme
local en tout point x0 ∈ E, alors elle est un difféomorphisme global entre E et F . Ceci
n’est en général pas vrai, comme l’exemple suivant le montre.
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Exemple 6.6. Soit f : R2 → R2 donnée par
(
y1
y2

)
= f(x1, x2) =

(
ex1 cosx2
ex1 sin x2

)
.

On verra par la suite que f est un difféomorphisme local en tout point x0 ∈ R2. Toutefois,
elle n’est pas un difféomorphisme global car elle n’est pas une bijection : f(0, 0) = f(0, 2kπ),
∀k ∈ Z.

Toutefois, si on ajoute l’hypothèse que f est une bijection, alors le difféomorphisme est
global.

Lemme 6.7. Soient E,F ⊂ Rn ouverts non vides et f : E → F un difféomorphisme local
en tout point x ∈ E. Si f est une bijection entre E et F , alors elle est un difféomorphisme
global.

La démonstration de ce théorème est laissée comme exercice.

6.2 Théorème d’inversion locale
On s’intéresse à comprendre sous quelles conditions une application f : E → Rn, avec

E ⊂ Rn ouvert, est un difféomorphisme local en x0 ∈ E. Pour cela, on va d’abord étudier
le cas d’une application affine f : Rn → Rn,

f(x) = Ax + b, A ∈ Rn×n, b ∈ Rn

qui est clairement de classe C1 (même C∞). Cette transformation est une bijection si et
seulement si la matrice A est inversible, c.-à-d. si et seulement si det(A) ̸= 0. Dans ce cas,
l’application inverse est donnée par x = g(y) = A−1(y − b) et g est de classe C1 (même
C∞). Donc f(x) = Ax + b est un difféomorphisme (global) si et seulement si det(A) ̸= 0.

On considère maintenant le cas d’une application non linéaire f : E → Rn de classe C1

sur E ⊂ Rn ouvert. La différentiabilité de f en x0 ∈ E assure que l’on peut écrire

f(x) = f(x0) +Df(x0)(x − x0) + Rf (x), lim
x→x0

∥Rf (x)∥
∥x − x0∥ = 0,

pour tout x ∈ E. Donc, localement autour de x0, f(x) est bien approchée par la fonction
affine T1

x0(x) = f(x0) +Df(x0)(x − x0). On soupçonne alors que f est un difféomorphisme
local en x0 si et seulement si det(Df(x0)) ̸= 0.

On remarque que la condition det(Df(x0)) ̸= 0 n’est pas nécessaire pour que f soit
localement inversible. Par exemple, la fonction f : R2 → R2, (x, y) 7→ f(x, y) = (x3, y) est
localement inversible autour de (x, y) = (0, 0) (et même globalement sur tout R2) même

si det(Df(0, 0)) = det
[
0 0
0 1

]
= 0. Toutefois, cette condition est nécessaire pour que la

fonction f soit un difféomorphisme local, comme le lemme suivant le montre.

Lemme 6.8. Soit f : E → Rn, avec E ⊂ Rn ouvert, un difféomorphisme local autour de
x0 ∈ E. Alors det(Df(x0)) ̸= 0.
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Démonstration. Puisque f : E → Rn est un difféomorphisme local en x0 ∈ E, il existe un
ouvert U ⊂ E contenant x0 et un ouvert V ⊂ Rn contenant f(x0) = y0 t.q. f : U → V est
bijective et la fonction inverse g : V → U est de classe C1. Puisque g(f(x)) = x, ∀x ∈ U ,
f(g(y)) = y, ∀y ∈ V et f et g sont différentiables en x0 et y0, on a :

Df(x0)Dg(y0) = Dg(y0)Df(x0) = I

ce qui implique que Df(x0) est inversible et det(Df(x0)) ̸= 0.

La condition det(Df(x0)) ̸= 0 est aussi suffisante pour que f soit un difféomorphisme
local autour de x0, comme le théorème suivant le montre.

Théorème 6.9 (d’inversion locale). Soit E ⊂ Rn ouvert, f ∈ C1(E,Rn) et x0 ∈ E.
Si det(Df(x0)) ̸= 0, alors f est un difféomorphisme local en x0, c.-à-d. qu’il existe un
ouvert U ⊂ E contenant x0 et un ouvert V ⊂ Im(f) contenant f(x0) = y0 tels que
f : U → V est une bijection et la fonction inverse g : V → U est de classe C1. De plus
Dg(f(x)) = (Df(x))−1 pour tout x ∈ U .

Avant de démontrer ce théorème, nous allons prouver des résultats intermédiaires.
Commençons par le théorème du point fixe de Banach.

Théorème 6.10 (du point fixe de Banach). Soit un fermé non vide K ⊂ Rn et une
fonction ϕ : K → Rn telle que

• ϕ(K) ⊂ K,
• il existe ρ ∈]0, 1[ tel que ∀v,w ∈ K ∥ϕ(v) − ϕ(w)∥ ≤ ρ∥v − w∥.

Alors il existe un unique v∗ ∈ K tel que ϕ(v∗) = v∗ .

Démonstration.
Existence. Fixons v(0) dans K et définissons {v(k)}k∈N ⊂ K par récurrence comme

suit :
v(k+1) = ϕ(v(k)) ∈ K, k ≥ 0.

Vérifions que {v(k)}k∈N est de Cauchy. Pour k ∈ N,

∥v(k+1) − v(k)∥ = ∥ϕ(v(k)) − ϕ(v(k−1))∥ ≤ ρ∥v(k) − v(k−1)∥ ≤ . . . ≤ ρk∥v(1) − v(0)∥.

Soit ϵ > 0. Alors pour k > m ≥ 0,

∥v(k) − v(m)∥ ≤ ∥v(k) − v(k−1)∥ + . . .+ ∥v(m+1) − v(m)∥ ≤ (ρk−1 + . . .+ρm)∥v(1) − v(0)∥

≤ ρm




∞∑

j=0
ρj


 ∥v(1) − v(0)∥ = ρm(1 − ρ)−1∥v(1) − v(0)∥ < ϵ

si m (et donc k) est suffisamment grand.
Soit v∗ ∈ Rn la limite de {v(k)}k∈N. Alors v∗ ∈ K car K est fermé, et

∥v∗ − ϕ(v∗)∥ ≤ ∥v∗ − v(k+1)∥ + ∥v(k+1) − ϕ(v∗)∥ = ∥v∗ − v(k+1)∥ + ∥ϕ(v(k)) − ϕ(v∗)∥
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≤ ∥v∗ − v(k+1)∥ + ρ∥v(k) − v∗∥ → 0

lorsque k → +∞. D’où ϕ(v∗) = v∗.
Unicité. Supposons qu’il existe un autre u∗ ∈ K tel que ϕ(u∗) = u∗. Alors

∥u∗ − v∗∥ = ∥ϕ(u∗) − ϕ(v∗)∥ ≤ ρ∥u∗ − v∗∥

avec ρ ∈]0, 1[. D’où ∥u∗ − v∗∥ = 0 et u∗ = v∗.

Définition 6.11. Avec les notations du théorème 6.10, puisque ρ < 1, on dit que l’appli-
cation ϕ : K → Rn est contractante ou une contraction.

Pour la démonstration du théorème 6.9 nous avons encore besoin de deux lemmes
suivants.

Lemme 6.12. Soit A ∈ Rm×n. On note par |||A||| la norme spectrale de A, |||A||| =
sup ξ∈Rn

∥ξ∥=1
∥Aξ∥, où ∥ · ∥ denote la norme euclidienne, et par ∥A∥F la norme de Frobenius

de A, ∥A∥F =
√∑m

i=1
∑n
j=1A

2
ij. Alors, on a |||A||| ≤ ∥A∥F .

Démonstration. Grâce à l’inégalité de Cauchy-Schwarz,

|||A|||2 = sup
ξ∈Rn

∥ξ∥=1

m∑

i=1




n∑

j=1
Aijξj




2

≤ sup
ξ∈Rn

∥ξ∥=1

m∑

i=1




n∑

j=1
A2
ij






n∑

j=1
ξ2
j


 = ∥A∥2

F .

Lemme 6.13. Soit −∞ < a < b < ∞ et f : [a, b] → Rm, t 7→ f(t) = (f1(t), . . . , fm(t))
une fonction continue. Alors

∥∥∥∥∥

∫ b

a
f(t)dt

∥∥∥∥∥ ≤
∫ b

a
∥f(t)∥dt,

où ∥ · ∥ est la norme euclidienne.

Démonstration. Chaque fonction fi : [a, b] → R, i = 1, . . . ,m est intégrale, ainsi que la
fonction g = ∥f∥ : [a, b] → R+, étant une composition de fonctions continues sur [a, b].
Notons v ∈ Rm le vecteur de composantes vi =

∫ b
a fi(t)dt, i = 1, . . . ,m. Alors

∥∥∥∥∥

∫ b

a
f(t)dt

∥∥∥∥∥

2

= ∥v∥2 =
m∑

i=1
vivi =

∫ b

a

m∑

i=1
vifi(t)dt ≤

∫ b

a
∥v∥∥f(t)∥dt,

d’où le résultat.

Démonstration du théorème 6.9 d’inversion locale. On va couper la preuve en trois étapes :
(i) On montre qu’il existe r, r̃ > 0 tel que ∀y ∈ B(y0, r̃) l’équation f(x) = y pour

x ∈ B(x0, r) a une solution unique x ∈ B(x0, r) (on utilise le théorème du point fixe
de Banach).
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(ii) Soit V = B(y0, r̃) et U = B(x0, r) ∩ f−1(V ) = {x ∈ B(x0, r) : f(x) ∈ V }, on montre
que f : U → V est une bijection et la fonction inverse g : V → U est continue.

(iii) On montre que g : V → U est de classe C1(V,Rn) et Dg(f(x)) = (Df(x))−1 pour
tout x ∈ U .

Première étape. On étudie l’équation f(x) = y avec y ∈ Rn fixé dans un voisinage
convenable de y0. En notant par I ∈ Rn×n la matrice identité, observons d’abord que
l’application x 7→ I −Df(x0)−1Df(x) ∈ Rn×n est continue sur E (c.-à-d. chaque compo-
sante de la matrice I −Df(x0)−1Df est une fonction continue sur E) et s’annule en x0.
De même l’application x 7→ detDf(x) ∈ R est continue et, par hypothèse, ne s’annule pas
en x0. Il existe donc r > 0 tel que, pour tout x ∈ B(x0, r),

• x ∈ E,
• chaque composante de la matrice I −Df(x0)−1Df(x) est dans

[
− 1

2n ,
1

2n

]
,

• detDf(x) ̸= 0 et donc la matrice jacobienne Df(x) est inversible.
L’équation f(x) = y est équivalente à x = ϕy(x) où ϕy(x) = x − Df(x0)−1(f(x) − y),
grâce au fait que Df(x0) est inversible. On remarque, en particulier, que ϕy ∈ C1(E,Rn).
Alors f(x) = y a une solution dans B(x0, r) si et seulement si ϕy a un point fixe dans
B(x0, r). Mais, pour tout x ∈ B(x0, r),

Dϕy(x) = I −Df(x0)−1Df(x)

et donc
∣∣∣∂ϕ

y
i

∂xj
(x)
∣∣∣ ≤ 1

2n . Ceci implique

|||Dϕy(x)||| ≤ ∥Dϕy(x)∥F =




n∑

i,j=1

∣∣∣∣∣
∂ϕy

i

∂xj
(x)
∣∣∣∣∣

2



1
2

≤ 1
2 , ∀x ∈ B(x0, r).

Par le théorème des accroissements finis (version intégrale, où apparaît le produit matricielle
d’une matrice et d’un vecteur colonne, donnant un vecteur colonne) et les lemmes 6.12-6.13,
on a pour x1,x2 ∈ B(x0, r),

∥ϕy(x2) − ϕy(x1)∥ =
∥∥∥∥
∫ 1

0
Dϕy(x1 + t(x2 − x1)) · (x2 − x1)dt

∥∥∥∥

≤
∫ 1

0
∥Dϕy(x1 + t(x2 − x1)) · (x2 − x1)∥dt

≤
∫ 1

0
|||Dϕy(x1 + t(x2 − x1)︸ ︷︷ ︸

∈B̄(x0,r)

)||| ∥x2 − x1∥dt ≤ 1
2∥x2 − x1∥

et ϕ est contractante sur B(x0, r) pour tout y ∈ Rn. De plus, pour tout x ∈ B(x0, r) et
y ∈ B(y0, r̃), avec r̃ = r

2|||Df(x0)−1||| , on a

∥ϕy(x) − x0∥ ≤ ∥ϕy(x) − ϕy(x0)∥ + ∥ϕy(x0) − x0∥

≤ 1
2∥x − x0∥ + ∥Df(x0)−1(y0 − y)∥ ≤ r

2 + |||Df(x0)−1||| ∥y0 − y∥ < r.
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Donc, si on prend y ∈ B(y0, r̃), on a ϕy(B(x0, r)) ⊂ B(x0, r). Par conséquent, ϕy :
B(x0, r) → B(x0, r) a un point fixe unique x ∈ B(x0, r). Mais puisque ϕy(B(x0, r)) ⊂
B(x0, r), ce point fixe est dans la boule ouverte B(x0, r). On a donc montré que ∀y ∈
B(y0, r̃), il existe un unique x ∈ B(x0, r) t.q. x = ϕy(x), c.-à-d. t.q. f(x) = y.
Deuxième étape. Soit V = B(y0, r̃) et U = B(x0, r) ∩ f−1(V ) = {x ∈ B(x0, r) : f(x) ∈
B(y0, r̃)}. On remarque que f−1(V ) est ouvert (f est continue sur l’ouvert E, donc la
pré-image d’un ouvert est un ouvert), donc U est ouvert. Par l’étape précédente, f : U → V
est une bijection donc on peut définir la fonction inverse g : V → U . On montre que g est
continue. Soit ϵ > 0 et δ = ϵ

2|||Df(x0)−1||| , alors, pour tous y1,y2 ∈ V tels que ∥y1 − y2∥ ≤ δ,
et en notant x1 = g(y1) et x2 = g(y2), on a

∥x1 − x2∥ = ∥ϕy1(x1) − ϕy2(x2)∥
≤ ∥ϕy1(x1) − ϕy1(x2)∥ + ∥ϕy1(x2) − ϕy2(x2)∥

≤ 1
2∥x1 − x2∥ + ∥Df(x0)−1(y1 − y2)∥,

et donc
∥x1 − x2∥ = ∥g(y1) − g(y2)∥ ≤ 2|||Df(x0)−1||| ∥y2 − y1∥ ≤ ϵ

ce qui montre la continuité (uniforme) de g : V → U . Même plus, le calcul précédent
montre que g est Lipschitz.
Troisième étape. Il reste à montrer que g : V → U est de classe C1 et Dg(y) = (Df(x))−1,
∀y ∈ V , où x = g(y). Par le choix de r, Df(x) est inversible pour tout x ∈ B(x0, r). Soit
maintenant y1 ∈ V et x1 = g(y1). Puisque f ∈ C1(E,Rn), on a

f(x1) − f(x) = Df(x)(x1 − x) + Rf (x1) avec lim
x1→x

∥Rf (x1)∥
∥x1 − x∥ = 0.

Ceci implique

x1 − x = g(y1) − g(y) = Df(x)−1(y1 − y) −Df(x)−1Rf (x1)︸ ︷︷ ︸
Rg(y1)

On va montrer que limy1→y
Rg(y1)
∥y1−y∥ = 0. En effet,

lim
y1→y

∥Rg(y1)∥
∥y1 − y∥ = lim

y1→y
∥Df(x)−1Rf (x1)∥

∥y1 − y∥ ≤ lim
y1→y

|||Df(x)−1|||∥Rf (x1)∥
∥y1 − y∥

= |||Df(x)−1||| lim
y1→y

∥Rf (x1)∥
∥x1 − x∥

∥x1 − x∥
∥y1 − y∥ .

D’un autre côté, comme on l’a vu au point précédent

∥x1 − x∥ ≤ 2|||Df(x0)−1||| ∥y1 − y∥,

et donc
lim

y1→y
∥Rg(y1)∥
∥y1 − y∥ ≤ 2|||Df(x)−1||||||Df(x0)−1||| lim

x1→x
∥Rf (x1)∥
∥x1 − x∥ = 0.
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On conclut que g : V → U est différentiable en tout y ∈ V et Dg(y) = Df(x)−1, avec
x = g(y). Enfin, puisque Df(x) est continue en tout x ∈ B(x0, r), Df(x)−1 est continue
pourvu que det(Df(x)) ̸= 0, ce qui est vrai dans B(x0, r). Ceci montre que g ∈ C1(V,Rn).

6.3 Hypersurfaces et fonctions implicites
Considérons une fonction continue ϕ : U ⊂ R2 → R. Le graphe de la fonction ϕ, qu’on

appellera Σ par la suite, donné par Σ = G(ϕ) = {z = (x, y) ∈ U ×R : y = ϕ(x)} représente
une surface de R3. Plus généralement, si on a une fonction continue ϕ : U ⊂ Rn → R, le
graphe Σ = G(ϕ) ⊂ Rn+1 sera une (hyper)surface de Rn+1.

Le fait d’avoir une représentation explicite de l’hypersurface Σ ⊂ Rn+1 comme graphe
d’une fonction ϕ : U ⊂ Rn → R nous permet de définir facilement certaines quantités
locales comme, par exemple, l’hyperplan tangent ou un vecteur normal à l’hypersurface en
un point z0 = (x0, ϕ(x0)) ∈ Σ, si la fonction ϕ est de classe C1. En effet, la fonction ϕ est
bien approchée, dans un voisinage de x0, par l’application affine

T 1
ϕ(x) = ϕ(x0)︸ ︷︷ ︸

=y0

+
n∑

i=1

∂ϕ

∂xi
(x0)(xi − x0,i)

dont le graphe est l’hyperplan Πz0(Σ) = {z ∈ Rn+1 : (−Dϕ(x0), 1) · (z − z0) = 0}
appelé l’hyperplan tangent à la surface Σ au point z0 = (x0, ϕ(x0)). Le vecteur n =
(−Dϕ(x0), 1) ∈ Rn+1 est un vecteur normal à la surface Σ au point z0, étant un vecteur
normal à l’hyperplan tangent à Σ en z0 (voir la définition 3.9 du Chapitre 3). On parle,
alors, d’une surface différentiable ou bien d’une variété différentiable. De plus, si ϕ est de
classe C2, on peut introduire des notions de courbure de la surface au point z0 ∈ Σ, liées à
la matrice hessienne de la fonction ϕ en x0. On ne va pas détailler plus ces notions dans
ce cours.

Considérons maintenant un ensemble Σ ⊂ Rn+1. On peut se poser la question si, autour
d’un point z0 ∈ Σ, l’ensemble peut être représenté localement comme le graphe d’une
fonction continue ϕ : U ⊂ Rn → R. Si ceci est le cas, on dit que Σ est une hypersurface de
Rn+1 localement autour de z0.

Définition 6.14. Soit Σ ⊂ Rn+1, z0 ∈ Σ et k ∈ N. On dit que Σ est une hypersurface de
classe Ck autour de z0 si elle est le graphe d’une fonction de classe Ck localement autour
de z0, c.-à-d., s’il existe un voisinage V de z0, un indice i ∈ {1, . . . , n + 1}, un ouvert
U ⊂ Rn et une fonction ϕ : U → R de classe Ck tels que

Σ ∩ V = G(ϕ) = {x ∈ Rn+1 : xi = ϕ(x∼i), x∼i = (x1, . . . , xi−1, xi+1, . . . , xn+1) ∈ U}.

On dit que Σ est une hypersurface de classe Ck si elle est le graphe d’une fonction de
classe Ck localement autour de chacun de ses points.

On s’intéresse par la suite à des ensembles définis par

Σ = {x ∈ E : f(x) = 0}, avec f : E ⊂ Rn+1 → R régulière (à préciser),
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c.-à-d. que Σ est la courbe de niveau zéro de la fonction f définie sur l’ouvert E ⊂ Rn+1.
Si Σ est une hypersurface, localement autour d’un point z0 ∈ Σ, alors elle peut être
représentée comme le graphe d’une fonction ϕ : U ⊂ Rn → R localement autour de z0,
c’est-à-dire il existe un ouvert V ⊂ Rn+1 contenant z0, un ouvert U ⊂ Rn et un indice
i ∈ {1, . . . , n+ 1} tels que

Σ ∩ V = {x ∈ Rn+1 : xi = ϕ(x∼i), x∼i ∈ U}
= {x ∈ V : f(x1, . . . , xn+1) = 0}.

On dit dans ce cas que l’équation f(x) = 0 définit implicitement une fonction xi = ϕ(x∼i)
localement autour du point z0. Autrement dit, la relation

f(x1, . . . , xn+1) = 0 (6.1)

permet d’exprimer la variable xi en fonction des autres variables, xi = ϕ(x∼i), et le graphe
de ϕ coïncide avec l’ensemble des zéros de f dans un voisinage de z0. On se pose alors
la question de savoir quand l’équation (6.1) peut être explicitée par rapport à une des
variables.

6.4 Théorème des fonctions implicites – cas scalaire
Regardons plus en détail le cas d’une fonction f : R2 → R de deux variables réelles.

Exemple 6.15. Soit Σ = {(x, y) ∈ R2 : f(x, y) = x2 − y = 0}. L’équation f(x, y) = 0
définit implicitement la fonction y = ϕ(x) = x2, ∀x ∈ R. C’est à dire, pour tout x ∈ R,
f(x, ϕ(x)) = x2 − ϕ(x) = 0 et G(ϕ) = Σ.

Exemple 6.16. Soit Σ = {(x, y) ∈ R2 : f(x, y) = x2 +y2 −1 = 0}. Clairement, l’ensemble
Σ correspond au cercle unitaire.

x

y

Σ

x

y

y =
√

1− x2

x

y

y = −
√

1− x2

x

y

x =
√

1 − y2

Les quatre fonctions y = ±
√

1 − x2 et x = ±
√

1 − y2 sont définies implicitement par
f(x, y) = 0, Toutefois, on ne peut pas trouver une seule fonction y = ϕ(x) ou x = ϕ(y)
qui décrit tout l’ensemble Σ. En revanche, soit z0 ∈ Σ arbitraire. Alors, autour de z0, on
peut définir une fonction y = ϕ(x) ou x = ϕ(y). Par exemple, soit z0 = (x0, y0) ∈ Σ.
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— Si y0 > 0, alors on peut prendre y = ϕ(x) =
√

1 − x2 et on a f(x, ϕ(x)) = 0 dans un
voisinage de x0 et G(ϕ) coïncide avec Σ dans un voisinage de z0.

— Si y0 < 0 alors on peut prendre y = ϕ(x) = −
√

1 − x2 et on a f(x, ϕ(x)) = 0 dans
un voisinage de x0 et G(ϕ) coïncide avec Σ dans un voisinage de z0.

— Si y0 = 0, par exemple z0 = (1, 0), alors on peut expliciter x en fonction de y,
x = ϕ(y) =

√
1 − y2 mais non pas y en fonction de x.

Exemple 6.17. Soit Σ = {(x, y) ∈ R2 : f(x, y) = x2 − y2 = 0}. Clairement, l’équation
f(x, y) = 0 est satisfaite si et seulement si x = y ou x = −y.

x

y

Σ

x

y

y = x

x

y

y = −x

Soit z0 = (x0, y0) ∈ Σ.
— Si x0y0 > 0 alors f(x, y) = 0 définit implicitement la fonction y = ϕ(x) = x (ou bien

la fonction x = ϕ(y) = y) et G(ϕ) coïncide avec Σ dans un voisinage de z0.
— Pareillement, si x0y0 < 0 alors f(x, y) = 0 définit implicitement la fonction y =

ϕ(x) = −x (ou bien la fonction x = ϕ(y) = −y) et G(ϕ) coïncide avec Σ dans un
voisinage de z0.

— En revanche, si (x0, y0) = (0, 0), il n’est pas possible de trouver ni une fonction
y = ϕ(x) ni une fonction x = ϕ(y) définies implicitement par l’équation f(x, y) = 0
qui décrivent Σ dans un voisinage de z0 = (0, 0). On dit dans ce cas que (0, 0) est
un point singulier de Σ. On remarque que ∇f(0, 0) = (0, 0).

Exemple 6.18. Soit Σ = {(x, y) ∈ R2 : f(x, y) = xey + yex = 0}. L’équation f(x, y) =
xey + yex = 0 ne peut pas être explicitée sous forme simple ni par rapport à x ni par
rapport à y. Est-ce que l’équation f(x, y) = 0 définit implicitement une fonction y = ϕ(x)
ou x = ϕ(y) au moins localement autour de chaque point z0 ∈ Σ, dont le graphe coïncide
avec Σ dans un voisinage de z0 ? On verra que la réponse à cette question est positive.

Soit f : R2 → R et z0 = (x0, y0) tel que f(x0, y0) = 0. Supposons que f(x, y) = 0
définit implicitement une fonction y = ϕ(x) autour de z0, c’est-à-dire ∃δ > 0 et ϕ :
]x0 − δ, x0 + δ[ → R tels que y0 = ϕ(x0) et f(x, ϕ(x)) = 0, ∀x ∈ ]x0 − δ, x0 + δ[. Supposons
de plus que f et ϕ sont de classe C1 et notons f̃(x) = f(x, ϕ(x)). Alors, par la formule de
dérivation de fonctions composées, on a :

0 = d

dx
f̃(x) = d

dx
f(x, ϕ(x)) = ∂f

∂x
(x, ϕ(x)) + ∂f

∂y
(x, ϕ(x))ϕ′(x), ∀x ∈ ]x0 − δ, x0 + δ[.

On en tire que si ∂f
∂y (x0, y0) ̸= 0, alors

ϕ′(x0) = −
∂f
∂x (x0, y0)
∂f
∂y (x0, y0)

.
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Plus généralement, si ∂f
∂y (x0, y0) ̸= 0, alors ∂f

∂y (x, ϕ(x)) ̸= 0 pour tout x suffisamment
proche de x0 et

ϕ′(x) = −
∂f
∂x (x, ϕ(x))
∂f
∂y (x, ϕ(x))

Même si on ne connaît pas ϕ, on peut quand même évaluer sa dérivée ϕ′(x0) si ∂f∂y (x0, y0) ̸= 0.
De plus, si f et ϕ sont de classe C2, on peut itérer le raisonnement :

0 = d2

dx2 f(x, ϕ(x))

= ∂

∂x

(
∂f

∂x
(x, ϕ(x)) + ∂f

∂y
(x, ϕ(x))ϕ′(x)

)

= ∂2f

∂x2 (x, ϕ(x)) + 2 ∂2f

∂x∂y
(x, ϕ(x))ϕ′(x) + ∂2f

∂y2 (x, ϕ(x))(ϕ′(x))2 + ∂f

∂y
(x, ϕ(x))ϕ′′(x).

Par conséquent,

ϕ′′(x0) = − 1
∂f
∂y (x0, y0)

(
∂2f

∂x2 (x0, y0) + 2 ∂2f

∂x∂y
(x0, y0)ϕ′(x0) + ∂2f

∂y2 (x0, y0)(ϕ′(x0))2
)
.

et, pour tout x suffisamment proche de x0,

ϕ′′(x) = − 1
∂f
∂y (x, ϕ(x))

(
∂2f

∂x2 (x, ϕ(x)) + 2 ∂2f

∂x∂y
(x, ϕ(x))ϕ′(x) + ∂2f

∂y2 (x, ϕ(x))(ϕ′(x))2
)
.

Plus généralement, si f est de classe Ck, alors ϕ sera aussi de classe Ck et on peut calculer
explicitement ϕ(k)(x0). Tous les calculs précédents sont valables sous l’hypothèse qu’une
fonction implicite ϕ de classe Ck existe et que ∂f

∂y (x0, y0) ̸= 0. Cette dernière condition
s’avère être suffisante pour l’existence d’une fonction implicite.

Théorème 6.19 (des fonctions implicites — cas n = 2). Soit f : E ⊂ R2 → R, E
ouvert non vide, de classe C1, Σ = {(x, y) ∈ E : f(x, y) = 0} et z0 = (x0, y0) ∈ Σ t.q.
∂f
∂y (x0, y0) ̸= 0. Alors il existe un voisinage U = ]x0 − δ, x0 + δ[ de x0, un ouvert V ⊂ E

contenant z0 et une unique fonction ϕ : U → R de classe C1 tels que
— y0 = ϕ(x0) ;
— (x, ϕ(x)) ∈ V et f(x, ϕ(x)) = 0, ∀x ∈ U ;
— G(ϕ) = Σ ∩ V .

De plus, pour tout x ∈ U , ∂f
∂y (x, ϕ(x)) ̸= 0 et

ϕ′(x) = −
∂f
∂x (x, ϕ(x))
∂f
∂y (x, ϕ(x))

,

et si f ∈ Ck(E), alors ϕ ∈ Ck(U).
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Démonstration. Supposons ∂f
∂y (x0, y0) > 0 (le cas ∂f

∂y (x0, y0) < 0 est identique). Puisque
∂f
∂y est continue sur E (f étant de classe C1), il existe δ1, δ2 > 0 tels que, pour tout
(x, y) ∈ W := [x0 − δ1, x0 + δ1] × [y0 − δ2, y0 + δ2], on a

(x, y) ∈ E et ∂f

∂y
(x, y) > 0.

Pour tout x ∈ [x0 − δ1, x0 + δ1], la fonction y 7→ gx(y) = f(x, y) est strictement croissante
dans l’intervalle [y0 − δ2, y0 + δ2] car g′

x(y) = ∂f
∂y (x, y) > 0. En particulier

gx0(y0 − δ2) < gx0(y0) = f(x0, y0) = 0 < gx0(y0 + δ2).

Puisque f est continue, il existe 0 < δ ≤ δ1 tel que

gx(y0−δ2) = f(x, y0−δ2) < 0 et gx(y0+δ2) = f(x, y0+δ2) > 0, ∀x ∈ U := ]x0−δ, x0+δ[

comme illustré dans la figure ci dessous.

x

y

∂f
∂y > 0

+ + +

− − − − −

Pour x ∈ U , gx(y) est continue et strictement croissante sur l’intervalle [y0 −δ2, y0 +δ2],
et donc il existe un unique y = ϕ(x) ∈ ]y0 − δ2, y0 + δ2[ tel que gx(y) = f(x, y) = 0. Cette
procédure permet de définir de façon unique une fonction ϕ : U → R telle que

ϕ(x0) = y0 et f(x, ϕ(x)) = 0 ∀x ∈ U.

De plus, si on note V = ]x0 − δ, x0 + δ[ × ]y0 − δ2, y0 + δ2[, on a G(ϕ) = {(x, y) ∈ V :
f(x, y) = 0} = Σ ∩ V .

Continuité de ϕ. Soit x̄ ∈ U et ȳ = ϕ(x̄). Pour tout ϵ ∈]0, δ2 − |ȳ − y0| ], considérons
Wϵ = [x0 − δ1, x0 + δ1] × [ȳ − ϵ, ȳ + ϵ]. Puisque Wϵ ⊂ W on a que ∂f

∂y > 0 sur Wϵ. En
raisonnant comme auparavant, mais sur Wϵ au lieu de W , il existe δϵ > 0 et une fonction
ϕ̄ : ]x̄−δϵ, x̄+δϵ[∩U → R tels que ȳ = ϕ̄(x̄) et f(x, ϕ̄(x)) = 0, ∀x ∈ ]x̄−δϵ, x̄+δϵ[∩U . Par
l’unicité de la fonction implicite sur W et le choix de Wϵ, on a ϕ̄(x) = ϕ(x) ∈ [ȳ− ϵ, ȳ+ ϵ],
∀x ∈ ]x̄− δϵ, x̄+ δϵ[ ∩ U . On a donc montré que pour tout ϵ > 0 il existe δϵ > 0 tel que
|ϕ(x) − ϕ(x̄)| ≤ ϵ pour tout x ∈ ]x̄ − δϵ, x̄ + δϵ[ ∩ U ce qui montre la continuité de ϕ en
tout point x̄ ∈ U .
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Continuité de ϕ′. Soient x1 ̸= x2 dans U , y1 = ϕ(x1) et y2 = ϕ(x2). Puisque f ∈ C1(E),
on a

0 = f(x2, y2) − f(x1, y1) = ∂f

∂x
(ξ, η)(x2 − x1) + ∂f

∂y
(ξ, η)(y2 − y1)

avec (ξ, η) = (x1 + θ(x2 − x1), y1 + θ(y2 − y1)) et θ ∈ ]0, 1[. Alors

y2 − y1
x2 − x1

= ϕ(x2) − ϕ(x1)
x2 − x1

= −
∂f
∂x (ξ, η)
∂f
∂y (ξ, η)

et ∂f
∂y (ξ, η) > 0 car (ξ, η) ∈ V ⊂ W . Il s’ensuit

ϕ′(x1) = lim
x2→x1

ϕ(x2) − ϕ(x1)
x2 − x1

= −
∂f
∂x (x1, y1)
∂f
∂y (x1, y1)

,

donc ϕ est dérivable en tout x ∈ U . De plus, ϕ′(x) = −
∂f
∂x

(x,ϕ(x))
∂f
∂y

(x,ϕ(x))
est continue grâce au

fait que ∂f
∂y , ∂f

∂x et ϕ sont continues et ∂f
∂y (x, ϕ(x)) ̸= 0, ∀x ∈ U . La démonstration que

ϕ ∈ Ck(U) si f ∈ Ck(E) se fait par récurrence sur k ≥ 1.

On a montré le théorème des fonctions implicites pour une fonction de deux variables
réelles (x, y) 7→ f(x, y) : R2 → R. Toutefois, la démonstration de ce théorème se généralise
sans difficulté au cas d’une fonction de n variables f : Rn → R.

Théorème 6.20 (des fonctions implicites à plusieurs variables). Soit E ⊂ Rn+1 ouvert
non vide, f : E → R de classe C1, Σ = {(x, y) ∈ E, x ∈ Rn, y ∈ R : f(x, y) = 0} et
z0 = (x0, y0) ∈ Σ tel que ∂f

∂y (x0, y0) ̸= 0. Alors, il existe un ouvert U = B(x0, δ) ⊂ Rn de
x0, un ouvert V ⊂ E contenant z0 et une unique application ϕ : U → R de classe C1 telle
que :

— y0 = ϕ(x0) ;
— (x, ϕ(x)) ∈ V et f(x, ϕ(x)) = 0, ∀x ∈ U ;
— G(ϕ) = Σ ∩ V , (i.e. le graphe de ϕ décrit Σ dans un voisinage de z0).

De plus, pour tout x ∈ U , ∂f
∂y (x, ϕ(x)) ̸= 0 et

∂ϕ

∂xi
(x) = −

∂f
∂xi

(x, ϕ(x))
∂f
∂y (x, ϕ(x))

,

et si f ∈ Ck(E) alors ϕ ∈ Ck(U).

Le théorème précédent montre que si ∂f
∂y (z0) ̸= 0, l’ensemble Σ coïncide avec le graphe

d’une fonction y = ϕ(x) dans un voisinage de z0. Ceci permet de définir l’hyperplan
tangent à Σ en z0, noté Πz0(Σ), comme l’hyperplan tangent au graphe de ϕ en x0, qui est
donné par

Πz0(Σ) =
{

(x, y) ∈ Rn+1 : y = ϕ(x0) +
n∑

i=1

∂ϕ

∂xi
(x0)(xi − x0,i)

}
.
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En se rappelant de l’expression des dérivées partielles de ϕ en x0, l’hyperplan tangent peut
s’écrire de façon équivalente comme

∂f

∂y
(z0)(y − y0) +

n∑

i=1

∂f

∂xi
(z0)(xi − x0,i) = 0,

qui conduit à l’expression simple

Πz0(Σ) = {z ∈ Rn+1 : ∇f(z0) · (z − z0) = 0}. (6.2)

Cette équation montre que le vecteur ∇f(z0) est un vecteur normal à Σ en z0.
Enfin, on remarque que si ∂f∂y (z0) = 0 mais ∇f(z0) ̸= 0, alors il existe un i ∈ {1, . . . , n}

tel que ∂f
∂xi

(z0) ̸= 0 et on peut encore appliquer le théorème des fonctions implicites en
exprimant la variable xi en fonction des autres variables. L’expression de l’hyperplan
tangent (6.2) et du vecteur normal sont inchangées.

6.5 Théorème des fonctions implicites – cas vectoriel
Les idées présentées dans la section précédente se généralisent au cas d’une fonction

continue à valeurs vectorielles f : E ⊂ Rn+m → Rm, (x,y) 7→ f(x,y), x ∈ Rn, y ∈ Rm,
où E est ouvert non vide. Soit Σ = {(x,y) ∈ E : f(x,y) = 0} l’ensemble des solutions
de l’équation f(x,y) = 0. Cette équation correspond au système sous-déterminé des m
équations 




f1(x1, . . . , xn, y1, . . . , ym) = 0
...

fm(x1, . . . , xn, y1, . . . , ym) = 0
(6.3)

des n+m inconnues (x1, . . . , xn, y1, . . . , ym). Du point de vue géométrique,

Σ =
m⋂

i=1
Σi, où Σi = {(x,y) ∈ E : fi(x,y) = 0}.

Si chaque ensemble Σi est une surface de Rn+m, alors Σ est l’intersection de m surfaces. Par
exemple, si f1(x, y, z) = 0 et f2(x, y, z) = 0 définissent des surfaces en R3, leur intersection
Σ = {(x, y, z) ∈ R3 : f1(x, y, z) = 0 et f2(x, y, z) = 0} sera en générale une courbe de R3

(voir Figure 6.1). On peut se poser de nouveau la question de savoir si l’ensemble Σ peut
être représenté comme le graphe d’une fonction continue, au moins localement autour de
chaque point z0 ∈ Σ. De façon équivalente, on veut savoir si pour l’équation f(x,y) = 0 on
peut exprimer m variables, disons (y1, . . . , ym), comme fonctions continues des n variables
restantes (x1, . . . , xn), dans un voisinage de z0 = (x0,y0) ; autrement dit, si le système
(6.3) définit implicitement une fonction continue ϕ : U ⊂ Rn → Rm autour de x0 telle que
f(x,ϕ(x)) = 0, ∀x ∈ U et Σ = G(ϕ) dans un voisinage de z0.

Avant de donner le résultat d’existence générale, il est utile de considérer le cas d’une
fonction fa affine :

fa(x,y) = A1x +A2y + b, A1 ∈ Rm×n, A2 ∈ Rm×m, b ∈ Rm.
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Figure 6.1 – Courbe Σ = {(x, y, z) ∈ R3 : f1(x, y, z) = 0 et f2(x, y, z) = 0} obtenue par
l’intersection des deux surfaces f1(x, y, z) = x tan x + y − z = 0 et f2(x, y, z) =
x
10 − y − 3z + 3 = 0.

L’équation fa = 0 équivaut à A2y = −(A1x + b). Donc on peut écrire de façon unique y
en fonction de x si et seulement si la matrice A2 est inversible, c.-à-d. det(A2) ̸= 0. Dans
ce cas on a

y = −A−1
2 A1x −A−1

2 b.
Considérons maintenant une fonction non-linéaire f : E ⊂ Rn+m → Rm de classe C1

et z0 = (x0,y0) ∈ Σ = {(x,y) ∈ Rn × Rm : (x,y) ∈ E, f(x,y) = 0}. La différentiablilité
de f en z0 ∈ E assure que l’on peut écrire pour tout z ∈ E

f(z) = �
��*0

f(z0) +Df(z0)(z − z0) + Rf (z), lim
z→z0

Rf (z)
∥z − z0∥ = 0.

Il est pratique d’écrire la matrice jacobienne Df(z0) ∈ Rm×(n+m) par blocs comme

Df(z0) =




∂f1
∂x1

(z0) · · · ∂f1
∂xn

(z0) ∂f1
∂y1

(z0) · · · ∂f1
∂ym

(z0)
...

∂fm

∂x1
(z0) · · · ∂fm

∂xn
(z0) ∂fm

∂y1
(z0) · · · ∂fm

∂ym
(z0)


 =

[
Dxf(z0) Dyf(z0)

]
.

Donc, dans un voisinage de z0, la fonction f est bien approchée par la fonction affine

fa(z) = Df(z0)(z − z0) = Dxf(z0)(x − x0) +Dyf(z0)(y − y0)

et on s’attend à pouvoir exprimer y en fonction de x si det(Dyf(z0)) ̸= 0. Le théorème
suivant rend ce raisonnement rigoureux.
Théorème 6.21. Soit E ⊂ Rn+m ouvert non vide, f ∈ C1(E,Rm), Σ = {(x,y) ∈ E :
f(x,y) = 0} et z0 = (x0,y0) ∈ Σ tel que det(Dyf(z0)) ̸= 0. Alors il existe une boule
ouverte U = B(x0, δ) ⊂ Rn, un ouvert V ⊂ E contenant z0 et une unique fonction
ϕ : U → Rm de classe C1 tels que
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1. y0 = ϕ(x0) ;
2. pour tout x ∈ U , (x,ϕ(x)) ∈ V et f(x,ϕ(x)) = 0 ;
3. Σ ∩ V = G(ϕ) ;
4. ∀x ∈ U , det(Dyf(x,ϕ(x)) ̸= 0 et Dϕ(x) = −(Dyf(x,ϕ(x)))−1Dxf(x,ϕ(x)), (dans

cette dernière formule, il y a un produit matriciel).
De plus, pour tout entier k ≥ 1, si f est de classe Ck, alors ϕ l’est aussi.

Démonstration. On utilise le théorème d’inversion locale. Soit F : E → Rn+m, F(x,y) =
(x, f(x,y)). On a F(x0,y0) = (x0,0) et

DF(x0,y0) =
[
In×n 0

Dxf(z0) Dyf(z0)

]
, det(DF(x0,y0)) = det(Dyf(z0)) ̸= 0.

Donc il existe un ouvert V ′ ⊂ E contenant (x0,y0) et un ouvert U ′ contenant (x0,0) tels
que F est un difféomorphisme de V ′ à U ′. Soit G la fonction inverse. On peut toujours
trouver une boule ouverte U = B(x0, δ) ⊂ Rn et un ouvert W ⊂ Rm contenant 0 tels
que U ×W ⊂ U ′. On considère alors la restriction F : V → U ×W où V = G(U ×W ).
La fonction inverse a la forme G(x,w) = (x,φ(x,w)) avec φ(x0,0) = y0. On note, en
particulier, que si (x,y) ∈ Σ ∩ V , alors F(x,y) = (x,0) et x ∈ U . En prenant la fonction
inverse on a G(x,0) = (x,φ(x,0)) = (x,y). La fonction implicite cherchée est alors
ϕ(x) = φ(x,0) : U → Rm. En effet :

∀x ∈ U, (x,0) = F ◦ G(x,0) = F(x,φ(x,0)) = F(x,ϕ(x)) = (x, f(x,ϕ(x))),

donc f(x,ϕ(x)) = 0, ∀x ∈ U , et

∀(x,y) ∈ Σ ∩ V, (x,y) = G ◦ F(x,y) = G(x, f(x,y)︸ ︷︷ ︸
=0

) = (x,φ(x,0)) = (x,ϕ(x)),

donc Σ ∩ V = G(ϕ).
Montrons l’unicité de ϕ : si ϕ⋆ : U → Rm satisfait aussi Σ ∩ V = G(ϕ⋆), alors

G(ϕ⋆) = G(ϕ) et donc ϕ∗ = ϕ.
Finalement, ϕ est de classe C1 puisque G est de classe C1, F étant un difféomorphisme.

De plus, 0 ̸= det(DF(x,y)) = det(Dyf(x,y)) ∀(x,y) ∈ V , donc Dyf est inversible sur V .
Par la formule de dérivation des fonctions composées, on a

0 = D(f(x,ϕ(x))) = Dxf(x,ϕ(x)) +Dyf(x,ϕ(x)) ·Dϕ(x).

d’où
Dϕ(x) = −(Dyf(x,ϕ(x)))−1Dxf(x,ϕ(x)).

La démonstration que ϕ ∈ Ck(U) si f ∈ Ck(E) se fait par récurrence sur k ≥ 1.

Remarque 6.22. Dans le théorème 6.21, la décomposition du vecteur z ∈ Rn+m en
z = (x,y) est arbitraire. Le théorème reste valable sous la condition plus générale :

Rang(Df(z0)) = m.
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En effet, dans ce cas on sait qu’il existe m colonnes de Df(z0) linéairement indépendantes.
Notons ces colonnes i1, . . . , im. On peut alors définir (y1, . . . , ym) = (zi1 , . . . , zim) et
(x1, . . . , xn) les variables restantes. On aura donc det(Dyf(z0)) ̸= 0 et on peut appliquer
le théorème pour exprimer ces m variables y en fonction des autres n variables x.

Sous les hypothèses du théorème 6.21, grâce à l’existence d’une fonction implicite on
peut définir l’hyperplan tangent à Σ en z0 :

Πz0(Σ) = {(x,y) ⊂ Rn+m : y − y0 −Dϕ(x0)(x − x0) = 0}
= {(x,y) ⊂ Rn+m : Df(z0)(z − z0) = 0}

On remarque que Πz0(Σ) est l’ensemble des points de Rn+m qui satisfont m équations
linéaires. Puisque Df(z0) a rang maximal, Πz0(Σ) est un sous-espace affine de Rn+m de
dimension n.
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Chapitre 7

Extrema de fonctions réelles

Soit E ⊂ Rn pas forcément ouvert pour le moment. On considère ici une fonction
f : E → R à valeurs dans R (fonction scalaire) et on se pose la question de trouver le
maximum et le minimum de f sur E s’ils existent. Ceci est un problème d’optimisation.
On commence par donner la définition de minimum et maximum local ou global, ainsi que
de point de minimum/maximum local/global.

Définition 7.1 (Minima et maxima locaux et globaux). Soit E ⊂ Rn et x∗ ∈ E.
— On dit que f admet un maximum local (ou relatif) au point x∗ ∈ E s’il existe δ > 0 :

f(x) ≤ f(x∗), ∀x ∈ B(x∗, δ) ∩ E.

Si l’inégalité est stricte (i.e. f(x) < f(x∗), ∀x ∈ B(x∗, δ) ∩ E, x ̸= x∗) alors le
maximum local est strict. Le point x∗ est appelé point de maximum local (strict)
pour f .

— On dit que f admet un minimum local (ou relatif) au point x∗ ∈ E s’il existe δ > 0 :

f(x) ≥ f(x∗), ∀x ∈ B(x∗, δ) ∩ E.

Le minimum est strict si l’inégalité est stricte. Le point x∗ est appelé point de
minimum local (strict) pour f .

— Par extremum local (strict) on entend un minimum ou maximum local (strict).
— On dit que f admet un maximum (global ou absolu), resp. minimum (global ou

absolu) au point x∗ ∈ E si f(x) ≤ f(x∗), ∀x ∈ E, resp. f(x) ≥ f(x∗), ∀x ∈ E. Le
maximum/minimum est strict si l’inégalité est stricte

7.1 Extrema libres

On considère d’abord le cas où l’ensemble E est ouvert et la fonction f : E → R
différentiable (une ou plusieurs fois) sur E.

Rappelons ce qu’on sait dire sur la caractérisation des extrema locaux pour une fonction
d’une seule variable réelle f : I → R, définie sur un ouvert I ⊂ R. Soit x∗ ∈ I.

77
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— Si f est dérivable en x∗ et x∗ est un point d’extremum local de f , alors f ′(x∗) = 0
(condition nécessaire du premier ordre).

— Si f est deux fois dérivable sur I et x∗ est un point de minimum (resp. maximum)
local, alors f ′(x∗) = 0 et f ′′(x∗) ≥ 0 (resp. f ′′(x∗) ≤ 0) (condition nécessaire du
second ordre).

— Soit f deux fois dérivable sur I et x∗ un point stationnaire de f , c.-à-d. que f ′(x∗) = 0.
Si f ′′(x∗) > 0 (resp. f ′′(x∗) < 0) alors x∗ est un point de minimum (resp. maximum)
local strict (condition suffisante).

— Si f ′(x∗) = f ′′(x∗) = 0, on ne peut rien conclure. Pour décider si x∗ est un point de
minimum / maximum / inflexion, il faut regarder les dérivées d’ordres supérieurs
(si elles existent) en x∗, ou bien étudier le signe de la fonction g(x) = f(x) − f(x∗)
autour de x∗. Par exemple, si on peut montrer que g est non négative dans un
voisinage de x∗, alors x∗ est un point de minimum local de f . Par contre, si g change
de signe en x∗, alors x∗ est un point d’inflexion (sous l’hypothèse f ′(x∗) = 0).

Considérons maintenant le cas d’une fonction de plusieurs variables f : E → R, avec
E ⊂ Rn ouvert non vide. Soit x∗ ∈ E (point intérieur car E est ouvert). On peut regarder
le comportement de f le long des droites : soit v ∈ Rn, ∥v∥ = 1 et gv(t) = f(x∗ + tv).
Si f est différentiable sur E et x∗ est un point d’extremum local de f , alors pour tout
v ∈ Rn, la fonction gv est dérivable et admet un extremum local en t = 0 (voir Figure
7.1). Il s’ensuit

Figure 7.1 – Si x∗ est point de maximum, alors la fonction gv(t) = f(x∗ + tv) à maximum en
t = 0 pour tout v ∈ Rn.

∀v ∈ Rn 0 = g′
v(0) = Dvf(x∗) = ∇f(x∗) · v

(produit scalaire entre deux vecteurs colonnes) ce qui implique ∇f(x∗) = 0. On s’attend
alors à ce que ∇f(x∗) = 0 soit une condition nécessaire pour que f admette un extremum
local en x∗. Le théorème suivant formalise cette idée.
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Définition 7.2 (Point stationnaire). Soit E ⊂ Rn ouvert non vide, x∗ ∈ E et f : E → R
différentiable en x∗. On dit que x∗ est un point stationnaire de f si ∇f(x∗) = 0 (i.e.
∂f
∂xi

(x∗) = 0, i = 1, . . . , n ou, de façon équivalente, Df(x∗) = 0).

Théorème 7.3 (condition nécessaire de premier ordre). Soit E ⊂ Rn un ouvert non vide,
et f : E → R différentiable en x∗ ∈ E et admettant un extremum local en x∗. Alors x∗ est
un point stationnaire de f , c.-à-d. que ∇f(x∗) = 0.

Démonstration. Puisque E est ouvert, ∃δ > 0 : B(x∗, δ) ⊂ E. Alors x∗ + tej ∈ E pour
tout t ∈ ]−δ, δ[ et gj(t) = f(x∗ + tej) : ]−δ, δ[ → R est dérivable en t = 0. Puisque
x∗ est un point d’extremum local pour f , 0 est un point d’extremum local pour gj et
g′
j(0) = ∂f

∂xj
(x∗) = 0.

On considère maintenant le cas f ∈ C2(E), qui assure que la matrice hessienne Hf (x∗)
est symétrique. Soit x∗ un point de minimum local de f . Alors t = 0 est un point de
minimum local de gv pour tout v ∈ Rn de norme 1. Il s’ensuit que

0 ≤ g′′
v(0) = D2

vvf(x∗) = v⊤Hf (x∗)v

et ainsi v⊤Hf (x∗)v ≥ 0 pour tout v ∈ Rn. Donc, la condition v⊤Hf (x∗)v ≥ 0, ∀v ∈ Rn,
est aussi nécessaire pour que f admette un minimum local en x∗, pourvu que f soit de
classe C2 sur E. De même, la condition v⊤Hf (x∗)v ≤ 0, ∀v ∈ Rn, est nécessaire pour que
f admette un maximum local en x∗, pourvu que f soit de classe C2 sur E. On a donc
démontré

Théorème 7.4 (condition nécessaire du second ordre). Soit E ⊂ Rn un ouvert non vide et
f : E → R de classe C2 sur E, admettant un minimum (resp. maximum) local en x∗ ∈ E.
Alors x∗ est un point stationnaire de f et v⊤Hf (x∗)v ≥ 0 (resp. v⊤Hf (x∗)v ≤ 0) pour
tout v ∈ Rn.

Si l’inégalité dans la condition précédente est stricte, i.e. si v⊤Hf (x∗)v > 0, ∀v ∈
Rn\{0}, la condition devient suffisante pour que f admette un minimum en x∗, pourvu
que x∗ soit un point stationnaire. Ceci est montré dans le théorème 7.8 ci-dessous. Avant
de présenter le théorème, on rappelle quelques notions d’algèbre linéaire sur les matrices
définies positives ou négatives.

Définition 7.5. On dit qu’une matrice A ∈ Rn×n est
— définie positive (ou simplement « positive ») si x⊤Ax > 0, ∀ 0 ̸= x ∈ Rn ;
— semi-définie positive si x⊤Ax ≥ 0, ∀x ∈ Rn ;
— définie négative (ou simplement « négative ») si x⊤Ax < 0, ∀ 0 ̸= x ∈ Rn ;
— semi-définie négative si x⊤Ax ≤ 0, ∀x ∈ Rn ;
— indéfinie s’il existe x,y ∈ Rn : x⊤Ax > 0 et y⊤Ay < 0.

À toute matrice A ∈ Rn×n on peut associer une forme quadratique

QA(x) = x⊤Ax =
n∑

i,j=1
Aijxixj , ∀x ∈ Rn.
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Lemme 7.6. Une matrice A ∈ Rn×n est définie positive si et seulement si

∃c > 0 : x⊤Ax ≥ c∥x∥2, ∀x ∈ Rn.

(On peut prendre n’importe quelle norme ∥ · ∥ sur Rn ; la constante c dépendra de la norme
choisie.)

Démonstration. Soit A définie positive et QA la forme quadratique associée à A. Clairement
QA est une fonction continue sur Rn. De plus, ∀t ∈ R, QA(tx) = t2QA(x). Considérons
l’ensemble compact S = {x ∈ Rn : ∥x∥ = 1}. QA admet un maximum et un minimum sur
S. Soit c = minx∈S QA(x). Clairement, c > 0 car QA(x) > 0, ∀x ∈ S, et

x⊤Ax = QA(x) = ∥x∥2QA

( x
∥x∥

)
≥ c∥x∥2, ∀x ∈ Rn.

Inversement, s’il existe c > 0 tel que x⊤Ax ≥ c∥x∥2, ∀x ∈ Rn, on conclut immédiatement
que A est définie positive.

Dans ce cours on appliquera toujours la Définition 7.5 et le Lemme 7.6 à des matrices
symétriques. Le Lemme suivant donne une caractérisation alternative de matrice définie
positive sous hypothèse de symétrie.

Lemme 7.7. Soit A ∈ Rn×n une matrice symétrique. A est définie positive si et seulement
si toutes les valeurs propres λ1, . . . , λn de A sont positives. De plus x⊤Ax ≥ λmin∥x∥2

2, où
λmin = min{λi : 1 ≤ i ≤ n}.

Démonstration. On sait de l’algèbre linéaire qu’une matrice A ∈ Rn×n symétrique est
toujours diagonalisable avec valeurs propres réelles λ1, . . . , λn et n vecteurs propres ortho-
normés v1, . . . ,vn (de norme euclidienne 1 et deux à deux orthogonaux ; chacun est écrit
sous forme colonne dans ce qui suit) :

AV = V D, D =




λ1
. . .

λn


 , λi ∈ R, V = [v1, . . . ,vn] : V ⊤V = V V ⊤ = I.

Si A est définie positive, c’est-à-dire x⊤Ax > 0, ∀ 0 ̸= x ∈ Rn, en particulier l’inégalité de
l’énoncé est vraie pour x = vj et

v⊤
j Avj = λjv⊤

j vj = λj > 0, ∀j = 1, . . . , n.

Inversement, supposons λj > 0, ∀j = 1, . . . , n. Puisque {vj}nj=1 forme une base orthonor-
mée de Rn, on peut écrire de façon unique tout vecteur x ∈ Rn comme x = ∑n

j=1 βjvj = V β

(β étant un vecteur colonne) et ∥x∥2 = ∥β∥2. Donc x⊤Ax = β⊤V ⊤AV β = β⊤Dβ =∑n
j=1 λjβ

2
j ≥ λmin∥β∥2

2 = λmin∥x∥2
2, avec égalité si x = vmin, le vecteur propre correspon-

dant à λmin.

Le Lemme précédent montre que la plus grande constante c possible du Lemme 7.6
est c = λmin si la matrice A est symétrique et si on utilise la norme euclidienne. On
revient maintenant à la question de caractériser les points d’extremum local d’une fonction
f : E → R.
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Théorème 7.8 (condition suffisante pour extrema locaux). Soit E ⊂ R ouvert non
vide, f : E → R une fonction de classe C2 sur E et x∗ ∈ E un point stationnaire de f ,
c’est-à-dire ∇f(x∗) = 0. Si Hf (x∗) est définie positive (resp. définie négative) alors f a
un minimum (resp. maximum) local strict en x∗.

Démonstration. Considérons le cas Hf (x∗) définie positive (la démonstration pour Hf (x∗)
définie négative est la même). Puisque f est de classe C2 sur E on peut écrire un
développement limité d’ordre 2 de f au point x∗ :

f(x) = f(x∗) + ∇f(x∗) · (x − x∗)︸ ︷︷ ︸
=0

+1
2(x − x∗)⊤Hf (x∗)(x − x∗) +Rf (x), ∀x ∈ E,

où on a utilisé que ∇f(x∗) = 0 (x∗ est un point stationnaire) et où Rf (x) est tel que
limx→x∗

Rf (x)
∥x−x∗∥2 = 0. Puisque Hf (x∗) est définie positive, ∃c > 0 : v⊤Hf (x∗)v ≥ c∥v∥2

pour tout v ∈ Rn. De plus, puisque limx→x∗
Rf (x)

∥x−x∗∥2 = 0, il existe δ > 0 tel que, pour tout
x ∈ B(x∗, δ) \ {x∗}, on a x ∈ E et |Rf (x)| ≤ c

4∥x − x∗∥2. Donc

∀x ∈ B(x∗, δ)\{x∗}, f(x) = f(x∗) + 1
2 (x − x∗)⊤Hf (x∗)(x − x∗)
︸ ︷︷ ︸

≥c∥x−x∗∥2

+ Rf (x)
︸ ︷︷ ︸

≥− c
4 ∥x−x∗∥2

≥ f(x∗) + c

4∥x − x∗∥2 > f(x∗),

ce qui montre que x∗ est un point de minimum local strict de f .

D’après ce théorème, si la matrice hessienne est définie (positive ou négative) en un
point stationnaire, on peut conclure que ce point stationnaire est un point d’extremum
local. On se pose alors la question de savoir la nature d’un point stationnaire lorsque la
matrice hessienne en ce point est semi-définie ou indéfinie. On donne d’abord la définition
suivante.

Définition 7.9 (Point selle). Soit f : E → R, où E ⊂ Rn est ouvert non vide et f est
différentiable en un certain point stationnaire x∗ ∈ E. On dit que x∗ est un point selle de
f si

∀δ > 0 ∃x,y ∈ B(x∗, δ) ∩ E
(
f(x) > f(x∗) et f(y) < f(x∗)

)
.

Avec cette définition et le résultat du théorème 7.8, on a la classification suivante des
points stationnaires {x∗ ∈ E : ∇f(x∗) = 0}, où les λi(Hf (x∗)) sont les valeurs propres de
Hf (x∗) (i = 1, . . . , n).

— Si Hf (x∗) est définie positive (i.e. x⊤Hf (x∗)x > 0, ∀ 0 ̸= x ∈ Rn ou, de façon
équivalente, λi(Hf (x∗)) > 0, ∀i = 1, . . . , n), alors x∗ est un point de minimum local
strict. Lorsque n = 2, Hf (x∗) est définie positive ssi à la fois la trace de Hf (x∗) est
> 0 et det(Hf (x∗)) > 0.

— Si Hf (x∗) est définie négative (i.e. x⊤Hf (x∗)x < 0, ∀ 0 ̸= x ∈ Rn ou, de façon
équivalente, λi(Hf (x∗)) < 0, ∀i = 1, . . . , n), alors x∗ est un point de maximum local
strict. Lorsque n = 2, Hf (x∗) est définie négative ssi à la fois la trace de Hf (x∗) est
< 0 et det(Hf (x∗)) > 0.
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— Si Hf (x∗) est indéfinie (i.e. ∃x,y ∈ Rn : x⊤Hf (x∗)x > 0, y⊤Hf (x∗)y < 0 ou, de
façon équivalente, ∃i, j = 1, . . . , n : λi(Hf (x∗)) > 0 et λj(Hf (x∗)) < 0) alors x∗ est
un point selle. Lorsque n = 2, une condition suffisante pour que Hf (x∗) soit indéfinie
est que det(Hf (x∗)) < 0.

— Si Hf (x∗) est seulement semi-définie positive (ou négative), on ne peut pas conclure
sur la nature du point stationnaire à partir des résultats précédents.

Exemple 7.10. Considérons les trois fonctions f1, f2, f3 : R2 → R

f1(x, y) = x2 + y2, f2(x, y) = 1 − x2 − y2, f3(x, y) = x2 − y2.

Pour toutes les trois fonctions, le seul point stationnaire est x∗ = (0, 0). Étudions sa nature
dans les trois cas.

Fonction f1 : Hf1(0, 0) =
[
2 0
0 2

]
définie positive

−1 −0.5 0 0.5 1 −1

0

1
0

1

2

x

y

Fonction f2 : Hf2(0, 0) =
[
−2 0
0 −2

]
définie négative

−1 −0.5 0 0.5 1 −1

0

1
−1

0

1
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y

Fonction f3 : Hf3(0, 0) =
[
2 0
0 −2

]
indéfinie

−1 −0.5 0 0.5 1 −1

0

1
−1

0

1

x

y

Exercice 7.11. Trouver les extrema locaux de la fonction f(x, y) = x3 + y3 − 3x− 12y+ 1
et les caractériser. Est-ce que cette fonction admet un maximum / minimum global ?

Exercice 7.12. Montrer que la fonction f(x, y) = 3x2 + 3y2 − 2xy − 8(x+ y − 1) a un
seul point de minimum local qui est aussi un minimum global.
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Si Hf (x∗) est seulement semi-définie positive (ou négative), on ne peut pas conclure que
x∗ est un point de minimum local (ou maximum local). De plus, même si gv(t) = f(x∗ +tv)
a un minimum local en t = 0 pour tout v ∈ Rn, on ne peut pas conclure que f admet un
minimum local en x∗ comme l’exemple suivant le montre.

Exemple 7.13. Considérons la fonction f(x, y) = y2 − 3x2y + 2x4. On a

∇f(x, y) =
[
−6xy + 8x3

2y − 3x2

]
, Hf (x, y) =

[
−6y + 24x2 −6x

−6x 2

]
.

Donc

∇f(x, y) =
[
0
0

]
=⇒

{
−6xy + 8x3 = 0
y = 3

2x
2 ⇐⇒ (x, y) = (0, 0)

et P = (0, 0) est le seul point stationnaire. De plus Hf (0, 0) =
[
0 0
0 2

]
est semi-définie

positive. Pour toute droite x = (x, y) = tv, t ∈ R, v ̸= (1, 0), on a

v⊤Hf (0, 0)v = (v1, v2)Hf (0, 0)
(
v1
v2

)
= 2v2

2 > 0,

donc la fonction gv(t) = f(tv) a un minimum local strict en t = 0. De plus pour v = (1, 0),
gv(t) = f(t(1, 0)) = 2t4 a un minimum local strict en t = 0, donc ∀v ∈ R2, gv(t) = f(tv)
a un minimum local strict t = 0. Toutefois, si on prend x = t et y = 3

2 t
2 on a

f(t, 3
2 t

2) = 9
4 t

4 − 9
2 t

4 + 2t4 = −1
4 t

4

qui a un maximum local strict en t = 0 ! Donc (0, 0) n’est pas un point d’extremum local
de f .

7.2 Extrema liés

Il est souvent le cas dans les applications, qu’on cherche a trouver le minimum (ou
maximum) d’une fonction minz∈E f(z) mais les variables z = (z1, . . . , zn) ne peuvent pas
être choisies arbitrairement et sont liées par des contraintes.

Exemple 7.14. Considérons une canette de forme cylindrique. On veut trouver la forme
optimale qui minimise la surface (qui requiert le minimum de matériel) tout en gardant
un volume constant. Soit ΣR,H = {(x, y, z) ∈ R3 : x2 + y2 ≤ R2, 0 ≤ z ≤ H} un cylindre
plein de hauteur H > 0 et de rayon R > 0.



84 CHAPITRE 7. EXTREMA DE FONCTIONS RÉELLES

H

2R

Ce cylindre a un volume V (R,H) = πR2H et une surface S(R,H) = 2πR2 + 2πRH. Le
problème d’optimisation prend la forme suivante : pour V > 0 donné, discuter

min
R,H>0

S(R,H) sous la contrainte V (R,H) = V .

Ceci est un problème de minimisation sous contrainte.
Soit E ⊂ Rn ouvert non vide et f, g : E → R de classe C1. On pose le problème de

minimisation (maximisation) sous contrainte suivant

min
z∈E

f(z) sous la contrainte g(z) = 0.

Si on dénote par Σg = {z ∈ E : g(z) = 0} l’ensemble des points qui satisfont la contrainte
(appelé aussi ensemble faisable ou admissible), le problème de minimisation sous contrainte
peut s’écrire de façon équivalente comme

min
z∈Σg

f(z).

Déterminer si le minimum est fini et effectivement atteint fait partie de la discussion.
Définition 7.15. On dit que z∗ ∈ Σg est un point de minimum local de f sur Σg si

∃δ > 0 ∀z ∈ B(z∗, δ) ∩ Σg f(z∗) ≤ f(z)

Le minimum est strict si l’inégalité est stricte, dans le même sens qu’expliqué plus haut.
De la même façon, on dit que z∗ ∈ Σg est un point de maximum local de f sur Σg si

∃δ > 0 ∀z ∈ B(z∗, δ) ∩ Σg f(z∗) ≥ f(z).

Le maximum est strict si l’inégalité est stricte. On utilise aussi la terminologie de mini-
mum/maximum (strict ou non) lié.

On se pose la question de caractériser les points d’extremum (minimum/maximum)
liés. Voyons quelques exemples :
Exemple 7.16. On considère le problème de minimisation suivante :

min
(x,y)∈R2

x2 + y2 sous la contrainte x+ y − 1 = 0.

La fonction f(x, y) = x2 + y2 à minimiser est convexe et a un minimum global en (0, 0).
Toutefois, ce point ne satisfait pas la contrainte. Le minimum lié est caractérisé par le fait
que ∇f est perpendiculaire à la contrainte au point de minimum lié. Voir la figure 7.2
(gauche) pour une interprétation graphique.
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∇f

Courbes de niveau de f

Contrainte x + y − 1 = 0

Minimum lié

y

x

∇f

∇f

Contrainte Σg

maximum lié

minimum lié

Figure 7.2 – Gauche : Problème de minimisation, Exemple 7.16. Droite : Problème de minimisa-
tion, Exemple 7.17.

Exemple 7.17. On considère le problème de minimisation suivante :

min
(x,y)∈R2

x+ y sous la contrainte x2 + y2 − 1 = 0.

La fonction f(x, y) = x+y n’a pas de minimum ou maximum sur R2. Toutefois, l’ensemble
Σg = {(x, y) : x2 + y2 − 1 = 0} est compact, donc f étant continue, elle atteint son
maximum et minimum sur Σg. On voit encore qu’aussi bien au point de minimum lié
qu’au point de maximum lié, le vecteur ∇f est perpendiculaire à la courbe Σg (c’est-à-dire,
orthogonal au plan tangent).

Soit g(x, y) = x2 + y2 − 1 et xM le point de maximum lié. Puisque ∇g = (2y, 2y)⊤ ̸=
0, ∀(x, y) ∈ Σg, l’équation g = 0 définit implicitement une fonction y = ϕ(x) ou x = ϕ(y),
et, autour de chaque point z ∈ Σg, l’ensemble Σg peut être représenté par le graphe d’une
fonction. De plus, le vecteur ∇g(z) est normal au plan tangent Πz(Σ) à Σg en z.

Puisqu’au point du maximum lié on a que ∇f(xM ) est aussi un vecteur normal au
plan tangent ΠxM (Σ), il s’ensuit que ∇f(xM ) ∥ ∇g(xM ), c’est-à-dire ∃λ ∈ R : ∇f(xM ) =
λ∇g(xM ). Ceci est en fait une condition nécessaire pour avoir un extremum lié comme le
théorème suivant le montre.

Théorème 7.18 (Condition nécessaire d’optimalité). Soit n ≥ 2, E ⊂ Rn ouvert non
vide, f, g : E → R deux fonctions de classe C1(E) et z∗ ∈ Σg = {z ∈ E : g(z) = 0}
un point d’extremum local de f sur Σg. Alors, si ∇g(z∗) ̸= 0, il existe λ∗ ∈ R tel que
∇f(z∗) = λ∗∇g(z∗).

Démonstration. Puisque ∇g(z∗) ̸= 0, il y a au moins une composante non nulle, soit
∂g
∂zj

(z∗) ̸= 0. Pour se fixer les idées, supposons que j = n, le cas général se traitant de la
même manière en permutant le rôle des coordonnées. Notons y = zn et x = (z1, . . . , zn−1) ∈
Rn−1, de sorte que tout point z ∈ E puisse s’écrire comme z = (x, y) ; en particulier
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z∗ = (x∗, y∗). Par le théorème des fonctions implicites, il existe δ > 0 et une unique
fonction ϕ : B(x∗, δ) ⊂ Rn−1 → R telle que ϕ(x∗) = y∗, (x, ϕ(x)) ∈ E et g(x, ϕ(x)) = 0
sur B(x∗, δ), et le graphe de ϕ coïncide avec Σg dans un voisinage de z∗.

Alors la fonction f̃(x) = f(x, ϕ(x)) admet un extremum local (libre) en x∗ et ∇f̃(x∗) =
0. Donc

0 = ∂f̃

∂xi
(x∗) = ∂f

∂xi
(x∗, ϕ(x∗)) + ∂f

∂y
(x∗, ϕ(x∗)) ∂ϕ

∂xi
(x∗), ∀i = 1, . . . , n− 1.

D’autre part,
∂ϕ

∂xi
(x∗) = −

∂g
∂xi

(z∗)
∂g
∂y (z∗)

.

Par conséquent, on a

∂f

∂xi
(z∗) − ∂f

∂y
(z∗)

∂g
∂xi

(z∗)
∂g
∂y (z∗)

= 0, ∀i = 1, . . . , n− 1.

Si on pose λ∗ =
∂f
∂y

(z∗)
∂g
∂y

(z∗)
, alors

∂f

∂xi
(z∗) = λ∗ ∂g

∂xi
(z∗), ∀i = 1, . . . , n− 1

et, par définition, ∂f
∂y (z∗) = λ∗ ∂g

∂y (z∗). On a donc bien

∇f(z∗) = λ∗∇g(z∗).

D’après le théorème, une condition nécessaire pour que z∗ ∈ Σg, avec ∇g(z∗) ̸= 0, soit
un point d’extremum lié de f sur Σg est que (z∗, λ∗) soit solution du système

{
∇f(z) = λ∇g(z)
g(z) = 0

(7.1)

de n+ 1 équations à n+ 1 inconnues (z, λ) = (z1, . . . , zn, λ). On remarque, en particulier,
qu’un point z∗ d’extremum lié de f sur Σg n’est généralement pas un point stationnaire
de f car ∇f(z∗) = λ∗∇g(z∗) ̸= 0 si λ∗ ̸= 0.

Exemple 7.19. On cherche les extrema de f(x, y) = x+y, liés par la contrainte g(x, y) = 0,
où g(x, y) = x2 + y2 − 1. On résout d’abord le système de 3 équations à trois inconnues
(x, y, λ) :

{
∇f(x, y) = λ∇g(x, y)
g(x, y) = 0

=⇒





∂f
∂x (x, y) = λ ∂g∂x(x, y)
∂f
∂y (x, y) = λ∂g∂y (x, y)
g(x, y) = 0

=⇒





1 = 2λx
1 = 2λy
x2 + y2 = 1
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On remarque que λ = 0 n’est pas une solution. Alors, les premières deux équations donnent
x = y = 1

2λ et, de la troisième équation, on obtient λ2 = 1
2 qui admet les deux solutions

λ∗ = ± 1√
2 . On a alors deux points candidats :

P1 = ( 1√
2
,

1√
2

), P2 = (− 1√
2
,− 1√

2
).

Puisque l’ensemble Σg = {(x, y) : g(x, y) = 0} est compact et f est continue, alors f
admet un maximum et un minimum sur Σg et nécessairement P1 ou P2 doit être un point
de maximum lié et l’autre un point de minimum lié. Par évaluation directe de f en P1 et
P2 on conclut :

P1 = ( 1√
2
,

1√
2

) est un point de maximum lié, max
(x,y)∈Σg

f(x, y) = f(P1) = 2√
2
,

P2 = (− 1√
2
,− 1√

2
) est un point de minimum lié, min

(x,y)∈Σg

f(x, y) = f(P2) = − 2√
2
.

7.3 Méthode des multiplicateurs de Lagrange

Le système (7.1) donne des conditions nécessaires d’optimalité. Il y a une autre façon
d’obtenir ce système qui utilise la fonction de Lagrange (ou lagrangienne)

L : E × R → R, L(z, λ) = f(z) − λg(z).

La variable λ ∈ R est appelée dans ce cas le multiplicateur de Lagrange.
Si z∗ ∈ Σg = {z ∈ E : g(z) = 0} est un point d’extremum lié de f sur Σg avec

∇g(z∗) ̸= 0, alors d’après le théorème 7.18, il existe λ∗ ∈ R tel que (z∗, λ∗) est solution
de (7.1). On vérifie facilement que ceci est équivalent à dire que (z∗, λ∗) est un point
stationnaire de la fonction de Lagrange. En effet

∇L(z∗, λ∗) = 0 ⇐⇒
{

∇zL(z∗, λ∗) = 0
∂
∂λL(z∗, λ∗) = 0

⇐⇒
{

∇f(z∗) = λ∗∇g(z∗)
g(z∗) = 0.

Donc pour trouver les extrema liés de f sur Σg, il faut d’abord chercher les points
stationnaires de L.

7.4 Extrema sous contraintes multiples

Dans les sections précédentes on a considéré le cas où les variables z = (z1, . . . , zn)
sont liées par une contrainte g(z) = 0. Les arguments présentés se généralisent au cas où
les variables z = (z1, . . . , zn) sont liées par plusieurs contraintes.

Soit E ⊂ Rn ouvert non vide et f, g1, g2, . . . , gm : E → R de classe C1(E), avec m < n.
On pose le problème de minimisation sous contraintes multiples suivant

min
z∈E

f(z) sous les contraintes gi(z) = 0, i = 1, . . . ,m. (7.2)



88 CHAPITRE 7. EXTREMA DE FONCTIONS RÉELLES

Soit g = (g1, . . . , gm) : E → Rm et Σg = {z ∈ E : g(z) = 0} = {z ∈ E : gi(z) = 0, ∀i =
1, . . . ,m} l’ensemble faisable. Alors le problème (7.2) est équivalent à

min
z∈Σg

f(z).

Le théorème 7.18 sur les conditions nécessaires d’optimalité se généralise de la façon
suivante.

Théorème 7.20 (condition nécessaire d’optimalité – contraintes multiples). Soit E ⊂ Rn
ouvert non vide, f, g1, . . . , gm ∈ C1(E) et z∗ ∈ Σg = {z ∈ E : gi(z) = 0, i = 1, . . . ,m} un
point d’extremum local lié de f sur Σg (avec m < n). Si Rang(Dg(z∗)) = m, c’est-à-dire
si les vecteurs {∇g1(z∗), . . . ,∇gm(z∗)} sont linéairement indépendants, alors il existe
λ∗ = (λ∗

1, . . . , λ
∗
m) ∈ Rm tel que

∇f(z∗) =
m∑

i=1
λ∗
i∇gi(z∗)

ou, de façon équivalente, (z∗,λ∗) ∈ E × Rm est un point stationnaire de la fonction de
Lagrange L : E × Rm → R, L(z,λ) = f(z) − λ · g(z) = f(z) −∑m

i=1 λigi(z) i.e.

∇(z,λ)L(z∗,λ∗) = 0.

Démonstration. Puisque Rang(Dg(z∗)) = m, il existe m colonnes linéairement indépen-
dantes de la matrice Jacobienne Dg(z∗). Soient (i1, . . . , im) ces colonnes. Pour se fixer
les idées, supposons que ce soit les m dernières : (i1, . . . , im) = (n−m+ 1, . . . , n), le cas
général se traitant de la même manière en permutant le rôle des n coordonnées. Notons
y = (zn−m+1, . . . , zn) et x = (z1, . . . , zn−m) les variables restantes, de sorte que z = (x,y)
et, en particulier, z∗ = (x∗,y∗). De plus, nous décomposons la matrice jacobienne en
Dg(z∗) = [Dxg(z∗)|Dyg(z∗)] où

Dyg(z∗) =




∂g1
∂zn−m+1

(z∗) · · · ∂g1
∂zn

(z∗)
...

...
∂gm

∂zn−m+1
(z∗) · · · ∂gm

∂zn
(z∗)


 ∈ Rm×m

est inversible. Puisque det(Dyg(z∗)) ̸= 0, on peut appliquer le théorème des fonctions
implicites. Donc il existe un ouvert U = B(x∗, δ) ⊂ Rn−m, un ouvert V ⊂ E ⊂ Rn
contenant z∗ et une fonction ϕ : U → Rm de classe C1(U) tels que

— y∗ = ϕ(x∗) et, pour tout x ∈ U , (x,ϕ(x)) ∈ V et g(x,ϕ(x)) = 0 ;
— Σg ∩ V = G(ϕ)
— Dϕ(x∗) = −(Dyg(z∗))−1Dxg(z∗).

Introduisons f̃(x) = f(x,ϕ(x)), x ∈ U . Alors x∗ est un extremum local de f̃ sur U et
Df̃(x∗) = 0. On a

0 = Df̃(x∗) = Dxf(z∗) +Dyf(z∗) ·Dϕ(x∗)
= Dxf(z∗) −Dyf(z∗)Dyg(z∗)−1Dxg(z∗).
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Si on pose λ∗ = Dyf(z∗)︸ ︷︷ ︸
∈R1×m

Dyg(z∗)−1
︸ ︷︷ ︸

∈Rm×m

∈ R1×m (vecteur ligne), on a pour i = 1, . . . , n−m

0 = ∂f

∂xi
(z∗) − λ∗Dxig(z∗) = ∂f

∂xi
(z∗) −

m∑

j=1
λ∗
j

∂gj
∂xi

(z∗)

et, par définition, Dyf(z∗) = λ∗Dyg(z∗) qui implique

∂f

∂yi
(z∗) =

m∑

j=1
λ∗
j

∂gj
∂yi

(z∗) i = 1, . . . ,m.

Donc finalement
∂f

∂zi
(z∗) =

m∑

j=1
λ∗
j

∂gj
∂zi

(z∗), i = 1, . . . , n

que l’on peut écrire comme

∇f(z∗) =
m∑

j=1
λ∗
j∇gj(z∗)

ou encore
∇(z,λ)L(z∗,λ∗) = 0.

Exercice 7.21. Chercher les extrema liés de f(x, y, z) = x+ y + z sous les contraintes
g1(x, y, z) = x2 + y2 − 2 = 0, g2(x, y, z) = x+ z − 1 = 0.

7.5 Conditions suffisantes
On mentionne ici sans démonstration (laissée comme exercice) des conditions suffisantes

pour avoir un extremum local lié.

Théorème 7.22. Soit E ⊂ Rn ouvert non vide, f, g1, . . . , gm ∈ C2(E) et (z∗,λ∗) ∈ E×Rm
un point stationnaire de la fonction de Lagrange L(z,λ) = f(z)−∑m

i=1 λigi(z) (c’est-à-dire
∇L(z∗,λ∗) = 0). On note g = (g1, . . . , gm) : E → Rm et Σg = {z ∈ E : g(z) = 0}
l’ensemble faisable. Supposons encore Rang(Dg(z∗)) = m et considérons l’espace vectoriel
tangent à Σg en z∗ :

Tz∗(Σg) = {w ∈ Rn : Dg(z∗) · w = 0}.

Si
∀w ∈ Tz∗(Σg)\{0} w⊤

(
Hf (z∗) −

m∑

i=1
λ∗
iHgi(z∗)

)
w > 0,

alors z∗ est un point de minimum local de f sur Σg.
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La condition Dg(z∗) · w = 0 dans le théorème précédent implique (∇gi(z∗))⊤ · w =
0, ∀i = 1, . . . ,m. Donc les directions w sont des directions orthogonales à tous les vecteurs
∇gi(z∗) et donc tangentielles à la contrainte g(x) = 0.

Si on note H(z)
L (z,λ) la matrice Hessienne de L calculée uniquement par rapport aux

variables z :
(
H

(z)
L (z,λ)

)
ij

= ∂2L
∂zi∂zj

(z,λ) = ∂2f

∂zi∂zj
(x) −

m∑

ℓ=1
λℓ

∂2gℓ
∂zi∂zj

(x),

on voit que H(z)
L (z,λ) = Hf (z) −∑m

ℓ=1 λℓHgℓ
(z). Le théorème précédent nous dit ainsi

que, si
∀w ∈ Tz∗(Σg)\{0} w⊤H(z)

L (z∗,λ∗)w > 0,

alors z∗ est un point de minimum local lié. Il suffit de vérifier la positivité de la forme
quadratique w⊤H(z)

L (z∗,λ∗)w (et non pas de w⊤Hf (z∗)w !) uniquement pour les directions
tangentielles à la contrainte g(z) = 0.



Chapitre 8

Intégrale multiple au sens de
Riemann

Soit E ⊂ Rn borné non vide et f : E → R bornée. On veut définir l’intégrale de f sur
E, noté ∫

E
f(x)dx.

On parle d’intégrale double lorsque E ⊂ R2, d’intégrale triple lorsque E ⊂ R3 et, plus
généralement, d’intégrale multiple pour n > 1. On commence notre étude par le cas
où le domaine E est un pavé de Rn, i.e. un rectangle fermé en dimension n = 2 et un
hyper-rectangle fermé en dimension n > 2.

8.1 Pavés de Rn

On commence par donner la définition de pavé ainsi que de partition d’un pavé et
raffinement d’une partition.

Définition 8.1 (Pavé). On appelle pavé tout ensemble R ⊂ Rn de la forme R = [a1, b1] ×
· · ·× [an, bn] où aj ≤ bj, j = 1, . . . , n sont des nombres réels. Le volume de R, noté Vol(R),
est défini comme

Vol(R) =
n∏

j=1
(bj − aj).

On dit que R est un pavé dégénéré s’il existe un ou plusieurs k = 1, . . . , n tels que ak = bk.
Dans ce cas on a Vol(R) = 0.

Définition 8.2 (Partition). On appelle partition d’un pavé R ⊂ Rn, une collection finie
P de pavés tels que

⋃
Q∈P Q = R et, pour tout Q,Q′ ∈ P, Q ̸= Q′, on a Q̊ ∩ Q̊′ = ∅.

La figure 8.1(gauche) montre un exemple de partition d’un pavé.

Définition 8.3. Une partition P d’un pavé R = [a1, b1] × . . .× [an, bn] sera dite tensorielle
s’il existe, pour tout j ∈ {1, . . . , n},

aj = t0j ≤ . . . ≤ t
Nj

j = bj dans R, Nj ∈ N∗,

91
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R

Q

R

Figure 8.1 – Exemple d’une partition d’un pavé de R2 (gauche) et d’un possible raffinement de
cette partition (droite).

tels que

P =
{

[tα1
1 , t1+α1

1 ] × . . .× [tαn
n , t1+αn

n ] : 0 ≤ α1 ≤ N1 − 1, . . . , 0 ≤ αn ≤ Nn − 1
}
.

On notera alors P = (t01, . . . , tN1
1 ) ⊗ . . .⊗ (t0n, . . . , tNn

n ). Le contexte devrait permettre de
ne pas confondre des indices supérieurs comme ici avec des puissances.

Définition 8.4 (Raffinement d’une partition). Soit P,P ′ deux partitions d’un pavé
R ⊂ Rn. On dit que P ′ est un raffinement de P si, pour tout Q ∈ P, la collection
P ′
Q = {Q′ ∈ P ′ : Q′ ⊂ Q} est une partition du pavé Q.

La figure 8.1(droite) montre un exemple d’un raffinement d’une partition. À partir de
la définition 8.4 on peut montrer les propriétés suivantes des pavés d’un raffinement P ′

d’une partition P.
— Si Q′ ⊂ Q1 et Q′ ⊂ Q2 avec Q′ ∈ P ′ et Q1 ̸= Q2 dans P, alors Vol(Q′) = 0.
— Si Q′ ∈ P ′ n’est inclus dans aucun Q ∈ P, alors Vol(Q′) = 0.
— P ′ est un raffinement de P si et seulement si pour tout Q′ ∈ P ′ non dégénéré il

existe Q ∈ P tel que Q′ ⊂ Q.
— Si le raffinement P ′ de P est une partition tensorielle, alors, pour tout Q ∈ P,

P ′
Q = {Q′ ∈ P ′ : Q′ ⊂ Q} est une partition tensorielle de Q.

On a aussi les résultats suivants.

Lemme 8.5. Soit P,P ′ deux partitions d’un pavé R ⊂ Rn. Alors il existe une partition
tensorielle P ′′ qui est un raffinement à la fois de P et P ′. En particulier, toute partition
P admet un raffinement tensoriel.

Démonstration. Notons R = [a1, b1] × . . .× [an, bn], et soit K et K ′ les nombres de pavés
dans P et P ′. Notons aussi

P ∪ P ′ =
{

[ai1, bi1] × . . .× [ain, bin] : 1 ≤ i ≤ K +K ′
}
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Pour chaque j ∈ {1, . . . , n}, ordonnons a1
j , b

1
j , a

2
j , b

2
j , . . . , a

K+K′

j , bK+K′

j :

{a1
j , b

1
j , a

2
j , b

2
j , . . . , a

K+K′

j , bK+K′

j } = {t0j , t1j , . . . , t2(K+K′)−1
j } avec t0j ≤ t1j ≤ . . . ≤ t

2(K+K′)−1
j .

Alors
P ′′ = (t01, . . . , t

2(K+K′)−1
1 ) ⊗ . . .⊗ (t0n, . . . , t2(K+K′)−1

n )
est un raffinement commun.

Lemme 8.6. Soit P une partition d’un pavé R ⊂ Rn. Alors

Vol(R) =
∑

Q∈P
Vol(Q)

Démonstration. Supposons d’abord que P est tensorielle :

P = (t01, . . . , tN1
1 ) ⊗ . . .⊗ (t0n, . . . , tNn

n ).

Alors
∑

Q∈P
Vol(Q) =

N1−1∑

α1=0
. . .

Nn−1∑

αn=0

(
t1+α1
1 − tα1

1

)
· . . . ·

(
t1+αn
n − tαn

n

)

=
N1−1∑

α1=0

(
t1+α1
1 − tα1

1

)
· . . . ·

Nn−1∑

αn=0

(
t1+αn
n − tαn

n

)
=
(
tN1
1 − t01

)
· . . . ·

(
tNn
n − t0n

)
= Vol(R).

Passons au cas général et appliquons le lemme 8.5 à P ′ = P, ce qui donne un raffinement
P ′′ de P qui est une partition tensorielle. On a donc

Vol(R) =
∑

Q′′∈P ′′

Vol(Q′′) (cf début de la preuve)

=
∑

Q∈P


 ∑

Q′′∈P ′′, Q′′⊂Q
Vol(Q′′)


 (car P ′′ est un raffinement de P)

=
∑

Q∈P
Vol(Q).

Pour la dernière égalité on a utilisé le fait que P ′′
Q = {Q′′ ∈ P ′′ : Q′′ ⊂ Q} est une partition

tensorielle de Q ; voir une remarque précédente.

8.2 Fonctions intégrables au sens de Riemann sur un pavé
Soit R ⊂ Rn un pavé et f : R → R une fonction bornée (pas nécessairement continue).

Définition 8.7 (Sommes de Darboux). Soit P une partition de R. On définit

somme inférieure : S(f,P) =
∑

Q∈P

(
inf
x∈Q

f(x)
)

Vol(Q),

somme supérieure : S(f,P) =
∑

Q∈P

(
sup
x∈Q

f(x)
)

Vol(Q).
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On remarque que, puisque f est bornée et P est une partition finie, les quantités S(f,P)
et S(f,P) sont bien définies. Le lemme suivant montre aussi qu’une somme inférieure est
toujours plus petite qu’une somme supérieure.

Lemme 8.8. Soit P une partition de R, et P ′′ un raffinement de P. Alors,

S(f,P) ≤ S(f,P ′′) ≤ S(f,P ′′) ≤ S(f,P).

De plus, pour toute partition P,P ′ de R on a S(f,P) ≤ S(f,P ′).

Démonstration. Puisque P ′′ est un raffinement de P, on a

∀Q ∈ P Q =
⋃

Q′′∈P′′
Q′′⊂Q

Q′′ et Vol(Q) =
∑

Q′′∈P′′
Q′′⊂Q

Vol(Q′′).

Donc

S(f,P) =
∑

Q∈P

(
inf
x∈Q

f(x)
)

Vol(Q) =
∑

Q∈P

(
inf
x∈Q

f(x)
) ∑

Q′′∈P′′
Q′′⊂Q

Vol(Q′′)

≤
∑

Q∈P

∑

Q′′∈P′′
Q′′⊂Q

(
inf

x∈Q′′
f(x)

)
Vol(Q′′) = S(f,P ′′).

De la même façon, on prouve S(f,P ′′) ≤ S(f,P). Enfin, l’inégalité S(f,P ′′) ≤ S(f,P ′′)
est immédiate.

Puisque toute paire de partitions P,P ′ de R admet un raffinement commun, le résultat
précédent implique immédiatement S(f,P) ≤ S(f,P ′).

On est maintenant en mesure de donner la définition suivante de fonction intégrable
au sens de Riemann.

Définition 8.9 (Fonction intégrable au sens de Riemann). Soit R ⊂ Rn un pavé et
f : R → R une fonction bornée. On appelle

intégrale de Riemann supérieure
∫

R
f(x)dx := inf{S(f,P), P partition de R},

intégrale de Riemann inférieure
∫

R

f(x)dx := sup{S(f,P), P partition de R}.

On dit que f est intégrable au sens de Riemann (ou “Riemann-intégrable” ou simplement
“intégrable”) si ∫

R

f(x)dx =
∫

R
f(x)dx.

Dans ce cas on note ∫

R
f(x)dx :=

∫

R

f(x)dx =
∫

R
f(x)dx.

On note R(R) l’ensemble des fonctions f : R → R bornées et intégrables au sens de
Riemann.
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Puisque dans la définition ci-dessus on a supposé f bornée, pour toute partition P de
R donnée, on a

−∞ < S(f,P) ≤
∫

R

f(x)dx ≤
∫

R
f(x)dx ≤ S(f,P) < +∞.

On voit donc que
∫
R
f(x)dx et

∫
Rf(x)dx existent et sont finies. Une autre caractérisation

des fonctions intégrables au sens de Riemann est la suivante.

Lemme 8.10. Soit R ⊂ Rn un pavé et f : R → R bornée. Alors f est intégrable au sens
de Riemann si et seulement si pour tout ϵ > 0 il existe une partition Pϵ de R telle que

S(f,Pϵ) − S(f,Pϵ) < ϵ.

Démonstration. « ⇐ » : Supposons que, pour tout ϵ > 0, il existe une partition Pϵ de R
telle que S(f,Pϵ) − S(f,Pϵ) < ϵ. Alors

∫

R
f(x)dx ≤ S(f,Pϵ),

∫

R

f(x)dx ≥ S(f,Pϵ)

et ∫

R
f(x)dx −

∫

R

f(x)dx ≤ S(f,Pϵ) − S(f,Pϵ) < ϵ.

Comme ϵ > 0 est arbitraire, ceci implique
∫
Rf(x)dx =

∫
R
f(x)dx et par conséquent, f est

intégrable au sens de Riemann.
« ⇒ » : Supposons f intégrable au sens de Riemann. Par définition de sup et inf on a

que ∀ϵ > 0

∃Pϵ partition de R : S(f,Pϵ) >
∫

R

f(x)dx − ϵ

2 =
∫

R
f(x)dx − ϵ

2 ,

∃P ′
ϵ partition de R : S(f,P ′

ϵ) <
∫

R
f(x)dx + ϵ

2 =
∫

R
f(x)dx + ϵ

2 .

Soit P ′′
ϵ un raffinement commun de Pϵ et P ′

ϵ. Alors

S(f,P ′′
ϵ ) ≥ S(f,Pϵ) >

∫

R
f(x)dx − ϵ

2 ,

S(f,P ′′
ϵ ) ≤ S(f,P ′

ϵ) <
∫

R
f(x)dx + ϵ

2 ,

ce qui implique
S(f,P ′′

ϵ ) − S(f,P ′′
ϵ ) < ϵ.

À partir de cette caractérisation, on montre facilement le résultat suivant :

Théorème 8.11. Soit R ⊂ Rn un pavé et f : R → R une fonction continue. Alors f est
intégrable au sens de Riemann.
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Démonstration. R est compact et f est continue sur R, donc uniformément continue. Ceci
implique que

∀ϵ > 0 ∃δϵ > 0 ∀x,y ∈ R
(
∥x − y∥ < δϵ ⇒ |f(x) − f(y)| < ϵ

1 + Vol(R)
)
,

où on utilise dans cette démonstration la norme euclidienne de Rn. Soit Pϵ une partition
de R telle que

∀Q ∈ Pϵ diam(Q) = max
x,y∈Q

∥x − y∥ < δϵ.

Une telle partition existe toujours. Il suffit de prendre la partition tensorielle de R =
[a1, b1] × · · · × [an, bn] suivante : Pϵ = (t01, . . . , tN1 ) ⊗ . . .⊗ (t0n, . . . , tNn ) avec

tij = aj + (bj − aj)
i

N ϵ
, 0 ≤ i ≤ Nϵ, 1 ≤ j ≤ n,

et N ∈ N∗ choisi tel que Nϵ >
√∑n

i=1(bi − ai)2/δϵ de telle sorte que pour tout Q ∈ Pϵ et
x,y ∈ Q on a ∥x − y∥ < δϵ. On a alors

S(f,Pϵ) − S(f,Pϵ) =
∑

Q∈Pϵ

(
max
x∈Q

f(x) − min
x∈Q

f(x)
)

Vol(Q)

≤ ϵ

1 + Vol(R)
∑

Q∈Pϵ

Vol(Q)

< ϵ,

ce qui montre que f est intégrable au sens de Riemann.

Grâce à ce résultat, on a immédiatement que C0(R) ⊂ R(R). D’autre part, si R est
dégénéré et f : R → R est bornée, alors f est toujours intégrable au sens de Riemann et
d’intégrale nulle.

Exercice 8.12. Dire si les fonctions suivantes définies sur [0, 1]2 sont intégrables au sens
de Riemann ou non :

f1(x, y) =
{

1, (x, y) ∈ [0, 1]2 ∩ Q2

0 autrement
f2(x, y) =

{
1, (x, y) ∈ [0, 1]2, x ≤ 1

2
0 autrement

f3(x, y) =





x√
x2+y2

, (x, y) ∈ [0, 1]2 \ {(0, 0)}
0 (x, y) = (0, 0)

On conclut cette section par un résultat qui sera utile par la suite.

Lemme 8.13. Soit deux pavés R et R̂ dans Rn tels que R ⊂ int(R̂), soit f : R → R une
fonction bornée et notons f̂ : R̂ → R le prolongement par zéro de f sur R̂ :

f̂(x) = f(x) pour tout x ∈ R et f̂(x) = 0 pour tout x ∈ R̂\R.

Alors f est Riemann-intégrable ssi f̂ l’est, auquel cas
∫
R f(x)dx =

∫
R̂
f̂(x)dx.
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Démonstration. Supposons d’abord f Riemann-intégrable et soit ϵ > 0. Choisissons une
partition Pϵ de R telle que

S(f,Pϵ) − S(f,Pϵ) < ϵ.

Soit encore un pavé Rϵ tel que

R ⊂ int(Rϵ) ⊂ Rϵ ⊂ int(R̂)

et
Vol(Rϵ) − Vol(R) < ϵ

2M avec M > sup
x∈R

|f(x)|.

Soit la partition tensorielle P̂ϵ de R̂ définie à partir de toutes les composantes (éven-
tuellement répétées) de tous les sommets des pavés dans Pϵ et des sommets de Rϵ et
R̂. Alors aucun Q ∈ P̂ϵ ne contient à la fois un point de R̊ et un point de R̂\R. De
même aucun Q ∈ P̂ϵ ne contient à la fois un point de R̊ϵ et un point de R̂\Rϵ. De plus
{Q ∈ P̂ϵ : Q ⊂ R} est une partition de R qui raffine Pϵ. On a donc, où Q ∈ P̂ϵ,

S(f̂ , P̂ϵ) =



∑

Q⊂R
+

∑

Q⊂Rϵ\R̊
+

∑

Q⊂R̂\R̊ϵ


 sup

x∈Q
f̂(x) Vol(Q)

≤ S(f,Pϵ) +
∑

Q⊂Rϵ\R̊
M Vol(Q) +

∑

Q⊂R̂\R̊ϵ

0 ≤ S(f,Pϵ) + Mϵ

2M = S(f,Pϵ) + ϵ

2 .

De même
S(f̂ , P̂ϵ) ≥ S(f,Pϵ) − ϵ

2
et donc

S(f̂ , P̂ϵ) − S(f̂ , P̂ϵ) ≤ S(f,Pϵ) − S(f,Pϵ) + ϵ < 2ϵ.

Comme ϵ > 0 est arbitraire, f̂ est Riemann-intégrable. De plus, en considérant de nouveau
ϵ > 0, ce qui précède donne

S(f,Pϵ) − ϵ

2 ≤
∫

R̂
f̂(x)dx ≤ S(f,Pϵ) + ϵ

2

et, par ailleurs,

S(f,Pϵ) − ϵ

2 ≤ S(f,Pϵ) ≤
∫

R
f(x)dx ≤ S(f,Pϵ) ≤ S(f,Pϵ) + ϵ

2 .

D’où ∣∣∣∣
∫

R̂
f̂(x)dx −

∫

R
f(x)dx

∣∣∣∣ < 2ϵ

et, puisque ϵ > 0 est arbitraire, les deux intégrales sont égales.
Réciproquement, supposons f̂ Riemann-intégrable et soit ϵ > 0. Choisissons une

partition P̂ϵ de R̂ telle que
S(f̂ , P̂ϵ) − S(f̂ , P̂ϵ) < ϵ.
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Soit encore un pavé Rϵ tel que

R ⊂ int(Rϵ) ⊂ Rϵ ⊂ int(R̂)

et
Vol(Rϵ) − Vol(R) < ϵ

2M avec M > sup
x∈R

|f(x)|.

Soit la partition tensorielle P̂ ′
ϵ de R̂ définie à partir de toutes les composantes (éventuelle-

ment répétées) de tous les sommets des pavés dans P̂ϵ et des sommets de R et Rϵ. Alors
Pϵ = {Q ∈ P̂ ′

ϵ : Q ⊂ R} est une partition de R. On a, où Q ∈ P̂ ′
ϵ,

S(f̂ , P̂ ′
ϵ) =



∑

Q∈Pϵ

+
∑

Q⊂Rϵ\R̊
+

∑

Q⊂R̂\R̊ϵ


 sup

x∈Q
f̂(x) Vol(Q)

≥ S(f,Pϵ) − Mϵ

2M + 0 = S(f,Pϵ) − ϵ

2 .

De même
S(f̂ , P̂ ′

ϵ) ≤ S(f,Pϵ) + ϵ

2
et donc

S(f,Pϵ) − S(f,Pϵ) ≤ S(f̂ , P̂ ′
ϵ) − S(f̂ , P̂ ′

ϵ) + ϵ ≤ S(f̂ , P̂ϵ) − S(f̂ , P̂ϵ) + ϵ < 2ϵ.

Comme ϵ > 0 est arbitraire, f est Riemann-intégrable et on conclut que
∫
R f(x)dx =∫

R̂
f̂(x)dx par le même argument qu’auparavant.

8.3 Intégrales itérées sur un pavé et théorème de Fubini
On montre ici une procédure simple pour calculer l’intégrale d’une fonction sur un

pavé. Elle se base sur le résultat suivant qui prend le nom de formule des intégrales itérées.

Théorème 8.14 (de Fubini). Soit R ⊂ Rn+m un pavé de la forme R = R(1) ×R(2), R(1) ⊂
Rn, R(2) ⊂ Rm et f : R → R une fonction bornée et intégrable au sens de Riemann,
f = f(x,y), x ∈ R(1),y ∈ R(2). Si ∀y ∈ R(2) la fonction f(·,y) : R(1) → R est intégrable
au sens de Riemann, alors la fonction y 7→ G(y) =

∫
R(1) f(x,y)dx, y ∈ R(2), est aussi

intégrable au sens de Riemann et
∫

R
f(x,y)dxdy =

∫

R(2)
G(y)dy =

∫

R(2)

(∫

R(1)
f(x,y)dx

)
dy,

où
∫
R f(x,y)dxdy est une notation pour l’intégrale de f sur R.
Réciproquement, si ∀x ∈ R(1) la fonction f(x, ·) : R(2) → R est intégrable au sens de

Riemann, alors la fonction x 7→ F (x) =
∫
R(2) f(x,y)dy, x ∈ R(1), est aussi intégrable au

sens de Riemann et
∫

R
f(x,y)dxdy =

∫

R(1)
F (x)dx =

∫

R(1)

(∫

R(2)
f(x,y)dy

)
dx,
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Démonstration. Puisque f est intégrable, ∀ϵ > 0 il existe une partition Pϵ de R telle que
S(f,Pϵ) − S(f,Pϵ) < ϵ. Cette partition admet toujours un raffinement P ′

ϵ qui est une
partition tensorielle :

P ′
ϵ = (t01, . . . , tN1

1 ) ⊗ . . .⊗ (t0n+m, . . . , t
Nn+m
n+m ).

Soit

P(1)
ϵ = (t01, . . . , tN1

1 )⊗. . .⊗(t0n, . . . , tNn
n ) et P(2)

ϵ = (t0n+1, . . . , t
Nn+1
n+1 )⊗. . .⊗(t0n+m, . . . , t

Nn+m
n+m ),

des partitions de respectivement R(1) et R(2). Alors, pour tout y ∈ R(2),

S(f(·,y),P(1)
ϵ ) ≤

∫

R(1)
f(x,y)dx = G(y) ≤ S(f(·,y),P(1)

ϵ ).

Donc

S(G,P(2)
ϵ ) =

∑

Q(2)∈P(2)
ϵ

(
inf

y∈Q(2)
G(y)

)
Vol(Q(2))

≥
∑

Q(2)∈P(2)
ϵ

(
inf

y∈Q(2)
S(f(·,y),P(1)

ϵ )
)

Vol(Q(2))

=
∑

Q(2)∈P(2)
ϵ

inf
y∈Q(2)




∑

Q(1)∈P(1)
ϵ

inf
x∈Q(1)

f(x,y) Vol(Q(1))


Vol(Q(2))

≥
∑

Q(2)∈P(2)
ϵ

∑

Q(1)∈P(1)
ϵ

(
inf

(x,y)∈Q(1)×Q(2)
f(x,y)

)
Vol(Q(1)) Vol(Q(2))

≥ S(f,Pϵ).

De façon similaire, on montre que S(G,P(2)
ϵ ) ≤ S(f,Pϵ) et donc

S(G,P(2)
ϵ ) − S(G,P(2)

ϵ ) ≤ S(f,Pϵ) − S(f,Pϵ) < ϵ,

ce qui implique que G est intégrable au sens de Riemann sur R(2). De plus,

S(f,Pϵ) ≤ S(G,P(2)
ϵ ) ≤

∫

R(2)
G(y)dy ≤ S(G,P(2)

ϵ ) ≤ S(f,Pϵ)

et
S(f,Pϵ) ≤

∫

R
f(x,y)dxdy ≤ S(f,Pϵ)

avec S(f,Pϵ) − S(f,Pϵ) < ϵ ; par l’arbitrarité de ϵ, on conclut
∫

R(2)
G(y)dy =

∫

R
f(x,y)dxdy.
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Figure 8.2 – Interprétation géométrique de la formule des intégrales itérées

Corollaire 8.15. Soit R = R(1) ×R(2) ⊂ Rn+m et f ∈ C0(R). Alors
— ∀y ∈ R(2), G(y) =

∫
R(1) f(x,y)dx existe,

— ∀x ∈ R(1), F (x) =
∫
R(2) f(x,y)dy existe,

—
∫
R(2) G(y)dy =

∫
R(1) F (x)dx =

∫
R f(x,y)dxdy.

Détaillons ce résultat en dimension n = 2 : R = [a, b] × [c, d], f : R → R continue.
Alors ∫

R
f(x, y)dxdy =

∫ d

c

(∫ b

a
f(x, y)dx

)
dy =

∫ b

a

(∫ d

c
f(x, y)dy

)
dx

Cette formule prend le nom de formule des intégrales itérées. La Figure 8.2 donne une
interprétation géométrique.

Exemple 8.16. Soit R = [1, 2] × [0, 1], et f(x, y) = 1
x3 e

y/x : R → R. Clairement, f est
continue sur R (fermé). On peut donc calculer l’intégrale double de f par la formule des
intégrales itérées :

∫

R
f(x, y)dxdy =

∫ 2

1

(∫ 1

0
f(x, y)dy

)
dx

︸ ︷︷ ︸
(A)

=
∫ 1

0

(∫ 2

1
f(x, y)dx

)
dy

︸ ︷︷ ︸
(B)

.

Utilisons (A) :
∫ 2

1

(∫ 1

0

1
x3 e

y/xdy

)
dx =

∫ 2

1

1
x3xe

y/x

∣∣∣∣
y=1

y=0
dx

=
∫ 2

1

1
x2 (e1/x − 1)dx =

∫ 2

1

1
x2 e

1/xdx−
∫ 2

1

1
x2dx

= −
∫ 1/2

1
etdt+ 1

x

∣∣∣∣
2

1
= e− √

e− 1
2 .

On a donc
∫
R f(x, y)dxdy = e− √

e− 1
2 .
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8.4 Intégrale de Riemann sur un ensemble quelconque

On souhaite maintenant, généraliser la définition d’intégrale au sens de Riemann d’une
fonction bornée f : E → R sur un sous-ensemble E ⊂ Rn quelconque borné. L’idée est
simple : puisque E est borné, il existe un pavé R ⊃ E qui le contient. On prolonge alors
par zéro la fonction f et on l’intègre sur le pavé R.

Définition 8.17 (Intégrale de Riemann sur un ensemble quelconque). Soit E ⊂ Rn borné,
f : E → R bornée et R ⊂ Rn un pavé contenant E. On dit que f est intégrable au sens de
Riemann si la fonction f̃ : R → R définie par

f̃(x) = f(x), si x ∈ E, f̃(x) = 0, si x ∈ R \ E

est intégrable au sens de Riemann. Dans ce cas, on définit l’intégrale de f sur E par
∫

E
f(x)dx =

∫

R
f̃(x)dx. (8.1)

On note R(E) l’ensemble de fonctions f : E → R intégrables au sens de Riemann sur E.

Il est parfois commode de considérer E = ∅. Dans ce cas f̃ est nulle sur R et donc
Riemann-intégrable avec

∫
R f̃(x)dx = 0. On conviendra donc que

∫
E f(x)dx = 0 dès que

E = ∅.
Il est important de vérifier que la définition de l’intégrale en (8.1) ne dépende pas du

choix de R.

Lemme 8.18. Soit E ⊂ Rn borné, f : E → R bornée et f̃ : Rn → R le prolongement de
f par zéro au dehors de E. S’il existe un pavé R ⊃ E tel que la fonction f̃ : R → R est
intégrable, alors pour tout autre pavé R′ ⊃ E, la fonction f̃ : R′ → R est intégrable et on a∫
R f̃(x)dx =

∫
R′ f̃(x)dx.

Démonstration. Soit R ⊃ E un pavé tel que la fonction f̃ : R → R est intégrable au sens
de Riemann, soit R′ ⊃ E un autre pavé et soit R̂ un troisième pavé dont l’intérieur contient
aussi bien R que R′, i.e. ˚̂

R ⊃ R ∪R′.
Par le lemme 8.13 appliqué à f̃ : R → R et f̃ : R̂ → R, on sait que f̃ : R̂ → R est

Riemann-intégrable et
∫
R̂ f̃dx =

∫
R f̃dx. Par le même lemme appliqué à f̃ : R′ → R et

f̃ : R̂ → R, on sait ensuite que f̃ : R′ → R est Riemann-intégrable et
∫
R′ f̃dx =

∫
R̂ f̃dx =∫

R f̃dx.

L’intégrale multiple au sens de Riemann a les propriétés suivantes, analogues à celles
de l’intégrale en dimension n = 1.

Théorème 8.19 (Propriétés de l’intégrale de Riemann).
(i) R(E) est un espace vectoriel et l’intégrale de Riemann est linéaire, c’est-à-dire, si

f, g ∈ R(E) et α, β ∈ R, alors αf + βg ∈ R(E) et
∫

E
(αf + βg) = α

∫

E
f + β

∫

E
g.
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(ii) Si f, g ∈ R(E) et f(x) ≤ g(x) ∀x ∈ E alors
∫

E
f(x)dx ≤

∫

E
g(x)dx.

(iii) Si f ∈ R(E), alors |f |, f+, f− ∈ R(E), où f+ = max{f, 0} et f− = max{−f, 0} ; de
plus ∣∣∣∣

∫

E
f(x)dx

∣∣∣∣ ≤
∫

E
|f(x)|dx.

(iv) Si f, g ∈ R(E) alors fg ∈ R(E) (i.e. R(E) est une algèbre).

Démonstration. Soit R ⊂ Rn un pavé contenant E et f̃ , g̃ : R → R les prolongements de
f et g par zéro en dehors de E.

La démonstration des points (i) et (ii) est laissée comme exercice aux étudiants.

(iii) Pour ϵ > 0, soit Pϵ une partition de R telle que S(f̃ ,Pϵ) − S(f̃ ,Pϵ) < ϵ. Alors,
∀Q ∈ Pϵ, on a

sup
Q
f̃+ − inf

Q
f̃+ ≤ sup

Q
f̃ − inf

Q
f̃ .

En effet :
— si supQ f̃ ≥ infQ f̃ ≥ 0, alors f̃+(x) = f̃(x) ∀x ∈ Q et on a égalité ;
— si infQ f̃ ≤ supQ f̃ ≤ 0, alors supQ f̃+ − infQ f̃+ = 0 ≤ supQ f̃ − infQ f̃ ;
— si infQ f̃ ≤ 0 ≤ supQ f̃ , alors, pour tout x ∈ Q, f̃+(x) = f̃(x) + f̃−(x) ≤ f̃(x) +

supQ f̃− = f̃(x) − infQ f̃ et

sup
Q
f̃+ − inf

Q
f̃+ = sup

Q
f̃+ ≤ sup

Q
f̃ − inf

Q
f̃ .

Il s’ensuit que S(f̃+,Pϵ) − S(f̃+,Pϵ) ≤ S(f̃ ,Pϵ) − S(f̃ ,Pϵ) < ϵ et f̃+ ∈ R(R), donc
f+ ∈ R(E). Comme f− = (−f)+ on a aussi f− ∈ R(E) et |f | = f+ + f− ∈ R(E). Enfin,

puisque f ≤ |f |, on a
∫

E
f(x)dx ≤

∫

E
|f(x)|dx,

puisque − f ≤ |f |, on a −
∫

E
f(x)dx ≤

∫

E
|f(x)|dx,

ce qui implique que |∫E f(x)dx| ≤ ∫
E |f(x)|dx.

(iv) Supposons d’abord f, g ≥ 0 et f(x) ≤ M , g(x) ≤ M ∀x ∈ E avec M ∈]0,+∞[
(M existe car f et g sont bornées). Pour tout pavé Q ⊂ R on a

sup
Q
f̃ · g̃ − inf

Q
f̃ · g̃ ≤ sup

Q
f̃ · sup

Q
g̃ − inf

Q
f̃ · inf

Q
g̃

≤ (sup
Q
f̃ − inf

Q
f̃) sup

Q
g̃ + inf

Q
f̃(sup

Q
g̃ − inf

Q
g̃)

≤ M(sup
Q
f̃ − inf

Q
f̃) +M(sup

Q
g̃ − inf

Q
g̃).
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Soit maintenant ϵ > 0 et Pϵ une partition de R telle que

S(f̃ ,Pϵ) − S(f̃ ,Pϵ) <
ϵ

2M , S(g̃,Pϵ) − S(g̃,Pϵ) <
ϵ

2M .

Alors

S(f̃ g̃,Pϵ) − S(f̃ g̃,Pϵ) ≤ M(S(f̃ ,Pϵ) − S(f̃ ,Pϵ)) +M(S(g̃,Pϵ) − S(g̃,Pϵ)) < ϵ

et donc f̃ g̃ ∈ R(R) ce qui implique que fg ∈ R(E). Si f n’est pas positive ou g n’est pas
positive (ou ni l’une ni l’autre), on a fg = (f+−f−)(g+−g−) = f+g+−f+g−−f−g++f−g−
et chaque terme f±, g± ∈ R(E), donc fg ∈ R(E).

8.5 Ensembles mesurables au sens de Jordan
Il est clair que si E est un sous-ensemble quelconque borné de Rn et f : E → R

une fonction quelconque bornée, le fait que f soit intégrable sur E au sens de Riemann
dépendra aussi bien des propriétés de f que des propriétés de l’ensemble E. En particulier,
on peut se poser la question si une fonction f : E → R continue est intégrable. La réponse
à cette question n’est pas toujours affirmative et dépend des propriétés de E, notamment
qu’il soit mesurable au sens de Jordan, notion qu’on va introduire dans cette section.

On introduit la fonction caractéristique de l’ensemble E, notée 1E : Rn → R et définie
par

1E(x) = 1 si x ∈ E, 1E(x) = 0 si x /∈ E.

On peut se poser la question de savoir pour quels sous-ensembles E ⊂ Rn bornés la
fonction 1E est intégrable au sens de Riemann.

Définition 8.20 (Ensemble mesurable au sens de Jordan). Soit E ⊂ Rn borné. On dit que
E est mesurable au sens de Jordan (ou “Jordan-mesurable” ou simplement “mesurable”)
si 1E ∈ R(E). Dans ce cas on pose

Vol(E) =
∫

E
1E(x)dx.

Un ensemble borné E ⊂ Rn est dit négligeable s’il est mesurable au sens de Jordan et
Vol(E) = 0.

Une caractérisation équivalente d’ensemble Jordan-mesurable est la suivante.

Lemme 8.21. Soit E ⊂ Rn borné et R ⊂ Rn un pavé contenant E. Alors E est Jordan-
mesurable si et seulement, pour tout ϵ > 0, il existe une partition Pϵ de R telle que

∑

Q∈Pϵ
Q∩E ̸=∅, Q∩(Rn\E)̸=∅

Vol(Q) < ϵ.

Démonstration. Par le Lemme 8.10, E est Jordan-mesurable si, et seulement si, pour tout
ϵ > 0, il existe une partition Pϵ de R telle que S(1E ,Pϵ) − S(1E ,Pϵ) < ϵ. Or

S(1E ,Pϵ) =
∑

Q∈Pϵ
Q∩E ̸=∅

Vol(Q)
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et
S(1E ,Pϵ) =

∑

Q∈Pϵ
Q∩(Rn\E)=∅

Vol(Q).

De façon similaire, on peut donner une caractérisation équivalente d’ensemble négli-
geable.

Lemme 8.22. Un ensemble borné E ⊂ Rn est négligeable si et seulement si ∀ϵ > 0
il existe K ∈ N∗ et une collection finie de pavés R1, . . . , RK tels que E ⊂ ⋃K

i=1Ri et∑K
i=1 Vol(Ri) < ϵ.

Démonstration. Choisissons un pavé R ⊂ Rn tel que E ⊂ R̊.
Supposons d’abord que 1E est Riemann-intégrable sur R et

∫
R 1E(x)dx = 0. Rappelons

qu’alors
∫
R 1E(x)dx est l’infimum des sommes de Darboux supérieures sur toutes les

partitions de R. Soit ϵ > 0. Il existe donc une partition Pϵ = {Qi ⊂ R : 1 ≤ i ≤ L} de R
telle que S(1E ,Pϵ) < ϵ. Or

S(1E ,Pϵ) =
∑

i∈{1,...,L}, Qi∩E ̸=∅
Vol(Qi) < ϵ

et E ⊂
⋃

i∈{1,...,L}, Qi∩E ̸=∅
Qi. Ceci termine la première partie de la preuve.

Soit ϵ > 0. Soit aussi des pavés R1, . . . , RK tels que E ⊂ ⋃K
i=1Ri et ∑K

i=1 Vol(Ri) < ϵ.
Sans perte de généralité, on peut supposer que Ri ⊂ R pour tout 1 ≤ i ≤ K et que
∀x ∈ E ∃i ∈ {1, . . . ,K} x ∈ R̊i.

Soit la partition tensorielle Pϵ de R définie à partir de toutes les composantes de tous
les sommets de R1, . . . , RK , R. Alors

∀i ∈ {1, . . . ,K} Ri =
⋃

{Q ∈ Pϵ : Q ⊂ Ri},

S(1E ,Pϵ) ≥ 0 et

S(1E ,Pϵ) =
∑

Q∈Pϵ, Q∩E ̸=∅
Vol(Q) ≤

K∑

i=1

∑

Q∈Pϵ, Q⊂Ri

Vol(Q) =
K∑

i=1
Vol(Ri) < ϵ,

où on a utilisé que

∀Q ∈ Pϵ
(
Q ∩ E ̸= ∅ ⇒ ∃i ∈ {1, . . . ,K} Q ⊂ Ri

)
.

Comme ϵ > 0 est arbitraire, 1E est intégrable sur R et
∫
R 1E(x)dx = 0.

Remarque 8.23. Il résulte de ce lemme que toute union finie d’ensembles négligeables
est un ensemble négligeable, et que tout sous-ensemble d’un ensemble négligeable est aussi
négligeable.

Exemple 8.24. Considérons les ensembles suivants :
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1. E = {(x, y) ∈ R2 : x ∈ [0, 1], y = 0}. Alors E est un pavé de volume nul et donc E est
négligeable. Dans le critère du lemme, on peut choisir K = 1 et R1 = E. Si on souhaite,
pour une raison ou une autre, une collection finie de pavés non dégénérés, on s’en sort
dans cet exemple en choisissant un seul pavé R = [0, 1] × [− ϵ

4 ,
ϵ
4 ] (K = 1), et on a bien

E ⊂ R avec Vol(R) < ϵ.

E
ϵ
2

x

y

2. E = {(x, y, z) ∈ R3 : x2 + y2 ≤ 1, z = 0}. Soit R = [−1, 1] × [−1, 1] × [− ϵ
8 ,

ϵ
8 ], alors

E ⊂ R, Vol(R) = ϵ donc E est négligeable.

3. E = {(x, y) ∈ R2 : x2 + y2 = 1} est négligeable.

x

y

L’important résultat suivant caractérise les ensembles mesurables au sens de Jordan.

Théorème 8.25. Un ensemble borné E ⊂ Rn est mesurable au sens de Jordan si et
seulement si ∂E = Ē \ E̊ est négligeable.

Démonstration. Soit R ⊂ Rn un pavé tel que E ⊂ R.
« ⇒ » (E mesurable ⇒ ∂E négligeable) Soit ϵ > 0. Par le Lemme 8.21, il existe une

partition Pϵ de R telle que ∑Q∈E Vol(Q) < ϵ, où

E = {Q ∈ Pϵ : Q ∩ E ̸= ∅, Q ∩ Ec ̸= ∅}.
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Pour tout x ∈ ∂E, il existe au moins un pavé Q ∈ Pϵ qui le contient. Alors soit x ∈ ∂Q,
soit x ∈ Q̊, mais dans ce dernier cas on a nécessairement Q ∈ E . On a donc

∂E ⊂

 ⋃

Q∈E
Q


 ∪


 ⋃

Q∈Pϵ

∂Q


 .

Le bord de tout pavé étant une union finie de pavés de volume nul, ∂E est inclus dans
l’union d’une famille finie de pavés (éventuellement dégénérés) dont la somme des volumes
est < ϵ. Comme ϵ > 0 est arbitraire, ∂E est négligeable.

« ⇐ » (∂E négligeable ⇒ E mesurable) Puisque 1∂E ∈ R(R) et
∫
R 1∂E(x)dx = 0,

∀ϵ > 0 il existe une partition Pϵ de R telle que S(1∂E ,Pϵ) < ϵ. Mais pour Q ∈ Pϵ,
supQ 1∂E = 1 si et seulement si Q ∩ ∂E ̸= ∅. D’où

∑

Q∈Pϵ, Q∩∂E ̸=∅
Vol(Q) < ϵ.

Observons que si un certain Q ∈ Pϵ rencontre à la fois E et Ec, alors Q∩∂E ̸= ∅. Pour
le voir, considérons x ∈ Q ∩ Ec et y ∈ Q ∩ E. L’ensemble {t ∈ [0, 1] : (1 − t)x + ty ∈ E}
n’est pas vide (il contient t = 1) ; soit t0 ∈ [0, 1] son infimum. Alors t0x+(1−t0)y ∈ Q∩∂E
et donc Q ∩ ∂E ̸= ∅.

On obtient ainsi

S(1E ,Pϵ) − S(1E ,Pϵ) =
∑

Q∈Pϵ
Q∩E ̸=∅, Q∩Ec ̸=∅

Vol(Q) ≤
∑

Q∈Pϵ
Q∩∂E ̸=∅

Vol(Q) < ϵ.

Comme ϵ > 0 est arbitraire, ceci prouve que 1E est Riemann-intégrable, et donc E est
Jordan-mesurable.

Corollaire 8.26. Soient E,F ⊂ Rn des ensembles bornés et mesurables au sens de Jordan.
Alors

E ∩ F, E ∪ F, E \ F, E̊, E
sont mesurables.

Démonstration. Soit R ⊂ Rn un pavé contenant E ∪ F . Par hypothèse 1E ,1F ∈ R(R).
On a

— 1E∩F = 1E · 1F ∈ R(R) ;
— 1E∪F = 1E + 1F − 1E∩F ∈ R(R) ;
— 1E\F = 1E − 1E∩F ∈ R(R) ;
— 1E̊ = 1E − 1E∩∂E ∈ R(R) ;
— 1Ē = 1E∪∂E ∈ R(R).

Définition 8.27. On note J (Rn) la collection des sous-ensembles de Rn compacts et
mesurables au sens de Jordan. Plus généralement, pour E ⊂ Rn, on note J (E) la collection
des sous-ensembles de E qui sont compacts et mesurables au sens de Jordan.
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8.6 Caractérisation des fonctions intégrables
On souhaite maintenant donner une caractérisation des fonctions intégrables au sens

de Riemann sur un domaine quelconque. On commence par l’important résultat suivant :

Théorème 8.28. Soit un pavé R ⊂ Rn et une fonction bornée f : R → R. Si l’ensemble
des points de discontinuité de f est négligeable, alors f est Riemann-intégrable.

Démonstration. Soit M = supx∈R |f(x)|, notons par N l’ensemble des points de disconti-
nuité de f et fixons ϵ > 0. Comme N est négligeable, il existe une partition Pϵ de R telle
que

S(1N ,Pϵ) =
∑

Q∈Pϵ, Q∩N ̸=∅
Vol(Q) < ϵ

1 + 4M .

Soit l’ensemble compact
K = ∪{Q ∈ Pϵ : Q ∩N = ∅}

(union finie de fermés bornés). Comme f : K → R est continue sur le compact K, elle est
uniformément continue sur K. Il existe donc δϵ > 0 tel que

∀x,y ∈ K
(
∥x − y∥ < δϵ ⇒ |f(x) − f(y)| < ϵ

1 + 2 Vol(R)
)

(si K = ∅, on peut choisir δϵ > 0 librement). Quitte à prendre un raffinement de Pϵ, nous
pouvons supposer que

∀Q ∈ Pϵ
(
Q ⊂ K ⇒ diam(Q) < δϵ

)
.

On obtient alors

S(f,Pϵ) − S(f,Pϵ) =
∑

Q∈Pϵ

(
sup
Q
f − inf

Q
f
)

Vol(Q)

=


 ∑

Q∈Pϵ, Q⊂K
+

∑

Q∈Pϵ, Q∩N ̸=∅



(

sup
Q
f − inf

Q
f
)

Vol(Q)

≤ ϵ

1 + 2 Vol(R) Vol(R) + 2M ϵ

1 + 4M < ϵ.

Comme ϵ > 0 est arbitraire, ceci prouve que f est Riemann-intégrable.

Continuons avec un autre résultat important.

Théorème 8.29. Soit E ⊂ Rn borné et mesurable. Si f : E → R est bornée sur E et
continue sur E̊, alors f est intégrable sur E au sens de Riemann.

Démonstration. Soit R un pavé contenant E et f̃ le prolongement de f par zéro en dehors
de E. Comme E est Jordan-mesurable, ∂E est négligeable. De plus l’ensemble Ñ des
points de discontinuité de f̃ est inclus dans ∂E, et donc Ñ est négligeable. Par le théorème
précédent, f̃ ∈ R(R) et donc f est intégrable sur E au sens de Riemann.
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Comme cas particulier, on obtient le théorème suivant :

Théorème 8.30. Soit E ∈ J (Rn) (compact et mesurable au sens de Jordan) et f : E → R
continue. Alors f est intégrable sur E au sens de Riemann.

Ce dernier théorème implique, en particulier, que C0(E) ⊂ R(E) si E ∈ J (Rn).
On conclut cette section en présentant d’autres propriétés de l’intégrale de Riemann,

au delà de celles déjà énoncées dans le théorème 8.19.

Théorème 8.31 (Propriétés de l’intégrale de Riemann – suite du théorème 8.19).
(v) Soit E ⊂ Rn borné et mesurable, et f : E → R bornée. Alors

inf
x∈E

f(x) Vol(E) ≤
∫

R

f̃(x)dx ≤
∫

R
f̃(x)dx ≤ sup

x∈E
f(x) Vol(E)

pour tout pavé R contenant E et le prolongement f̃ : R → R de f par la valeur 0.
En particulier, si f ∈ R(E),

inf
x∈E

f(x) Vol(E) ≤
∫

R
f̃(x)dx =

∫

E
f(x)dx ≤ sup

x∈E
f(x) Vol(E).

(vi) Soit E ∈ J (Rn) connexe par arcs et f ∈ C0(E). Si Vol(E) ̸= 0, alors

∃x0 ∈ E
1

Vol(E)

∫

E
f(x)dx = f(x0).

Cette dernière égalité s’appelle le théorème de la moyenne.

Démonstration. (v) Soit M = 1 + supx∈E |f(x)| et fixons ϵ > 0. Il existe une partition Pϵ
de R telle que

S(1E ,Pϵ) − S(1E ,Pϵ) <
ϵ

M

et donc ∑

Q∈Pϵ
Q∩E ̸=∅, Q∩(Rn\E)̸=∅

Vol(Q) < ϵ

M
.

On a donc, où Q ∈ Pϵ,

S(f̃ ,Pϵ) =


∑

Q⊂E
+

∑

Q∩E ̸=∅, Q∩Ec ̸=∅
+
∑

Q⊂Ec


 sup

x∈Q
f̃(x) Vol(Q)

≤
∑

Q⊂E
sup
x∈E

f(x) Vol(Q) +
∑

Q∩E ̸=∅, Q∩Ec ̸=∅
M Vol(Q) + 0 < sup

x∈E
f(x)S(1E ,Pϵ) +M

ϵ

M
+ 0

≤ sup
x∈E

f(x) Vol(E) +M |S(1E ,Pϵ) − Vol(E)| + ϵ < sup
x∈E

f(x) Vol(E) + 2ϵ

car
S(1E ,Pϵ) ≤ Vol(E) ≤ S(1E ,Pϵ) avec S(1E ,Pϵ) − S(1E ,Pϵ) <

ϵ

M
.
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De même,
S(f̃ ,Pϵ) > inf

x∈E
f(x) Vol(E) − 2ϵ.

D’où ∫

R
f̃(x)dx < sup

x∈E
f(x) Vol(E) + 2ϵ

et ∫

R

f̃(x)dx > inf
x∈E

f(x) Vol(E) − 2ϵ.

Comme ϵ > 0 est arbitraire, on obtient la conclusion voulue.

(vi) Par (v) et le fait que f est continue sur un compact non vide, on a

min
E

f ≤ 1
Vol(E)

∫

E
f(x)dx ≤ max

E
f.

Or, puisque E est compact et connexe par arcs,

Im(f) =
[
min
x∈E

f(x),max
x∈E

f(x)
]
.

Donc il existe x0 ∈ E tel que f(x0) = 1
Vol(E)

∫
E f(x)dx.

Voici un corollaire très utile :

Corollaire 8.32. Soit E ⊂ Rn borné et négligeable, et f : E → R bornée. Alors f ∈ R(E)
et
∫
E f(x)dx = 0.

Démonstration. En effet

0 = inf
x∈E

f(x) Vol(E) ≤
∫

R

f̃(x)dx ≤
∫

R
f̃(x)dx ≤ sup

x∈E
f(x) Vol(E) = 0

pour tout pavé R contenant E et le prolongement f̃ : R → R de f par la valeur 0.

Le théorème suivant montre l’additivité de l’intégrale par rapport au domaine d’inté-
gration.

Théorème 8.33. Soient E1, E2 ⊂ Rn bornés, tels que E1 ∩ E2 est négligeable et notons
E = E1 ∪ E2. Si f : E → R bornée est telle que ses restrictions f |Ei ∈ R(Ei), i = 1, 2,
alors f ∈ R(E) et ∫

E
f(x)dx =

∫

E1
f(x)dx +

∫

E2
f(x)dx. (8.2)

Inversement, si E,E1, E2 sont mesurables (avec E1 ∩ E2 négligeable) et f ∈ R(E), alors
f |Ei ∈ R(Ei), i = 1, 2 et on a encore (8.2).
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Démonstration. Notons par 1Ei : E → R la fonction caractéristique de Ei pour i ∈ {1, 2},
et par 1E1∩E2 : E → R la fonction caractéristique de E1 ∩ E2. Supposons f |Ei ∈ R(Ei),
i = 1, 2. Alors les fonctions f ·1Ei sont intégrables sur E et

∫
E f(x) ·1Ei(x)dx =

∫
Ei
f(x)dx.

De plus f |E1∩E2 est intégrable sur E1 ∩ E2 et
∫
E1∩E2

f |E1∩E2(x)dx = 0, car E1 ∩ E2 est
négligeable. D’où la fonction f · 1E1∩E2 est intégrable sur E et

∫
E f(x) · 1E1∩E2(x)dx = 0.

Puisque f = f · 1E1 + f · 1E2 − f · 1E1∩E2 on conclut que f ∈ R(E) et vérifie (8.2).
Soit maintenant f ∈ R(E). Puisque les fonctions 1Ei , i = 1, 2, sont aussi intégrables

sur E (car E1, E2 sont mesurables), on a f ·1Ei ∈ R(E) (produit de fonctions intégrables),
ce qui équivaut à f |Ei ∈ R(Ei) et on a encore (8.2).

On remarque que dans la deuxième partie du théorème précédent, sans hypothèse de
mesurabilité de E, E1 et E2, le résultat n’est pas forcément vrai. Il suffit de prendre la
fonction constante 1 sur E = [0, 1] et prendre E1 = Q ∩ [0, 1] et E2 = [0, 1] \ Q pour s’en
convaincre.

8.7 Généralisation de la formule des intégrales itérées

On a déjà rencontré la formule des intégrales itérées pour le calcul de l’intégrale d’une
fonction sur un pavé. On va maintenant la généraliser à des domaines de formes plus
complexes.

Définition 8.34. On dit que E ⊂ Rn+1 est un domaine simple par rapport à la variable y
s’il existe un ensemble K ∈ J (Rn) (compact et mesurable) et deux fonctions g, h : K → R
continues avec g(x) ≤ h(x), ∀x ∈ K, telles que E ait la forme

E = {(x, y) ∈ Rn+1,x ∈ K, g(x) ≤ y ≤ h(x)}.

Théorème 8.35. Un domaine simple E = {(x, y) ∈ Rn+1, x ∈ K, g(x) ≤ y ≤ h(x)} avec
K ∈ J (Rn), et g, h : K → R continues telles que g(x) ≤ h(x), ∀x ∈ K, est mesurable au
sens de Jordan et Vol(E) =

∫
K(h(x) − g(x))dx.

Remarque. Pour j ∈ {1, . . . , n} fixé, il y a une version où les rôles des variables xj et y sont
échangés. Ainsi, par exemple, g et h délimitent xj en fonction de (x1, . . . , xj−1, xj+1, . . . , xn, y).

Démonstration. On considère d’abord un domaine de la forme E = {(x, y) ∈ Rn+1 : x ∈
K, 0 ≤ y ≤ h(x)}, avec h(x) ≥ 0, ∀x ∈ K. Soit R un pavé non dégénéré tel que K ⊂ R,
et R̃ = R× [0,M ] un pavé qui contient E, où M = maxx∈K h(x) + 1.

Puisque h est continue et K ∈ J (Rn), h est intégrable sur K au sens de Riemann. Soit
ϵ ∈]0,Vol(R)[. Il existe une partition Pϵ = {Ri}Li=1 de R telle que S(h̃,Pϵ) − S(h̃,Pϵ) < ϵ,
où on a noté h̃ le prolongement par zéro de h en-dehors de K. Notons mi = infx∈Ri h̃(x)
et Mi = supx∈Ri

h̃(x), ∀i = 1, . . . , L, et considérons la partition suivante de R̃ (voir Figure
ci-dessous)

P̃ =
L⋃

i=1

{
Ri × [0,mi], Ri ×

[
mi,Mi + ϵ

Vol(R)

]
,

[
Mi + ϵ

Vol(R) ,M
]}

.
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On a

S(1E , P̃) =
∑

i:Ri⊂K
Vol(Ri × [0,mi]) =

∑

i:Ri⊂K
mi Vol(Ri) = S(h̃,Pϵ),

S(1E , P̃) =
∑

i:Ri∩K ̸=∅
Vol (Ri × [0,mi]) +

∑

i:Ri∩K ̸=∅
Vol

(
Ri ×

[
mi,Mi + ϵ

Vol(R)

])

=
∑

i:Ri∩K ̸=∅
Vol(Ri)

(
Mi + ϵ

Vol(R)

)
≤

∑

i:Ri∩K ̸=∅
Vol(Ri)Mi + ϵ = S(h̃,Pϵ) + ϵ,

ce qui implique que S(1E , P̃)−S(1E , P̃) < 2ϵ et donc, puisque ϵ ∈]0,Vol(R)[ est arbitraire,
1E ∈ R(R̃). De plus, puisque ϵ > 0 peut être pris aussi petit qu’on veut et S(h̃,Pϵ) =
S(1E , P̃) ≤ S(1E , P̃) ≤ S(h̃,Pϵ) + ϵ, on conclut que

Vol(E) =
∫

R̃
1E(x, y)dxdy =

∫

R
h̃(x)dx =

∫

K
h(x)dx.

Par les mêmes arguments, on vérifie facilement qu’un domaine de la forme E = {(x, y) :
x ∈ K, c ≤ y ≤ h(x)}, avec c ≤ minx∈K h(x), est aussi mesurable.

Considérons maintenant le cas générale : E = {(x, y) : x ∈ K, g(x) ≤ y ≤ h(x)}. Soit
c = minx∈K g(x) et

Eh = {(x, y) ∈ Rn+1 : x ∈ K, c ≤ y ≤ h(x)},
Eg = {(x, y) ∈ Rn+1 : x ∈ K, c ≤ y ≤ g(x)}.

Eh et Eg sont mesurables, par les arguments ci-dessus, et

Vol(Eh) =
∫

K
(h(x) − c)dx et Vol(Eg) =

∫

K
(g(x) − c)dx.

D’autre part Eh = Eg ∪ E et Eg ∩ E = G(g) (le graphe de g). Or G(g) ⊂ ∂Eg et
∂Eg est négligeable car Eg est Jordan-mesurable. Donc G(g) est aussi négligeable. Ainsi
E = (Eh\Eg) ∪ G(g) est Jordan-mesurable, Vol(Eh) = Vol(Eg) + Vol(E) et

Vol(E) = Vol(Eh) − Vol(Eg) =
∫

K

(
h(x) − g(x)

)
dx.
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Exemple 8.36. Considérons le triangle T = {(x, y) ∈ R2, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 − x}. Si
on note K = [0, 1] et h(x) = 1 − x, on a donc T = {(x, y) ∈ R2, x ∈ K, 0 ≤ y ≤ h(x)} et
l’aire de T peut se calculer par la formule

Vol(T ) =
∫

K
h(x)dx =

∫ 1

0
(1 − x)dx = 1

2 .

Exemple 8.37. Considérons la boule unitaire

E = {(x, y) : x2 + y2 ≤ 1} = {(x, y) : −1 ≤ x ≤ 1, −
√

1 − x2 ≤ y ≤
√

1 − x2}.

Alors, l’aire de la boule peut être calculée par la formule

Vol(E) =
∫ 1

−1
2
√

1 − x2dx =
∫ π/2

−π/2
2 cos2 θdθ =

∫ π/2

−π/2
(cos 2θ + 1)dθ = π.

Théorème 8.38 (Intégrales itérées). Soit E = {(x, y) ∈ Rn+1 : x ∈ K, g(x) ≤ y ≤ h(x)}
un domaine simple, avec K ∈ J (Rn), g, h : K → R continues avec g ≤ h sur K, et
f : E → R une fonction continue. Alors f est intégrable sur E et

∫

E
f(x, y)dxdy =

∫

K

(∫ h(x)

g(x)
f(x, y)dy

)
dx.

Remarque. Pour j ∈ {1, . . . , n} fixé, il y a une version où les rôles des variables xj et y
sont échangés.

Démonstration. Soient R un pavé contenant K, m ≤ minK g, M ≥ maxK h et R̃ =
R× [m,M ] ⊃ E. Par le théorème 8.35, E est mesurable et par le théorème 8.30 f ∈ R(E),
c’est-à-dire f̃ est intégrable sur R̃, où f̃ : R̃ → R est le prolongement de f par la valeur 0.
De plus, ∀x ∈ R, la fonction (de y) f̃(x, ·) est intégrable sur [m,M ], car elle est continue
par morceaux. Donc F̃ (x) =

∫M
m f̃(x, y)dy existe pour tout x ∈ R et, par le théorème

de Fubini 8.14, F̃ ∈ R(R) et
∫
R̃ f̃(x, y)dxdy =

∫
R F̃ (x)dx. Comme F̃ : R → R est le

prolongement par la valeur 0 de la fonction K ∋ x 7→ F (x) =
∫ h(x)
g(x) f(x, y)dy, cette dernière

fonction est intégrable sur K et
∫

E
f(x, y)dxdy =

∫

R̃
f̃(x, y)dxdy

=
∫

R
F̃ (x)dx =

∫

K
F (x)dx =

∫

K

(∫ h(x)

g(x)
f(x, y)dy

)
dx.

Exercice 8.39. Calculer
∫
T x dxdydz où T = {(x, y, z) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 − x, 0 ≤

z ≤ 1 − x− y} est un simplexe de R3.
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8.8 Changement de variables dans les intégrales de Riemann

Soit F ⊂ Rn borné et mesurable, et f : F → R une fonction bornée et intégrable sur
F . Notons I =

∫
F f(x)dx. On introduit maintenant un changement de variables

x = ψ(u), ψ : E ⊂ Rn → Rn,

tel que F = ψ(E). On se pose les questions suivantes : i) l’ensemble E est-il mesurable ? ii)
La fonction f̃(u) = f(ψ(u)) : E → R est-elle intégrable sur E ? iii) Comment l’intégrale I
se transforme suite au changement de variables ?

Rappelons d’abord le cas n = 1. Soit F = [α, β] ⊂ R un intervalle, f : F → R une
fonction continue et ψ : E = [a, b] → R une fonction de classe C1 (jusqu’au bord) telle
que ψ(a) = α, ψ(b) = β et ψ(E) = F (avec a < b et α < β). On ne suppose pas que ψ soit
injective. Alors la fonction u 7→ f(ψ(u))ψ′(u), u ∈ E, est aussi continue et

∫ β

α
f(x)dx =

∫ b

a
f(ψ(u))ψ′(u)du.

Ce résultat se montre à partir du théorème fondamental du calcul intégral. Soit G(t) =∫ ψ(t)
α f(x)dx, alors G′(t) = f(ψ(t))ψ′(t) et

∫ β=ψ(b)

α=ψ(a)
f(x)dx = G(b) −G(a) =

∫ b

a
f(ψ(u))ψ′(u)du.

On remarque, en particulier, que pour obtenir ce résultat, on n’a pas demandé que la
fonction ψ soit une bijection entre E et F . En effet, le résultat reste vrai même si la
fonction ψ n’est pas une bijection.

En dimension n > 1, on n’a plus un théorème fondamental du calcul intégral, donc
on cherche un résultat qui soit valable sous des conditions un peu plus fortes et qui soit
généralisable au cas n > 1. Pour n = 1, on va demander que la transformation ψ : E → F
soit un difféomorphisme (donc une bijection de classe C1 avec application inverse de classe
C1), où E = [a, b] avec a < b dans R. Alors, nécessairement, ψ′ ̸= 0 sur E, F = [ψ(a), ψ(b)]
si ψ est strictement croissante, F = [ψ(b), ψ(a)] si ψ est strictement décroissante, et on a :

1. Si ψ′(u) > 0, ∀u ∈ [a, b], alors ψ est strictement croissante et ψ(a) < ψ(u) <
ψ(b), ∀u ∈]a, b[. Donc

∫

F
f(x)dx =

∫ ψ(b)

ψ(a)
f(x)dx =

∫ b

a
f(ψ(u))ψ′(u)du =

∫ b

a
f(ψ(u))|ψ′(u)|du.

2. Si ψ′(u) < 0, ∀u ∈ [a, b], alors ψ est strictement décroissante et ψ(b) < ψ(u) <
ψ(a), ∀u ∈]a, b[. Donc

∫

F
f(x)dx =

∫ ψ(a)

ψ(b)
f(x)dx = −

∫ ψ(b)

ψ(a)
f(x)dx

= −
∫ b

a
f(ψ(u))ψ′(u)du =

∫ b

a
f(ψ(u))|ψ′(u)|du.
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Donc dans les deux cas on a
∫

F
f(x)dx =

∫

E
f(ψ(u))|ψ′(u)|du.

On note que |ψ′(u)| =
∣∣∣dxdu
∣∣∣ représente le changement de l’élément infinitésimal de longueur.

C’est bien cette formule qui se généralise en dimension n > 1. On a l’important résultat
suivant qu’on ne va pas démontrer dans ce cours.

Théorème 8.40 (Changement des variables d’intégration). Soient U, V ⊂ Rn ouverts tels
que, pour tout r > 0, U ∩B(0, r) et V ∩B(0, r) sont Jordan-mesurables. Soit ψ : U → V
un difféomorphisme de classe C1 tel que toutes les composantes de ψ et de Dψ ∈ Rn×n

sont bornés sur tout sous-ensemble borné de U . Soit encore un borné non-vide E ⊂ U et
F = ψ(E) ⊂ V , qui est aussi borné non-vide. Alors

1. E est Jordan-mesurable si et seulement si F l’est ;
2. si E est Jordan-mesurable et f : F = ψ(E) → R est continue et bornée, alors

f ∈ R(F ) et ∫

F
f(x)dx =

∫

E
f(ψ(u)) | detDψ(u)| du, (8.3)

où apparaît la valeur absolue d’un déterminant dans le membre de droite.

Notons que f̃ = f ◦ψ : E → R est continue (composition de fonctions continues) et
bornée, donc f̃ ∈ R(E) si E est mesurable. De plus on a fait l’hypothèse que toutes les
composantes de Dψ sont bornées sur E. Puisque elles sont aussi continues (car ψ ∈ C1(U)
et E ⊂ U), donc intégrables sur E si celui ci est mesurable, on a que Jψ = detDψ ∈ R(E)
(produit de fonctions intégrables) et l’intégrale à droite de (8.3) existe.

Le terme Jψ(u) = detDψ(u) dans (8.3), souvent appelé le jacobien de ψ, représente
le changement infinitésimal de volume par le difféomorphisme ψ. En effet, soit u0 ∈ U et
r > 0 suffisamment petit tel que le pavé B̄r = {u ∈ Rn : ∥u − u0∥∞ ≤ r} soit contenu
dans U . Grâce au théorème 8.40 on a ψ(Br) est mesurable puisque Br l’est et

min
u∈B̄r

|Jψ(u)| Vol(Br) ≤ Vol(ψ(Br)) =
∫

Br

|Jψ(u)|du ≤ max
u∈B̄r

|Jψ(u)| Vol(Br).

En prenant la limite pour r → 0 et grâce à la continuité de |Jψ| on voit que

lim
r→0

Vol(ψ(Br))
Vol(Br)

= |Jψ(u0)|.

Que le changement infinitésimal de volume en u0 soit donné par | detDψ(u0)| ne devrait
pas surprendre. Considérons par exemple une application affine en dimension n = 2 :
x = ψ(u) = Au+b, avec A ∈ R2×2, b ∈ R2 et notons (a1, a2) les deux colonnes de A. Alors,
un rectangle Br1,r2 de sommets {u0,u0 + r1e1,u0 + r2e2,u0 + r1e1 + r2e2} est transformé
en un parallélogramme ψ(Br1,r2) de sommets {x0,x0 + r1a1,x0 + r2a2,x0 + r1a1 + r2a2}
(voir figure ci-dessous),
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B

ψ(B)

r1e1

r1a1 = r1Ae1r2a2r2e2

où x0 = ψ(u0) = Au0 + b et

Vol(ψ(Br1,r2)) = |r1a1×r2a2| = r1r2| detA| = | detA| Vol(Br1,r2) = | detDψ(u0)| Vol(Br1,r2).

On peut montrer que le même résultat est vrai en dimension n quelconque pour une
application affine.

Considérons maintenant une transformation non linéaire x = ψ(u). Autour d’un point
x0 = ψ(u0) on peut écrire un développement limité à l’ordre 1

x = ψ(u0) +Dψ(u0) · (u − u0) + R(u)
= Dψ(u0)u + (x0 −Dψ(u0)u0) + R(u).

Négligeant le reste R(u) on s’attend donc à ce que le facteur du changement infinitésimal
de volume soit encore donné par | detDψ(u0)|.

8.9 Quelques changements de variables usuels

8.9.1 Changement en coordonnées polaires

Considérons le changement de variables
(
x
y

)
= ψ(ρ, θ) =

(
ρ cos θ
ρ sin θ

)
,

qui est un difféomorphisme entre les ouverts U = ]0,+∞[×]−π, π[ et V = R2\{(x, y) : y =
0, x ≤ 0}. En particulier,

Dψ(ρ, θ) =
(

cos θ −ρ sin θ
sin θ ρ cos θ

)
, Jψ(ρ, θ) = detDψ(ρ, θ) = ρ > 0 sur U.

Soit maintenant F ⊂ V borné et mesurable, et f : F → R continue et bornée, donc
intégrable. Notons f̃(ρ, θ) = f ◦ ψ(ρ, θ) = f(ρ cos θ, ρ sin θ). Puisque ψ−1 est bornée sur
tout ensemble borné, on a que E = ψ−1(F ) est borné, ψ et Dψ sont bornées sur E et,
grâce au théorème 8.40, E est mesurable et

∫

F
f(x, y)dxdy =

∫

E
f̃(ρ, θ) ρ dρdθ.
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θ

ρ

x

y P = (x, y)

Figure 8.3 – Changement en coordonnées polaires

Exemple 8.41. On souhaite calculer
∫
F f(x, y)dxdy où F = {(x, y) : 1 ≤ x2 + y2 ≤

4, x ≥ 0, y ≥ 0} ⊂ V et f(x, y) = 1
1+x2+y2 , en utilisant le changement en coordonnées

polaires.
On a E = ψ−1(F ) = {(ρ, θ) : 1 ≤ ρ ≤ 2, 0 ≤ θ ≤ π

2 } ⊂ U . De plus, toutes les
hypothèse du théorème 8.40 sont vérifiées et on peut calculer l’intégrale par la formule (8.3)

∫

F
f(x, y)dxdy =

∫

E
f̃(ρ, θ)ρdρdθ =

∫ 2

1

(∫ π/2

0

1
1 + ρ2dθ

)
ρdρ

=
∫ 2

1

π

2
ρ

1 + ρ2dρ = π

4 log(1 + ρ2)
∣∣∣∣
2

1
= π

4 log 5
2 .

Exemple 8.42. On souhaite calculer
∫
F f(x, y)dxdy où F = {(x, y) ∈ R2 : x2 + y2 ≤ 1}

et f(x, y) = 1
1+x2+y2 . L’intégrale existe car F est compact et mesurable, et f est continue.

Considérons de nouveau le changement en coordonnées polaires. Dans ce cas, F ̸⊂ V
ce qui pose un problème. Toutefois, l’ensemble G = {(x, y) : y = 0, −1 ≤ x ≤ 0} est
négligeable, donc F̃ = F \G ⊂ V est mesurable et

∫

F
f(x, y)dxdy =

∫

F̃
f(x, y)dxdy.

On peut alors appliquer la formule (8.3) à cette dernière intégrale. On a Ẽ = ψ−1(F̃ ) =
{(ρ, θ) : 0 < ρ ≤ 1, −π < θ < π} ⊂ U et

∫

F
f(x, y)dxdy =

∫

F̃
f(x, y)dxdy =

∫

Ẽ
f̃(ρ, θ)ρdρdθ

=
∫ 1

0

(∫ π

−π

1
1 + ρ2dθ

)
ρdρ = π log 2.
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Observez que ([0, 1] × [−π, π])\Ẽ est négligeable et donc les intégrales sur [0, 1] × [−π, π] et
sur Ẽ sont égales.

8.9.2 Changement en coordonnées cylindriques

Considérons le changement de variables


x
y
z


 = ψ(ρ, θ, ζ) =



ρ cos θ
ρ sin θ
ζ


 ,

qui est un difféomorphisme entre les ouverts U = ]0,+∞[ × ]−π, π[ × R et V = R3 \
{(x, y, z) : x ≤ 0, y = 0, z ∈ R} avec

detDψ(ρ, θ, ζ) = det




cos θ −ρ sin θ 0
sin θ ρ cos θ 0

0 0 1


 = ρ > 0 sur U.

Comme pour le changement en coordonnées polaires, si F ⊂ V est borné et mesurable,
alors E = ψ−1(F ) est aussi borné et ψ, Dψ sont bornés sur E. Donc, si f : F → R est
continue et bornée et on note f̃ = f ◦ ψ, on peut appliquer le théorème 8.40 : E est
mesurable et ∫

F
f(x, y, z)dxdydz =

∫

E
f̃(ρ, θ, ζ) ρ dρdθdζ.

Exercice 8.43. Calculer Vol(F ) où F = {(x, y, z) ∈ R3 : x2+y2+z2 ≤ 4, z ≥ 1
3(x2+y2)}

(voir figure ci-dessous).
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ζ

ρ
θ

z

y

x

P = (x, y, z)

Figure 8.4 – Changement en coordonnées cylindriques

8.9.3 Changement en coordonnées sphériques

Considérons le changement de variables


x
y
z


 = ψ(ρ, θ, φ) =



ρ cos θ sinφ
ρ sin θ sinφ
ρ cosφ


 ,

qui est un difféomorphisme entre les ouverts U = ]0,+∞[ × ]−π, π[ × ]0, π[ et V =
R3 \ {(x, y, z) : x ≤ 0, y = 0, z ∈ R}, avec

detDψ(ρ, θ, φ) = det




cos θ sinφ −ρ sin θ sinφ ρ cos θ cosφ
sin θ sinφ ρ cos θ sinφ ρ sin θ cosφ

cosφ 0 −ρ sinφ


 = −ρ2 sinφ < 0 sur U.

Comme pour le changement en coordonnées cylindriques ou polaires, si F ⊂ V est borné
et mesurable, et f : F → R est continue et bornée, notant f̃ = f ◦ψ et E = ψ−1(F ), on
peut appliquer le théorème 8.40 : E est bornée et mesurable, et

∫

F
f(x, y, z)dxdydz =

∫

E
f̃(ρ, θ, φ) ρ2 sinϕdρdθdφ.

Exercice 8.44. Calculer le volume de la sphère de rayon R > 0 : F = {(x, y, z) ∈ R3 :
x2 + y2 + z2 ≤ R2}.
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Figure 8.5 – Changement en coordonnées sphériques

8.10 Intégrale de Riemann généralisée
Jusqu’à présent on a défini l’intégrale d’une fonction f : E → R bornée sur un ensemble

borné E ⊂ Rn par un prolongement f̃ : R → R de f par zéro sur un pavé R ⊃ E :
∫

E
f(x)dx =

∫

R
f̃(x)dx.

On souhaite ici généraliser la définition de l’intégrale de Riemann aux cas où f ou E ne sont
pas bornés. Rappelons que, pour E ⊂ Rn, on note J (E) la collection des sous-ensembles
de E compacts et mesurables au sens de Jordan, et commençons par la définition suivante :

Définition 8.45 (Fonction absolument intégrable). Soit E ⊂ Rn ouvert non-vide et
f : E → R (les deux pas forcément bornés). Soit {Kj , j ∈ N} une suite de sous-ensembles
non-vides tels que :

— Kj ∈ J (E), ∀j ∈ N ;
— Kj ⊂ K̊j+1 ;
—

⋃
j∈NKj = E.

Soit f bornée et intégrable au sens de Riemann sur chaque Kj (
∫
Kj
f(x)dx existe ainsi

que
∫
Kj

|f(x)|dx). On dit que f est absolument intégrable sur E si limj→∞
∫
Kj

|f(x)|dx
existe et est finie. Dans ce cas on pose

∫

E
f(x)dx = lim

j→∞

∫

Kj

f(x)dx.

On remarque que pour tout ensemble E ⊂ Rn on peut toujours trouver une suite de
sous-ensembles {Kj}j∈N qui satisfait les propriétés de la définition ci-dessus. Il suffit en
effet de considérer, par exemple, la suite {Kj , j ≥ j0} d’ensembles compacts

Kj = {x ∈ E : ∥x∥ ≤ j, ∥x − y∥ ≥ 1
j
, ∀y /∈ E},
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où j0 ≥ 1 est tel que Kj0 ̸= ∅.
On remarque aussi que si limj→∞

∫
Kj

|f(x)|dx existe (sous-entendu : et est finie), alors
limj→∞

∫
Kj
f(x)dx existe aussi. En effet, les suites

∫
Kj
f+(x)dx et

∫
Kj
f−(x)dx sont crois-

santes et bornées par limj→∞
∫
Kj

|f(x)|dx. Donc limj→∞
∫
Kj
f+(x)dx et limj→∞

∫
Kj
f−(x)dx

existent et aussi limj→∞
∫
Kj
f(x)dx = limj→∞

∫
Kj
f+(x)dx − limj→∞

∫
Kj
f−(x)dx.

Le théorème suivant assure que la valeur de l’intégrale
∫
E f(x)dx dans la définition

précédente ne dépend pas du choix de la suite {Kj}j∈N.
Théorème 8.46. Si f : E → R est absolument intégrable selon la définition (8.45), alors
pour toute autre suite {K ′

j}j∈N telle que K ′
j ∈ J (E), K ′

j ⊂ K̊ ′
j+1, ∀j ∈ N,

⋃
j∈NK

′
j = E,

on a que f est bornée et intégrable au sens de Riemann sur chaque K ′
j et

∫

E
f(x)dx = lim

j→∞

∫

K′
j

f(x)dx.

Démonstration. Fixons j ∈ N et K ′
j ∈ J (E). Clairement K ′

j ⊂ E = ⋃
m∈NKm ⊂

⋃
m∈N K̊m+1 donc {K̊m}m∈N est un recouvrement ouvert de K ′

j . Puisque K ′
j est com-

pact, on peut extraire un recouvrement fini K ′
j ⊂ K̊i1 ∪ · · · ∪ K̊iℓ , et puisque les K̊m sont

emboîtés, K ′
j ⊂ K̊Nj avec Nj = max{i1, . . . , iℓ}. Puisque f est intégrable sur KNj et K ′

j

est mesurable, on a que f est intégrable sur K ′
j , ∀j ∈ N. De plus,

∫

K′
j

f+(x)dx ≤
∫

KNj

f+(x)dx ≤ lim
m→∞

∫

Km

f+(x)dx < +∞,

∫

K′
j

f−(x)dx ≤
∫

KNj

f−(x)dx ≤ lim
m→∞

∫

Km

f−(x)dx < +∞.

Donc limj→∞
∫
K′

j
f±(x)dx existent et

lim
j→∞

∫

K′
j

f+(x)dx ≤ lim
m→∞

∫

Km

f+(x)dx, lim
j→∞

∫

K′
j

f−(x)dx ≤ lim
m→∞

∫

Km

f−(x)dx.

De la même façon on peut montrer que ∀j ∈ N, ∃N ′
j : Kj ⊂ K̊ ′

N ′
j

et

lim
j→∞

∫

Kj

f+(x)dx ≤ lim
j→∞

∫

K′
j

f+(x)dx,

lim
j→∞

∫

Kj

f−(x)dx ≤ lim
j→∞

∫

K′
j

f−(x)dx,

ce qui implique

lim
j→∞

∫

K′
j

f+(x)dx = lim
j→∞

∫

Kj

f+(x)dx, lim
j→∞

∫

K′
j

f−(x)dx = lim
j→∞

∫

Kj

f−(x)dx

et

lim
j→∞

∫

K′
j

f(x)dx = lim
j→∞

∫

K′
j

f+(x)dx − lim
j→∞

∫

K′
j

f−(x)dx

= lim
j→∞

∫

Kj

f+(x)dx − lim
j→∞

∫

Kj

f−(x)dx =
∫

E
f(x)dx.
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Exemple 8.47. On veut vérifier si on peut définir
∫
E f(x, y)dxdy où E = B((0, 0), 1) \

{(0, 0)} et
f(x, y) = 1√

x2 + y2 : R2 \ {(0, 0)} → R.

Considérons la suite de sous-ensembles Kj = {(x, y) ∈ R2 : 1
j+2 ≤ x2 + y2 ≤ 1 − 1

j+2},
j ∈ N, qui satisfait les bonnes propriétés : Kj ∈ J (E), Kj ⊂ K̊j+1,

⋃
j∈NKj = E. On a

∫

Kj

|f(x, y)|dxdy =
∫

Kj

f(x, y)dxdy =
∫ √1− 1

j+2

1√
j+2

(∫ π

−π

1
ρ

· ρdθ
)
dρ

= 2π
(√

1 − 1
j + 2 − 1√

j + 2

)
≤ 2π, ∀j ≥ 0.

Donc f est absolument intégrable sur E et
∫

E
f(x, y)dxdy = lim

j→∞

∫

Kj

f(x, y)dxdy = 2π.

L’exemple précédent montre que la fonction 1
r , avec r = ∥x∥, est (absolument) intégrable

pour x ∈ Rn, n = 2, dans un voisinage de zéro. Par un calcul similaire on trouve qu’elle
est absolument intégrable pour tout n ≥ 2. Toutefois, elle n’est pas intégrable pour
n = 1. Plus généralement, on a que la fonction f(x) = ∥x∥α est absolument intégrable sur
E = B(0, 1) \ {0} pour tout α > −n.

Exemple 8.48. On veut vérifier si on peut définir
∫
E f(x, y)dxdy où E = B((0, 0), 1) \

{(0, 0)} et
f(x, y) = x

(x2 + y2)2 : R2 \ {(0, 0)} → R.

De nouveau, on prend Kj = {(x, y) : 1
j ≤ x2 + y2 ≤ 1 − 1

j }, j ≥ 2. On a

∫

Kj

|f(x, y)|dxdy =
∫ √1− 1

j

1√
j

∫ π

−π

ρ| cos θ|
ρ4 ρdρdθ

= 4
(

−1
ρ

) ∣∣∣∣

√
1− 1

j

1√
j

= 4
√
j − 4√

1 − 1
j

j→∞−−−→ +∞.

Donc la fonction f n’est pas absolument intégrable.
Attention : Si on n’avait pas mis la valeur absolue, alors

∫
Kj
f(x, y)dxdy = 0, ∀j ≥ 2

et donc limj→∞
∫
Kj
f(x, y)dxdy = 0. Le problème est que cette limite dépend du choix de

la suite {Kj} car la fonction f n’est pas absolument intégrable !
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Chapitre 9

Équations différentielles ordinaires

Soient I un intervalle ouvert, E un ouvert inclus dans R et f : I ×E → R une fonction
continue. Une fonction u : I → E différentiable, qui satisfait l’équation

u′(t) = f(t, u(t)), ∀t ∈ I, (9.1)

est appelée une intégrale ou une solution globale de l’équation (9.1) qui, à son tour,
est appelée Équation Différentielle Ordinaire (EDO) scalaire du premier ordre car elle
introduit une relation entre la valeur de la fonction (scalaire) inconnue u(t) et la valeur de
sa dérivée première en tout t ∈ I.

L’adjectif « ordinaire » fait référence au fait que l’inconnue est une fonction d’une
seule variable t, donc sa dérivée est une dérivée ordinaire. Ceci est pour distinguer du
cas où l’inconnue est une fonction de plusieurs variables (t, x1, . . . , xm) et l’équation fait
intervenir les dérivées partielles de u. Dans ce dernier cas, on parle d’une Équation aux
Dérivées Partielles (EDP), qu’on ne va pas traiter dans ce cours.

Exemple 9.1. Soit I, E = R et f(t, x) = t2 + x, ce qui va définir l’équation différentielle
ordinaire du premier ordre

u′(t) = f(t, u(t)) = t2 + u(t), ∀t ∈ R.

On vérifie facilement que u(t) = Cet− (t2 +2t+2), avec C ∈ R arbitraire, est une intégrale
de l’équation.

L’exemple précédent montre que la solution d’une EDO scalaire du premier ordre
dépend généralement d’un paramètre arbitraire, mais les exceptions sont courantes. On a
donc ici une famille infinie de solutions u(·, C) : I → R paramétrées par un paramètre réel.

Définition 9.2. On appelle intégrale générale de l’équation différentielle (9.1) l’ensemble
de toutes les solutions globales de (9.1).

La notion d’équation différentielle se généralise facilement à une dimension n quelconque.
Dans ce cas, on parle d’une EDO vectorielle du premier ordre ou bien d’un système d’EDO
du premier ordre. Soit I ⊂ R un intervalle ouvert, E ⊂ Rn un ouvert et f : I × E → Rn

123
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une fonction à valeurs dans Rn continue. On considère l’EDO vectorielle

u′(t) = f(t,u(t)) ⇐⇒





u′
1(t) = f1(t, u1(t), . . . , un(t))
...

u′
n(t) = fn(t, u1(t), . . . , un(t))

∀t ∈ I, (9.2)

dont la solution sera une fonction vectorielle u : I → E ⊂ Rn différentiable, t 7→ u(t) =
(u1(t), . . . , un(t)). On verra par la suite que, généralement, l’intégrale générale de (9.2) est
une famille de fonctions u(·, C1, . . . , Cn) : I → E paramétrée par n paramètres réels (mais
de nouveau les exceptions sont courantes).

On peut aussi introduire des équations différentielles d’ordres supérieurs à un. Par
exemple, soit I ⊂ R un intervalle ouvert, E ⊂ Rn un ouvert et f : I ×E → R une fonction
scalaire continue. Considérons l’équation différentielle d’ordre n

u(n)(t) = f(t, u(t), u′(t), . . . , u(n−1)(t)), ∀t ∈ I, (9.3)

dont la solution est une fonction u : I → R de classe Cn telle que (u(t), u′(t), . . . , u(n−1)(t)) ∈
E, ∀t ∈ I. Une telle équation peut toujours être écrite sous forme d’une EDO vectorielle
d’ordre 1 en introduisant les variables

u1(t) = u(t), u2(t) = u′(t), · · · , un(t) = u(n−1)(t),

ainsi que la fonction vectorielle

f : I × E → Rn, f(t, u1, . . . , un) =




u2
...
un

f(t, u1, . . . , un)



,

ce qui permet d’écrire (9.3) comme u′(t) = f(t,u(t)), ∀t ∈ I. Pour cette raison, une étude
complète des systèmes d’EDO du premier ordre est suffisante pour pouvoir traiter aussi
des équations d’ordres supérieurs.

9.1 Problème de Cauchy
Comme l’exemple 9.1 le montre, l’intégrale générale d’une EDO scalaire du premier

ordre dépend en générale d’un paramètre arbitraire (n paramètres pour une EDO vectorielle
en dimension n). Il est souvent pratique d’imposer des conditions supplémentaires pour
obtenir une solution unique. Par exemple on peut demander que la solution passe par un
point (t0,u0) ∈ I × E. Ceci porte au Problème de Cauchy :

Problème 9.3 (de Cauchy). Étant donné f : I × E → Rn continue, avec I ⊂ R un
intervalle ouvert, E ⊂ Rn un ouvert et (t0,u0) ∈ I × E, trouver u : I → E différentiable
sur I t.q. {

u′(t) = f(t,u(t)), t ∈ I,

u(t0) = u0.
(9.4)
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Les équations différentielles ordinaires apparaissent souvent dans les applications pour
décrire l’évolution d’un système en fonction du temps. Dans ce cas, la condition u(t0) = u0
peut être interprétée comme une valeur initiale, c.-à-d. elle décrit l’état du système au
temps initial t0, et on cherche à prédire l’état u(t) du système pour des temps futures
t > t0. On parle alors d’un Problème à valeur initiale :

Problème 9.4 (à valeur initiale). Étant donné f : I+ ×E → Rn continue, avec I+ = [t0, T [
et −∞ < t0 < T ≤ +∞, E ⊂ Rn un ouvert et u0 ∈ E, trouver u : I+ → E continue sur
I+ et différentiable sur I̊+ t.q.

{
u′(t) = f(t,u(t)), t0 < t < T,

u(t0) = u0.
(9.5)

Il arrive parfois qu’on souhaite modéliser l’évolution passée qui a porté à l’état actuel
u(t0) = u0 du système. On parle alors d’un Problème à valeur finale :

Problème 9.5 (à valeur finale). Étant donné f : I− ×E → Rn continue, avec I− = ]T̃ , t0]
et −∞ ≤ T̃ < t0 < +∞, E ⊂ Rn un ouvert et u0 ∈ E, trouver u : I− → E continue sur
I− et différentiable sur I̊− t.q.

{
u′(t) = f(t,u(t)), T̃ < t < t0,

u(t0) = u0.
(9.6)

Soit I = ]T̃ , T [ = I− ∪ I+. Il est clair que si u : I → E est une solution du problème
de Cauchy (9.4), alors les restrictions u|I+ et u|I− de u à I+ et I− sont solutions des
problèmes à valeur initiale (9.5) et finale (9.6), respectivement. Il est facile de montrer
(exercice) l’implication inverse :

Lemme 9.6. Si u+ : I+ → E et u− : I− → E sont solutions de (9.5), (9.6) et f est
continue sur I × E alors la fonction u : I → E définie par u(t) = u−(t) si t ∈ I− et
u(t) = u+(t) si t ∈ I+ est de classe C1 et est solution de (9.4).

Bien que le problème de Cauchy 9.3 soit formulé sur l’intervalle ouvert I, sa solution
(si elle existe) peut ne pas exister pour tout t ∈ I, comme l’exemple suivant le montre.

Exemple 9.7. Soit I, E = R, f(t, u) = u2 et considérons le problème de Cauchy
{
u′(t) = u2(t), t ∈ R,
u(0) = 1.

On vérifie facilement que u(t) = 1
1−t est une solution ∀t ̸= 1. Toutefois, cette solution n’est

pas définie pour t = 1. En particulier, elle présente une « explosion en temps fini » lorsque
t → 1−. Du point de vue physique, prolonger cette solution pour t > 1 n’a pas vraiment de
sens. On dit alors que la solution existe seulement pour t < 1 et elle n’est pas une solution
globale du problème de Cauchy.

Les considérations précédentes nous portent à donner la définition suivante de solution
locale et solution maximale du problème de Cauchy (une terminologie analogue s’applique
aux problèmes à valeur initiale et à valeur finale).
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Définition 9.8. On appelle solution locale du problème de Cauchy 9.3 un couple (J,u)
où J ⊂ I est un intervalle ouvert contenant t0 et où u ∈ C1(J) satisfait (9.4) sur J .
— On dit qu’une solution locale (K,w) du problème 9.3 prolonge strictement (J,u) si

J ⊂ K, J ̸= K, et u(t) = w(t), ∀t ∈ J .
— On dit qu’une solution locale (J,u) est maximale s’il n’existe pas de solution locale qui

la prolonge strictement.
— On dit qu’une solution maximale (J,u) est une solution globale si J = I.
— Une solution maximale (J,u) est dite unique si toute solution locale (K,w) est telle

que K ⊂ J et w(t) = u(t), ∀t ∈ K.

Si on s’intéresse à l’EDO u′(t) = f(t,u(t)) pour t dans l’intervalle ouvert I, sans
spécifier de condition initiale du type u(t0) = u0, on peut aussi introduire une terminologie
analogue. Par exemple une solution locale est un couple (J,u) où J ⊂ I est un intervalle
ouvert non-vide et où u ∈ C1(J) est solution. Néanmoins, sans condition initiale, le concept
d’unicité d’une solution maximale n’est plus pertinent et, à la place, on introduit la notion
de solution générale : c’est l’ensemble de toutes les solutions maximales.

Remarque 9.9. Sans spécification de l’intervalle de définition d’une solution, il est
souvent sous-entendu par “solution” le concept de solution maximale.

Il est important de savoir sous quelles conditions sur f le problème de Cauchy admet
des solutions locales ou globales et si elles sont uniques. On investiguera cette question
dans la section 9.4.

9.2 Quelques méthodes de résolution d’EDO scalaires

On considère dans cette section le cas d’une EDO scalaire et le problème de Cauchy
correspondant

u′(t) = f(t, u(t)), t ∈ I, u(t0) = u0,

avec I ⊂ R un intervalle ouvert contenant t0, E ⊂ R un ouvert contenant u0 et f : I×E →
R continue.

Avant d’illustrer quelques méthodes de résolution, on présente d’abord une inter-
prétation géométrique de la solution du problème de Cauchy. Soit u : J → E une
solution maximale du problème de Cauchy (J étant un intervalle ouvert contenant t0
et inclus dans I), dont le graphe G(u) = {(t, y) ∈ J × E : y = u(t)}, appelé aussi
une courbe intégrale, est contenu dans I × E. Un vecteur tangent à G(u) en (t, u(t)) est
donné par v = (1, u′(t)) = (1, f(t, u(t))). Définissons le champ vectoriel v : I × E → R2,
(t, y) 7→ v(t, y) = (1, f(t, y)). Alors, les courbes intégrales sont en tout point tangentes au
champ vectoriel v.

La figure 9.1 montre le champ vectoriel associé à la fonction f(t, u) = u(1 − u), ainsi
que les trois solutions des problèmes de Cauchy associés aux conditions initiales u(0) = 2,
u(0) = 0.25, u(0) = −0.25. On voit bien que les graphes des solutions (courbes intégrales)
sont en tout point tangentes au champ vectoriel v(t, y) = (1, y(1 − y)).
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Figure 9.1 – Courbes intégrales associées aux conditions u(0) = 2, u(0) = 0.25, u(0) = −0.25
pour l’EDO u′ = u(1 − u).

9.2.1 Équations différentielles à variables séparées

Soit f : I × E → R de la forme f(t, u) = g(t)k(u) avec g : I → R et k : E → R
continues sur les intervalles ouverts I et E, et considérons le problème de Cauchy :

{
u′(t) = g(t)k(u(t)), t ∈ I,

u(t0) = u0,
(9.7)

avec (t0, u0) ∈ I × E. Si k(u0) = 0, le problème de Cauchy admet la solution globale
u(t) = u0, ∀t ∈ I. On verra dans la section 9.4 des conditions suffisantes sur k pour que
cette solution soit unique. Si par contre, k(u0) ̸= 0, grâce à la continuité de k, il existe
un intervalle ouvert Ẽ ⊂ E contenant u0 où la fonction k ne s’annule pas. Dans ce cas,
le résultat suivant donne une procédure explicite pour calculer une solution locale du
problème de Cauchy.

Théorème 9.10. Soient I, Ẽ ⊂ R deux intervalles ouverts, g : I → R continue et
k : Ẽ → R continue telle que k(u) ̸= 0, ∀u ∈ Ẽ. Pour tout (t0, u0) ∈ I × Ẽ, notons
G(t) =

∫ t
t0
g(s)ds : I → R et F (u) =

∫ u
u0

1
k(v)dv : Ẽ → R. Alors il existe un intervalle

ouvert J ⊂ I contenant t0 avec G(J) ⊂ Im(F ) et une fonction u : J → R définie par

u(t) = F−1(G(t)) ∈ Ẽ, t ∈ J, (9.8)

tels que (J, u) est une solution locale du problème de Cauchy (9.7). De plus, une telle
solution locale (J, u) est unique au sens que toute autre solution locale (K,w) à valeurs
dans E satisfait w(t) = u(t) ∈ Ẽ, ∀t ∈ K ∩ J .

Démonstration. Notons tout d’abord que la fonction k, étant une fonction continue,
ne change pas de signe sur Ẽ, ce qui implique que F : Ẽ → R est continue strictement
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monotone sur Ẽ, Im(F ) est ouvert et l’application inverse définie sur Im(F ) est continûment
différentiable (F est un difféomorphisme entre Ẽ et Im(F )). Puisque F (u0) = 0, il existe
η > 0 tel que ]−η, η[ ⊂ F (Ẽ) et par la continuité de G en t0 et le fait que G(t0) = 0, il
existe δη > 0 tel que J := ]t0 − δη, t0 + δη[ ⊂ I et G(t) ∈ ]−η, η[, ∀t ∈ J . On a donc montré
l’existence d’un intervalle ouvert J ⊂ I contenant t0 et tel que G(J) ⊂ Im(F ).

Grâce au fait que F−1 et G sont de classe C1, on a que u = F−1 ◦G ∈ C1(J) et

u′(t) = G′(t)
F ′(F−1(G(t))) = g(t)k(u(t)), ∀t ∈ J.

De plus, u(t0) = F−1(0) = u0, donc (J, u) est une solution locale du problème de Cauchy.
Montrons l’unicité de cette solution. En effet, soit (K,w) une autre solution locale à

valeurs dans E. Puisque w est continue et Ẽ est ouvert, w−1(Ẽ) est un ouvert dans K
contenant t0. Soit K̃ le plus grand intervalle ouvert inclus dans w−1(Ẽ) et contenant t0.
Alors, pour tout t ∈ K̃ on a k(w(t)) ̸= 0 (car w(t) ∈ Ẽ) et

∫ t
t0

w′(s)
k(w(s))ds =

∫ t
t0
g(s)ds =

G(t). Mais, en faisant le changement de variable v = w(t), la même intégrale devient∫ t
t0

w′(s)
k(w(s))ds =

∫ w(t)
u0

1
k(v)dv = F (w(t)), ce qui implique, grâce à l’inversibilité de F : Ẽ →

Im(F ), que w(t) = F−1(G(t)), ∀t ∈ K̃. Donc w = u sur l’intervalle ouvert J ∩ K̃ ⊂ J ∩K.
Par l’absurde, supposons qu’il existe t̃ ∈ ∂(J ∩ K̃) ∩ (J ∩ K). Comme u(t̃) ∈ Ẽ, on
obtiendrait par continuité que w(t̃) = u(t̃) ∈ Ẽ, ce qui conduirait à la contradiction
t̃ ∈ J ∩ K̃. D’où J ∩ K̃ = J ∩K.

Le théorème précédent montre l’existence d’un intervalle ouvert J ⊂ I contenant t0 et
tel que G(J) ⊂ Im(F ). Si maintenant on prend le plus grand intervalle J̃ ⊂ I contenant t0
et tel que G(J̃) ⊂ Im(F ), qui sera non-vide grâce au résultat du théorème précédent, on
pourra calculer l’unique solution locale sur J̃ par la formule

u(t) = F−1(G(t)), ∀t ∈ J̃ .

Il est possible qu’il existe une solution locale sur un intervalle ouvert plus grand Ĵ ⊃ J̃ .
Toutefois, le théorème 9.10 ne garantit plus l’unicité de la solution sur Ĵ \ J̃ . En effet,
l’exemple 9.12 ci-dessous montre que dès que k(u(t)) = 0 pour quelque t ∈ Ĵ , la solution
peut ne plus être unique (observez que k n’est pas de classe C1 dans cet exemple).

De façon informelle, on peut construire la solution d’un problème de Cauchy par
séparation de variables en utilisant le procédé suivant :

du

dt
= g(t)k(u) ⇒ du

k(u) = g(t)dt ⇒
∫ u

u0

dv

k(v) =
∫ t

t0
g(s)ds

⇒ F (u) − F (u0) = G(t) −G(t0) ⇒ u = F−1(G(t) −G(t0) + F (u0))

où F est une primitive quelconque de 1
k et G une primitive quelconque de g.

Exemple 9.11. Soit I, E = R, et f(t, u) = u2, (t, u) ∈ I × E. Considérons le problème
de Cauchy {

u′(t) = u2(t), t ∈ I,

u(t0) = u0 > 0.
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On note g(t) = 1, t ∈ I, et k(u) = u2, u ∈ E. Pour pouvoir appliquer la méthode de
séparation des variables, on se restreint à l’ensemble Ẽ = R∗

+ ⊂ E, puisque u0 > 0. On a

F (u) =
∫ u

u0

1
y2dy = 1

u0
− 1
u

: Ẽ → R

qui est bien inversible sur Ẽ, avec application inverse F−1(v) = u0
1−u0v

continûment
différentiable sur ]−∞, 1

u0
[. De plus, G(t) =

∫ t
t0

1 dt = t− t0 et donc

u(t) = u0
1 − (t− t0)u0

, ∀t ∈ ]−∞, t0 + 1
u0

[

est l’unique solution du problème de Cauchy sur l’intervalle ]−∞, t0 + 1
u0

[. Cette solution
est aussi la solution maximale car limt→(t0+ 1

u0
)− = +∞ et elle ne peut pas être prolongée

de façon continue sur un intervalle plus grand.

Exemple 9.12. Soit I, E = R, et f(t, u) = −
√

|u|, (t, u) ∈ I×E. Considérons le problème
de Cauchy {

u′(t) = −
√

|u(t)|, t ∈ I,

u(t0) = u0 > 0.

Observons déjà que toute solution locale u satisfait u′ ≤ 0. On note g(t) = −1, t ∈ I, et
k(u) =

√
|u|, u ∈ E. De nouveau, puisque u0 > 0, on se restreint à Ẽ = R∗

+ ⊂ E et on
cherche une primitive de 1√

|y|
pour y ∈ Ẽ :

F (u) =
∫ u

u0

1√
y
dy = 2

√
u− 2√

u0 : Ẽ → R

qui est bien inversible sur Ẽ avec application inverse différentiable F−1(v) =
(√
u0 + v

2
)2
, v ∈

]−2√
u0,+∞[. D’autre part, G(t) =

∫ t
t0

(−1)ds = t0 − t et G(t) ∈ ]−2√
u0,+∞[ pour tout

t ∈ ]−∞, 2√
u0 + t0[, et on a la solution locale

u(t) =
(√

u0 − t− t0
2

)2
, t ∈ ]−∞, 2√

u0 + t0[.

La fonction u(t) = (√u0 − t−t0
2 )2, t ∈ R, est bien définie pour t ≥ 2√

u0 + t0, mais
n’est pas solution car u′(t) > 0 pour tout t > 2√

u0 + t0. Toutefois il existe des solutions
globales, mais pas uniques. En effet, les fonctions

ũ(t) =
{(√

u0 − t−t0
2
)2
, t < 2√

u0 + t0,

− (√u0 − t−t0
2
)2
, t ≥ 2√

u0 + t0,
û(t) =

{(√
u0 − t−t0

2
)2
, t < 2√

u0 + t0,

0, t ≥ 2√
u0 + t0,

sont des solutions globales du même problème de Cauchy. On remarque que les deux
fonctions coïncident pour t < 2√

u0 + t0, ce qui est consistent avec le résultat du théorème
9.10, et que la solution n’est plus unique pour t > 2√

u0 + t0, c.-à-d. une fois que la solution
a touché la valeur critique ucr = 0 pour laquelle k(ucr) =

√
|ucr| = 0. Ces deux solutions
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globales peuvent être vues comme les membres extrêmes de la famille suivante de solutions
globales, la famille étant paramétrée par s ∈]2√

u0 + t0,+∞[ :

us(t) =





(√
u0 − t−t0

2
)2
, t < 2√

u0 + t0,

0, 2√
u0 + t0 ≤ t < s,

− ( t−s2
)2
, t ≥ s.

Exercice 9.13. Trouver, par la méthode de séparation des variables, la solution du
problème de Cauchy {

u′(t) = 3
2u(t)1/3, t ∈ R,

u(t0) = u0 > 0.

Commenter sur l’unicité de la solution. Ici v 7→ v1/3 est la fonction impaire sur R réciproque
de la fonction v → v3.

9.2.2 Équations avec fonction f(t, u) homogène de degré zéro

Soit f : R∗ × R → R continue telle que f(αt, αy) = f(t, y), ∀α ∈ R∗. On appelle une
telle fonction homogène de degré zéro. Si on prend, en particulier, α = 1

t , t ≠ 0, on voit
que f dépend uniquement du rapport y/t car f(t, y) = f(1, yt ). Introduisant la fonction
ϕ(yt ) := f(1, yt ), le problème de Cauchy pour t0 > 0 prend la forme suivante :




u′(t) = f(t, u(t)) = ϕ

(
u(t)
t

)
, t ∈ ]0,+∞[,

u(t0) = u0.

On introduit, maintenant, le changement de variable v(t) = u(t)
t . Alors

v′(t) = u′(t)
t

− u(t)
t2

= 1
t
ϕ

(
u(t)
t

)
− 1
t

u(t)
t

= 1
t
[ϕ(v(t)) − v(t)],

ce qui nous donne une équation à variables séparées en (t, v).
Le même raisonnement s’applique aussi si le fonction f est définie par exemple seulement

sur R∗ × R∗ ou R∗
+ × R∗

+ et u0 ̸= 0.

Exemple 9.14. Considérons la fonction f : R∗
+ × R∗

+ → R donnée par f(t, y) = t3+y3

ty2 et
le problème de Cauchy

u′(t) = t3 + u3(t)
tu2(t) , u(t) > 0, t > 0, u(1) = u0 > 0.
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On pose v(t) = u(t)
t et on cherche la solution du problème transformé

v′(t) = 1
t

[
1 + v3(t)
v2(t) − v(t)

]
= 1
t

[ 1
v2(t)

]
, v(t) > 0, t > 0, v(1) = u0.

En intégrant on trouve F (v) =
∫ v
u0
w2dw = 1

3(v3 − u3
0), inversible entre R∗

+ et ]−1
3u

3
0,+∞[

(d’inverse C1), et G(t) =
∫ t

1
1
sds = ln t, t ∈ ]e−u3

0/3,+∞[, et donc

v(t) = F−1(G(t)) = (3 ln t+ u3
0)1/3, t > e−u3

0/3.

Finalement on obtient la solution locale

u(t) = v(t)t = (3 ln t+ u3
0)1/3t, t > e−u3

0/3.

9.3 EDO scalaires linéaires du premier ordre
On parle d’équation différentielle linéaire du premier ordre lorsque f(t, y) est une

fonction affine de la variable y. Soit I ⊂ R un intervalle ouvert, g, p : I → R deux fonctions
continues et f(t, y) = g(t) − p(t)y. Pour t0 ∈ I, on pose le problème de Cauchy suivant :

{
u′(t) + p(t)u(t) = g(t), t ∈ I,

u(t0) = u0.
(9.9)

L’équation est dite homogène ou sans second membre si g(t) = 0, ∀t ∈ I, et non-homogène,
inhomogène ou avec second membre autrement. (Faites attention que la terminologie
“homogène” a déjà été utilisée dans la section 9.2.2, mais dans un sens différent !)

La méthode du facteur intégrant. Voici une première méthode courante de résolution
de problème de Cauchy (9.9). Notons par P : I → R n’importe quelle primitive fixée de p
(la constante d’intégration est fixée librement) : P (t) =

∫ t p(s) ds. On appelle la fonction
eP : I → R un facteur intégrant. Cette terminologie provient de l’équivalence suivante :

(9.9) ⇔




(
eP (t)u(t)

)′
= eP (t)g(t), t ∈ I,

u(t0) = u0.

Il est facile maintenant d’obtenir une formule pour la solution :

(9.9) ⇔ eP (t)u(t) − eP (t0)u0 =
∫ t

t0
eP (s)g(s) ds, t ∈ I,

⇔ u(t) = e−(P (t)−P (t0))u0 + e−P (t)
∫ t

t0
eP (s)g(s) ds, t ∈ I.

Avec le choix de la primitive P (t) =
∫ t
t0
p(s) ds, ceci donne plus simplement

u(t) = e−P (t)u0 + e−P (t)
∫ t

t0
eP (s)g(s) ds, t ∈ I. (9.10)
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Ainsi (9.9) admet une unique solution globale.
Passons à une méthode standard, qui consiste à traiter d’abord le problème homogène

et ensuite le problème non-homogène. Comme nous le verrons, cette seconde méthode
s’appliquera aussi aux EDO du deuxième ordre linéaire.
Équation homogène. Il s’agit de trouver la solution générale du problème homogène
associé (dans lequel on remplace g par 0) :

u′(t) + p(t)u(t) = 0, t ∈ I,

sans condition initiale. La méthode du facteur intégrant s’applique et donne la solution
générale

u(t) = Ce−P (t), t ∈ I,

où C ∈ R est une constante arbitraire et P : I → R est une primitive fixée de p : I → R.
En fait additionner une constante à la primitive P est équivalent à multiplier C par une
constante positive. Le choix C = 0 donne la solution “triviale” u = 0 sur I.

Une autre manière de résoudre le problème homogène associé est de l’écrire sous forme
d’une EDO à variables séparées :

u′(t) = −p(t)u(t), t ∈ I,

se souvenir qu’une primitive de 1/v est donnée par ln(|v|) et ne pas oublier la solution
triviale u = 0 sur tout I.
Équation non-homogène. Considérons maintenant le cas non-homogène, pour lequel on
a le résultat suivant dont la démonstration est immédiate :

Proposition 9.15 (Principe de superposition de solutions). Soient g1, g2 : I → R
continues et deux constantes α1, α2 ∈ R. Si u1 : I → R est une intégrale de l’équation
u′

1(t) + p(t)u1(t) = g1(t) et u2 : I → R une intégrale de l’équation u′
2(t) + p(t)u2(t) = g2(t),

alors v = α1u1 + α2u2 est une intégrale de l’équation v′(t) + p(t)v(t) = α1g1(t) + α2g2(t).

En particulier, en prenant g2 = 0, g1 = g et α1 = α2 = 1, on obtient

Proposition 9.16. Toute solution de l’équation différentielle

u′(t) + p(t)u(t) = g(t), t ∈ I (9.11)

est de la forme
u(t) = w(t) + Ce−P (t) (9.12)

où w(·) est une solution particulière de l’équation non-homogène (i.e. une solution fixée du
problème non-homogène qui ne satisfait pas forcément la condition w(t0) = u0) et Ce−P (·)

est la solution générale de l’équation homogène, avec P (·) une primitive quelconque de p
et C ∈ R une constante arbitraire.

Démonstration. Il est clair que (9.12) est solution de (9.11) pour tout C ∈ R. Montrons
que (9.12) est bien l’intégrale générale. Par l’absurde, supposons qu’il existe une intégrale ũ
de (9.11) qui n’est pas de la forme (9.12). Alors ũ−w est solution de l’équation homogène
et donc il existe C̃ ∈ R telle que ũ(t) − w(t) = C̃e−P (t) ce qui contredit l’hypothèse que ũ
n’est pas de la forme (9.12).
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Si, après, on s’intéresse au problème de Cauchy, on peut toujours trouver sa solution
(globale) en calculant la constante C dans (9.12) de telle sorte à avoir u(t0) = u0, ce qui
donne C = eP (t0)(u0 − w(t0)).

Exemple 9.17. Considérons l’équation différentielle linéaire u′(t) = u(t) + 1, ainsi que le
problème de Cauchy avec condition initiale u(t0) = u0. On a

— solution générale de l’équation homogène : z(t) = Cet ;
— solution particulière de l’équation non-homogène : w(t) = −1 ;
— solution générale : u(t) = w(t) + z(t) = −1 + Cet ;
— solution globale (unique) du problème de Cauchy : u(t) = −1 + (1 + u0)e(t−t0).

Expliquons une méthode importante pour trouver une solution particulière de l’équation
non-homogène : la méthode de variation des constantes. Elle consiste à chercher une solution
particulière de l’équation non-homogène sous la forme

w(t) = C(t)e−P (t), avec C : I → R différentiable,

c.-à-d. qu’on prend l’expression de l’intégrale générale de l’équation homogène z(t) =
Ce−P (t) et on transforme la constante C ∈ R en une fonction C : I → R différentiable. En
remplaçant dans l’équation on a

w′(t) = −p(t)w(t) + g(t) = −p(t)C(t)e−P (t) + g(t),

mais, d’autre part

w′(t) = d

dt

(
C(t)e−P (t)

)
= C ′(t)e−P (t) − C(t)e−P (t)p(t),

d’où C ′(t) = g(t)eP (t) et donc C(t) =
∫ t g(s)eP (s)ds, où on peut fixer librement la primitive

(c’est-à-dire, on peut fixer librement la constante “d’intégration”). On arrive finalement au
résultat final donnant l’intégrale générale d’une EDO linéaire

u(t) = Ce−(P (t)−P (t0)) +
∫ t

g(s)e−(P (t)−P (s))ds, t ∈ I,

et la solution du problème de Cauchy avec condition initiale u(t0) = u0 est donnée
par la même formule (9.10) déjà obtenue. Comme la primitive a été fixée, qu’une seule
constante C apparaît dans l’intégrale générale. Si par contre on avait écrit par exemple
C(t) =

∫ t
t0
g(s)eP (s)ds+D pour un certain t0 ∈ I, on serait arrivé à

u(t) = Ce−(P (t)−P (t0)) +
∫ t

t0
g(s)e−(P (t)−P (s))ds+De−P (t)

= C ′e−(P (t)−P (t0)) +
∫ t

t0
g(s)e−(P (t)−P (s))ds

avec de nouveau une seule constante C ′, où C ′ = C + e−P (t0)D.
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Exemple 9.18. Considérons le problème de Cauchy u′(t) = u(t) + 1, t ∈ R et u(t0) = u0.
On a P (t) =

∫ t
t0

−1 ds = t0 − t et

u(t) = u0e
t−t0 +

∫ t

t0
1 · et−sds

= u0e
t−t0 − et(e−t − e−t0)

= −1 + (1 + u0)et−t0 .

9.3.1 Équation différentielle linéaire à coefficient constant

Considérons l’équation différentielle linéaire à coefficient constant

u′(t) + αu(t) = g(t), t ∈ I,

avec g : I → R continue et α ∈ R. Dans ce cas, la solution de l’équation homogène est tout
simplement z(t) = Ce−αt et l’intégrale générale prend donc la forme u(t) = w(t) + Ce−αt

où w est une solution particulière de l’équation non-homogène. Voyons quelques cas
particuliers de fonctions g :

g est un polynôme de degré n et α ̸= 0 : g(t) = ∑n
j=0 ajt

j .
On cherche w sous la même forme : w(t) = ∑n

j=0 βjt
j .

Exemple 9.19. Considérons l’EDO linéaire u′(t) + αu(t) = 1 + t, t ∈ R.
On cherche une solution particulière sous la forme w(t) = β0 + β1t. On a donc

w′(t) + αw(t) = β1 + α(β0 + β1t) = 1 + t

ce qui implique {
β1 + αβ0 = 1
αβ1 = 1

et donc (β0, β1) = ( 1
α(1 − 1

α), 1
α). Finalement, l’intégrale générale est

u(t) = 1
α

(
1 − 1

α

)
+ 1
α
t+ Ce−αt, t ∈ R, C ∈ R.

g est un polynôme multiplié par une fonction exponentielle : g(t) =
(∑n

j=0 ajt
j
)
eδt.

Si δ ≠ −α alors on cherche w(t) =
(∑n

j=0 βjt
j
)
eδt. Par exemple, si g(t) = eδt, on

recherche w sous la forme w(t) = βeδt. On a alors

w′(t) = βδeδt = −αβeδt + eδt

ce qui implique β = 1
δ+α et donc l’intégrale générale est

u(t) = 1
δ + α

eδt + Ce−αt, t ∈ R, C ∈ R.
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Si δ = −α alors on cherche w(t) = t
(∑n

j=0 βjt
j
)
eδt. Par exemple, si g(t) = eδt = e−αt

(qui est solution du problème homogène associé), on recherche w sous la forme
w(t) = tβeδt = tβe−αt. On trouve que w(t) = te−αt est une solution particulière et
l’intégrale générale est

u(t) = (C + t)e−αt, t ∈ R, C ∈ R.

g est un polynôme multiplié par des fonctions trigonométriques-exponentielles :

g(t) =
( n∑

j=0
ajt

j
)
eδt sin(ωt) +

( n∑

j=0
ãjt

j
)
eδt cos(ωt), ω ̸= 0, δ ∈ R.

On cherche w(t) sous la même forme :

w(t) =
( n∑

j=0
βjt

j
)
eδt sin(ωt) +

( n∑

j=0
β̃jt

j
)
eδt cos(ωt).

En particulier, si g(t) = b sin(ωt) + c cos(ωt) avec b2 + c2 > 0 et ω ̸= 0, on recherche
w sous la forme w(t) = β sin(ωt) + γ cos(ωt), ce qui donne

w′(t) = βω cos(ωt) − γω sin(ωt) = −α(β sin(ωt) + γ cos(ωt)) + b sin(ωt) + c cos(ωt)

et implique par identification
{
βω = −αγ + c

−γω = −αβ + b
⇒
{
β = 1

α2+ω2 (αb+ ωc)
γ = 1

α2+ω2 (−ωb+ αc)

Donc l’intégrale générale est

u(t) = 1
α2 + ω2 (αb+ωc) sin(ωt)+ 1

α2 + ω2 (−ωb+αc) cos(ωt)+Ce−αt, t ∈ R, C ∈ R.

Observons que b = 0 ⇒ β ̸= 0, et c = 0 ⇒ γ ̸= 0.

9.4 Existence et unicité de solutions
Dans cette section, on va étudier l’existence et unicité de solutions d’un problème de

Cauchy pour un système d’EDO du premier ordre
{

u′(t) = f(t,u(t)), t ∈ I,

u(t0) = u0,
(9.13)

où I ⊂ R est un intervalle ouvert contenant t0, E ⊂ Rn un ouvert contenant u0 et
f : I × E → Rn une fonction continue.

Pour cela, on va réécrire (9.13) sous forme intégrale : soit (J,u) une solution locale
(même globale si J = I). En particulier, u ∈ C1(J,E) et

u(t) = u0 +
∫ t

t0
f(s,u(s))ds, ∀t ∈ J. (9.14)
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Le réciproque est aussi vrai. Si u ∈ C0(J,E) satisfait l’équation intégrale (9.14), avec
J ⊂ I ouvert contenant t0, alors u est différentiable sur J et (J,u) est une solution locale
de (9.13). On introduit alors l’application ϕ : C0(J,E) → C0(J,Rn) qui à toute fonction
v ∈ C0(J,E) fait correspondre la fonction ϕ(v) ∈ C0(J,Rn) définie par

ϕ(v)(t) = u0 +
∫ t

t0
f(s,v(s))ds, ∀t ∈ J. (9.15)

La solution de (9.14) est un point fixe de l’application ϕ, i.e. u = ϕ(u). Avant de présenter
les théorèmes d’existence et unicité de solutions de (9.13) (resp. (9.14)) on va introduire
la notion abstraite d’espace de Banach et généraliser le théorème de point fixe dans un
sous-ensemble fermé d’un espaces de Banach. Ceci nous permettra d’appliquer le théorème
de point fixe à l’application ϕ dans l’espace C0(J,Rn).

9.4.1 Espace de Banach et complétude de C0(J)

Définition 9.20. Soit (V, ∥ · ∥) un espace vectoriel réel normé et {v(k)}k∈N ⊂ V une suite
d’éléments de V . On dit que

— {v(k)}k∈N converge vers v ∈ V si limk→∞ ∥v − v(k)∥ = 0, i.e. si

∀ϵ > 0, ∃N > 0 : ∀k ≥ N, ∥v − v(k)∥ ≤ ϵ;

il est facile de vérifier que, si elle existe, la limite v ∈ V est unique.
— {v(k)}k∈N est une suite de Cauchy si

∀ϵ > 0, ∃N > 0 : ∀k, ℓ ≥ N, ∥v(k) − v(ℓ)∥ ≤ ϵ.

On a vu au chapitre 1 que Rn a une structure d’espace vectoriel (réel) normé et que
toute suite de Cauchy est convergente. Cette propriété n’est pas toujours vraie dans un
espace vectoriel normé quelconque.

Définition 9.21 (Espace complet). On dit qu’un espace vectoriel normé (V, ∥ · ∥) est
complet si toute suite de Cauchy de V converge dans V . Autrement dit, pour toute suite
{v(k)}k∈N ⊂ V de Cauchy, ∃ v∗ ∈ V tel que limk→∞ ∥v∗ − v(k)∥ = 0. Un espace vectoriel
normé complet est appelé espace de Banach.

On dit qu’un sous-ensemble K ⊂ V est complet si toute suite de Cauchy de K converge
dans K.

Exercice 9.22. Considérons l’espace vectoriel réel C0([−1, 1]) de fonctions réelles conti-
nues sur le compact [−1, 1] et l’application ∥ · ∥1 : C0([−1, 1]) → R+ donnée par ∥f∥1 =∫ 1

−1 |f(x)|dx. Vérifier que ∥ · ∥1 est une norme. L’espace (C0([−1, 1]), ∥ · ∥1) est-il complet ?
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Dans un espace de Banach (V, ∥ · ∥), les sous-ensembles ouverts sont définis à l’aide
de la norme de la même manière que dans Rn et les sous-ensembles fermés sont définis
comme les complémentaires des ouverts. Comme dans Rn, un sous-ensemble E ⊂ V est
fermé si, et seulement si, toute suite d’éléments de E qui converge dans V a sa limite
dans E. Il en résulte immédiatement le lemme suivant qui caractérise les sous-ensembles
complets d’un espace de Banach.

Lemme 9.23. Soit (V, ∥ · ∥) un espace de Banach et K ⊂ V un sous-ensemble de V .
Alors, K est complet si et seulement si K est fermé.

Par cette caractérisation, on a que si K est un sous-ensemble fermé d’un espace de
Banach (V, ∥·∥), alors (K, d) est un espace métrique complet, avec distance d(u, v) = ∥u−v∥
induite par la norme de V .

Le théorème de point fixe s’applique en fait à tout espace de Banach et même plus
généralement, à tout espace métrique complet. La preuve est essentiellement la même que
celle vue dans Rn.

Théorème 9.24 (Point fixe de Banach). Soit (V, ∥ · ∥) un espace de Banach, K ⊂ V un
sous-ensemble fermé non-vide et ϕ : K → K une application contractante, i.e.

∃ρ ∈]0, 1[: ∀v, w ∈ K ∥ϕ(v) − ϕ(w)∥ ≤ ρ∥v − w∥.

Alors il existe un unique v∗ ∈ K tel que ϕ(v∗) = v∗ (c’est-à-dire, l’application admet un
point fixe, qui est unique).

Pour démontrer les théorèmes de la section suivante, on va travailler avec l’espace des
fonctions continues sur un compact, qui a une structure d’espace de Banach s’il est muni
d’une norme appropriée, comme le théorème suivant le montre.

Théorème 9.25. Soit Ω ⊂ Rn compact. L’espace vectoriel C0(Ω,Rm), muni de la norme
∥v∥C0(Ω) = maxx∈Ω ∥v(x)∥, est un espace de Banach. (Ici, ∥ · ∥ est n’importe quelle norme
sur Rm).

Démonstration. Voir cours d’Analyse I.

En fait, on travaillera plutôt sur des boules fermées de C0(Ω,Rm) :

Kb,u(Ω) = {v ∈ C0(Ω,Rm) : ∥v − u∥C0(Ω) ≤ b}, b > 0, u ∈ C0(Ω,Rm)

qui sont donc des sous-ensembles complets de C0(Ω,Rm).

9.4.2 Théorèmes d’existence et unicité locale

On considère d’abord la question de l’existence de solutions du problème de Cauchy
(9.13). Le théorème suivant, qu’on ne va pas démontrer dans ce cours, montre que la seule
hypothèse de continuité de f : I × E → Rn est suffisante pour garantir l’existence d’une
solution locale (mais non pas l’unicité, en générale).
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Théorème 9.26 (Cauchy–Peano). Soit I ⊂ R un intervalle ouvert, E ⊂ Rn un ouvert et
f : I × E → Rn continue. Alors, pour tout (t0,u0) ∈ I × E, le problème de Cauchy (9.13)
admet au moins une solution locale (J,u), avec J ⊂ I.

Pour avoir unicité de solutions locales, il faut demander un peu plus de régularité pour
la fonction f . Il s’avère que la bonne condition est une propriété de Lipschitz locale par
rapport au deuxième argument :

Définition 9.27. Soit I ⊂ R un intervalle ouvert, E ⊂ Rn un ouvert et f : I × E → Rn
une fonction continue. On dit que f est localement lipschitzienne par rapport au deuxième
argument si, ∀(t0,u0) ∈ I ×E, il existe a, b > 0 avec [t0 − a, t0 + a] × B̄(u0, b) ⊂ I ×E et
une constante L > 0 tels que

∀t ∈ [t0 − a, t0 + a] ∀x,y ∈ B̄(u0, b) ∥f(t,x) − f(t,y)∥ ≤ L∥x − y∥,

où a, b et L dépendent éventuellement de (t0,u0).

On remarque, en particulier, que si f : I × E → Rn, (t,y) 7→ f(t,y), est continue avec
dérivées partielles ∂fi

∂yj
: I × E → Rn continues ∀i, j = 1, . . . , n, alors f est localement

lipschitzienne par rapport au deuxième argument.

Théorème 9.28 (Cauchy–Lipschitz — version locale). Soit I ⊂ R un intervalle ouvert,
E ⊂ Rn ouvert et f : I × E → Rn un fonction continue et localement lipschitzienne par
rapport au deuxième argument.

Alors, pour tout (t0,u0) ∈ I ×E, il existe δ > 0 tel que Jδ = [t0 − δ, t0 + δ] ⊂ I et une
fonction u : Jδ → E de classe C1 solution du problème de Cauchy (9.13).

Cette solution est aussi unique au sens suivant (“unicité locale”) : toute autre solution
locale (K,w) du problème de Cauchy, avec K un intervalle ouvert contant t0 et inclus
dans I, vérifie w = u sur K ∩ Jδ.

Remarques. L’énoncé est formulé pour l’intervalle fermé Jδ car ceci est plus naturel
pour la preuve. Néanmoins il en découle les mêmes conséquences pour son intérieur J̊δ,
par exemple l’unicité locale : toute solution locale (K,w) du problème de Cauchy vérifie
w = u sur K ∩ J̊δ (K étant un intervalle ouvert contant t0 et inclus dans I). Les mêmes
conséquences seront aussi valables pour toutes les valeurs de δ > 0 plus petites.

Il y a deux manières, équivalentes ici, de définir le concept de solution u de classe C1

sur l’intervalle compact Jδ ⊂ I. On peut d’une part demander que (i) u soit continue sur
Jδ et solution de classe C1 sur J̊δ, ou d’autre part que (ii) u soit continue sur Jδ, solution
de classe C1 sur J̊δ et u′ admette un prolongement par continuité sur Jδ. On voit qu’ici (i)
implique (ii) car, en supposant (i), u′(t) = f(t,u(t)) sur J̊δ, u est continue sur Jδ et donc
f(t,u(t)) est continue sur Jδ. Clairement (ii) implique (i).

Démonstration. Puisque f est localement lipschitzienne par rapport au deuxième argument,
il existe a, b, L tels que [t0 − a, t0 + a] × B̄(u0, b) ⊂ I × E et

∥f(t,x) − f(t,y)∥ ≤ L∥x − y∥, ∀t ∈ [t0 − a, t0 + a], ∀x,y ∈ B̄(u0, b).

Choisissons
M > max

(t,y)∈[t0−a,t0+a]×B̄(u0,b)
∥f(t,y)∥.
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Soit maintenant δ ∈ ]0, a], Jδ = [t0 − δ, t0 + δ] ⊂ I et considérons

Kb,u0(Jδ) = {v : Jδ → Rn continue : max
t∈Jδ

∥v(t) − u0∥ ≤ b},

qui est un sous-ensemble fermé (et donc complet) de C0(Jδ,Rn). On va étudier l’application
ϕ : Kb,u0(Jδ) → C0(Jδ,Rn) définie en (9.15) :

ϕ(v)(t) = u0 +
∫ t

t0
f(s,v(s))ds, ∀t ∈ Jδ.

Pour tout v ∈ Kb,u0(Jδ) et t ∈ Jδ on a

∥ϕ(v)(t) − u0∥ =
∥∥∥∥
∫ t

t0
f(s,v(s))ds

∥∥∥∥ ≤
∣∣∣∣
∫ t

t0
∥f(s,v(s))∥ds

∣∣∣∣ ≤ Mδ,

donc, si on prend δ ≤ b
M on a ∥ϕ(v) − u0∥C0(Jδ) ≤ b, i.e. ϕ(v) ∈ Kb,u0(Jδ), ∀v ∈ Kb,u0(Jδ)

et ϕ envoie Kb,u0(Jδ) dans lui-même. De plus, ∀v1,v2 ∈ Kb,u0(Jδ) et ∀t ∈ Jδ

∥ϕ(v1)(t) − ϕ(v2)(t)∥ =
∥∥∥∥
∫ t

t0
f(s,v1(s)) − f(s,v2(s))ds

∥∥∥∥ ≤
∣∣∣∣
∫ t

t0
∥f(s,v1(s)) − f(s,v2(s))∥ds

∣∣∣∣

≤
∣∣∣∣
∫ t

t0
L∥v1(s) − v2(s)∥ds

∣∣∣∣ ≤ Lδmax
t∈Jδ

∥v1(t) − v2(t)∥

ce qui implique ∥ϕ(v1) −ϕ(v2)∥C0(Jδ) ≤ Lδ∥v1 − v2∥C0(Jδ). Donc, pour δ < min{a, b
M ,

1
L},

l’application ϕ : Kb,u0(Jδ) → Kb,u0(Jδ) est contractante et il existe un unique u ∈ Kb,u0(Jδ)
point fixe de ϕ. Alors (Jδ,u) est l’unique solution du problème de Cauchy (9.13) dans
Kb,u0(Jδ).

On pourrait encore se demander s’il existe d’autres solutions ũ /∈ Kb,u0(Jδ) définies
sur Jδ. Montrons que ceci n’est pas le cas en considérant une solution ũ : Jδ → E du
problème de Cauchy. Puisque ũ(t0) = u0 et ũ0 est continue en t0, il existe 0 < δ̃ ≤ δ tel
que ∥ũ(t) − u0∥ ≤ b, ∀t ∈ Jδ̃ = [t0 − δ̃, t0 + δ̃]. Soit

β = max{δ̃ ∈ ]0, δ] : ∥ũ(t) − u0∥ ≤ b, ∀t ∈ [t0 − δ̃, t0 + δ̃]}

(se convaincre que le maximum existe) et supposons par l’absurde que β < δ et donc
β < b

M . Puisque ũ satisfait l’équation ũ(t) − u0 =
∫ t
t0

f(s, ũ(s))ds, on a

∥ũ(t) − u0∥ ≤
∣∣∣∣
∫ t

t0
∥f(s, ũ(s))∥ds

∣∣∣∣ ≤ Mβ < b, ∀t ∈ [t0 − β, t0 + β].

Mais alors, il existe un δ̂ ∈]0, δ − β[ tel que ∥ũ(t) − u0∥ ≤ b, ∀t ∈ [t0 − β − δ̂, t0 + β + δ̂],
ce qui contredit la définition de β. Ainsi ũ = u sur Jδ.

Soit, maintenant, (K,w) une solution locale du problème de Cauchy et J̃ ⊂ K ∩ Jδ un
intervalle fermé contenant t0 dans son intérieur. Le même raisonnement que celui ci-dessus,
mais appliqué à l’intervalle J̃ , donne que w(t) = u(t), ∀t ∈ J̃ . Comme on obtient ainsi
l’égalité sur tout intervalle fermé J̃ ⊂ K ∩ Jδ contenant t0 dans son intérieur, on a prouvé
l’égalité sur K ∩ Jδ.
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Exemple 9.29. Considérons l’edo

u′(t) = u2(t), t ∈ R.

Puisque f(t, y) = y2 : R × R → R est localement lipschitzienne par rapport au deuxième
argument, le problème de Cauchy avec condition initiale u(t0) = u0 admet, pour tout
(t0, u0) ∈ R2, une solution locale, localement unique.

Exemple 9.30. Considérons l’edo

u′(t) = −
√

|u(t)|, t ∈ R.

La fonction f(t, y) =
√

|y| : R × R → R est continue sur R2 mais pas localement lipschit-
zienne par rapport au deuxième argument. Par contre, si f est restreinte à R × (R \ {0}),
f est localement lipschitzienne par rapport au deuxième argument.

On conclut du théorème 9.28 appliqué à R × (R \ {0}) que le problème de Cauchy
avec condition initiale u(t0) = u0 admet une solution locale, localement unique, pour tout
(t0, u0) ∈ R × (R \ {0}). Si la condition initiale est u(t0) = 0, on aura l’existence de
solutions locales grâce au théorème de Cauchy-Peano 9.26 appliqué à R × R mais on ne
peut pas garantir l’unicité locale. En fait, en raisonnant comme dans l’exemple 9.12, on
voit qu’aucune solution locale n’est localement unique.

Le théorème 9.28 donne existence et unicité d’une solution u : J → E du problème
de Cauchy sur un intervalle fermé J = [t0 − δ, t0 + δ] ⊂ I, pourvu que la fonction f
soit localement lipschitzienne par rapport au deuxième argument autour de la condition
initiale (t0,u0). Cette solution est toujours prolongeable. En effet, prenons t1 = t0 + δ et
u1 = u(t0 + δ). Puisque (t1,u1) ∈ I × E et f est localement lipschitzienne par rapport au
deuxième argument sur I ×E, on peut appliquer encore le théorème 9.28, cette fois-ci au
problème de Cauchy avec condition initiale u(t1) = u1. On aura alors l’existence d’une
solution ũ : J̃ → E définie sur un intervalle fermé J̃ = [t1 − δ̃, t1 + δ̃] ⊂ I avec δ̃ > 0. Soit
la fonction û : J ∪ [t1, t1 + δ̃] = [t0 − δ, t0 + δ + δ̃] → E définie par û(t) = u(t) si t ∈ J
et û(t) = ũ(t) si t ∈]t1, t1 + δ̃]. Alors û est solution (vérification directe dans l’esprit du
Lemme 9.6). La solution û est un « prolongement à droite » de la solution u. De même,
on peut prolonger u à gauche, et à la fois à droite et à gauche.

Lemme 9.31. Sous les mêmes hypothèses du théorème 9.28, soient des intervalles J1, J2 ⊂
I contenant t0 dans leurs intérieurs et soient des fonctions continues u1 : J1 → E et
u2 : J2 → E, solutions du problème de Cauchy (9.13) sur respectivement J̊1 et J̊2. Alors
u1(t) = u2(t), ∀t ∈ J1 ∩ J2.

Démonstration. Notons J1 ∩ J2 = J et J̊ = ]A,B[ avec −∞ ≤ A < t0 < B ≤ +∞. Le
théorème 9.28 garantit l’existence d’un intervalle fermé Jδ = [t0 − δ, t0 + δ] ⊂ J̊ (avec
δ > 0) où la solution existe et est unique. Sur un tel intervalle on doit avoir nécessairement
u1 = u2. Soit alors

α = inf
{
α̃ ∈]A, t0 − δ] : u1 = u2 sur [α̃, t0 + δ]

}
≥ A
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et
β = sup

{
β̃ ∈ [t0 + δ,B[: u1 = u2 sur [t0 − δ, β̃]

}
≤ B.

Donc J̃ = ]α, β[ est le plus grand intervalle ouvert inclus dans J̊ , contenant t0 et où
u1 = u2. On veut montrer que J̃ = J̊ . Supposons par l’absurde que β ̸= B, et donc
β ∈ J̊ \ J̃ . Puisque u1 et u2 sont continues sur J ⊃ J̃ et coïncident sur J̃ on a

u1(β) = lim
t→β−

u1(t) = lim
t→β−

u2(t) = u2(β) := z0

et on pourra encore trouver un intervalle Jβ,δ̂ = [β − δ̂, β + δ̂] ⊂ J̊ où la solution du
problème de Cauchy avec condition initiale (β, z0) existe et est unique. Mais cette solution
doit coïncider avec u1 et u2, et donc u1 = u2 sur J̃ ∪ J̊β,δ̂ , ce qui contredit l’hypothèse que
J̃ était le plus grand intervalle ouvert contenant t0 où u1 = u2. Le même raisonnement
s’applique à gauche si α ̸= A, donc on conclut que J̃ = J̊ , u1 = u2 sur J̊ , et donc sur J
(par continuité de u1 et u2 sur J).

Grâce au Lemme précédent, on peut toujours construire une unique solution maximale.

Théorème 9.32. Sous les hypothèse du théorème 9.28, pour tout (t0,u0) ∈ I ×E il existe
une unique solution maximale (Jmax,u) du problème de Cauchy (9.13) avec Jmax ⊂ I
ouvert contenant t0.

Démonstration. Soit {(Jη,uη)}η l’ensemble des solutions locales du problème de Cauchy
(9.13), avec Jη ⊂ I intervalle ouvert contenant t0. Ici chaque solution locale est paramétrée
par η appartenant à un certain ensemble Γ en bijection avec l’ensemble des solutions
locales.

On note Jmax = ⋃
η Jη et on définit la fonction u : Jmax → Rn de la façon suivante :

pour t ∈ Jmax il existe au moins un η t.q. t ∈ Jη ; on définit alors u(t) = uη(t). Cette
définition de u(t) ne dépend pas du choix de η car si η′ est aussi tel que t ∈ Jη′ , par
le lemme 9.31 on a uη(t) = uη′(t). De plus, la fonction u ainsi définie est solution du
problème de Cauchy et elle est la solution maximale car toute solution locale (Jη,uη) est
telle que Jη ⊂ Jmax et uη(t) = u(t), ∀t ∈ Jη.

Remarque 9.33. Si u : J → E est solution du problème de Cauchy sur un intervalle
compact contenant t0 dans son intérieur, on peut toujours prolonger la solution u sur un
ouvert Jη ⊃ J comme expliqué juste avant l’énoncé du Lemme 9.31. Comme Jη ⊂ Jmax,
on a aussi J ⊂ Jmax.

Par le théorème précédent, sous les hypothèses du théorème 9.28 le problème de Cauchy
(9.13) a une solution maximale unique. Alors, ou bien Jmax = I et la solution est globale,
ou bien Jmax est strictement inclus dans I et on aura seulement une solution maximale
mais non globale. On peut se poser encore la question de savoir que se passe-t-il aux
extrémités de l’intervalle maximale si celui ci est strictement inclus dans I. Le théorème
suivant répond à cette question.

Théorème 9.34. Sous les mêmes hypothèses du théorème 9.28, soit (Jmax,u) la solution
maximale du problème de Cauchy (9.13), définie sur un intervalle ouvert Jmax = ]α, β[ ⊂ I
contenant t0, où −∞ ≤ α < β ≤ +∞. Si β ∈ I (et donc β est fini), alors
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— pour toute suite {tn}n∈N dans Jmax t.q. limn→∞ tn = β et limn→∞ u(tn) = ξ ∈ E ⊂
Rn, on a ξ ∈ ∂E ;

— en particulier, si E = Rn, alors limt→β− ∥u(t)∥ = +∞.

On a des conclusions analogues si α ∈ I.

La démonstration de ce théorème va au delà des objectifs de ce cours.
Une des conséquences du Lemme 9.31 est que deux solutions locales (maximales ou non)

de l’EDO sans spécification d’une condition initiale, soit coïncident sur la partie commune
de leurs domaines de définition, soit leurs graphes ne peuvent jamais « se rencontrer ».
Plus précisément : considérons l’équation différentielle u′(t) = f(t,u(t)), t ∈ I, où f
satisfait les hypothèses du théorème 9.28. Soit (J,v) une solution locale du problème de
Cauchy avec condition initiale v(t0) = v0 et (J̃ , ṽ) une solution locale du problème de
Cauchy avec condition initiale ṽ(t̃0) = ṽ0. Si v et ṽ prennent la même valeur en un certain
t̂ ∈ J ∩ J̃ , sous les hypothèses du théorème 9.28 de Cauchy–Lipschitz local, on doit avoir
nécessairement v(t) = ṽ(t), ∀t ∈ J ∩ J̃ . Voir le Lemme 9.31.

Exemple 9.35. Considérons le problème de Cauchy suivant

{
u′(t) = u(t)(1 − u(t)), t ∈ R
u(t0) = u0.

(9.16)

La fonction f(t, y) = y(1 − y) est localement lipschitzienne par rapport au deuxième
argument pour tout (t, y) ∈ R × R. Donc le problème de Cauchy admet une solution
maximale unique. Clairement, u(t) = 0 et u(t) = 1 ∀t ∈ R sont deux solutions (globales).
Le graphe de toute autre solution maximale ne peut pas rencontrer les droites u = 0, u = 1.
De plus,

— Si u0 ∈ ]0, 1[ alors la solution maximale correspondante satisfait Im(u) ∈ ]0, 1[ et est
croissante car f(t, y) > 0 pour 0 < y < 1 ; par le Théorème 9.34, u est définie sur
tout R ;

— Si u0 ∈ ]1,+∞[ alors Im(u) ⊂ ]1,+∞[ et est décroissante car f(t, y) < 0 pour y > 1 ;
par le Théorème 9.34, u est définie sur un intervalle ouvert contenant [t0,+∞[

— Si u0 ∈ ]−∞, 0[ alors Im(u) ⊂ ]−∞, 0[ et est décroissante car f(t, y) < 0 pour y < 0 ;
par le Théorème 9.34, u est définie sur un intervalle ouvert contenant ] − ∞, t0].

La figure ci dessous montre trois solutions maximales correspondantes aux trois problèmes
de Cauchy avec u0 ∈ ]0, 1[, u0 ∈ ]1,+∞[, u0 ∈ ]−∞, 0[ et t0 = 0.
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Le théorème 9.34 nous garantit que pour u0 ∈ ]0, 1[ la solution est globale (autrement
elle devrait aller à l’infini en un temps fini mais ceci impliquerait de franchir une des deux
barrières u = 0 ou u = 1.) On ne peut par arriver à la même conclusion si u0 ∈ ]1,+∞[
ou u0 ∈ ]−∞, 0[. En effet, en faisant les calculs, on voit que la solution est maximale mais
non globale.

9.4.3 Théorèmes d’existence globale

Dans cette section on présente des conditions suffisantes sur la fonction f qui garantissent
l’existence et unicité d’une solution globale. La première condition qu’on considère est
une condition de lipschitzianité globale par rapport au deuxième argument qui permet de
donner une version globale du théorème de Cauchy-Lipschitz local 9.28.

Définition 9.36. Soit I ⊂ R un intervalle ouvert et f : I×Rn → Rn une fonction continue
(attention : f doit être définie sur tout I ×Rn). On dit que f est globalement lipschitzienne
par rapport au deuxième argument s’il existe une fonction continue ℓ : I → R+ non
négative telle que

∀t ∈ I ∀x,y ∈ Rn ∥f(t,x) − f(t,y)∥ ≤ ℓ(t)∥x − y∥.

Théorème 9.37 (Cauchy–Lipschitz — version globale). Soit I ⊂ R un intervalle ouvert et
f : I × Rn → Rn continue et globalement lipschitzienne par rapport au deuxième argument.
Alors, pour tout (t0,u0) ∈ I × Rn, le problème de Cauchy (9.13) a une solution globale
unique u ∈ C1(I,Rn).

Démonstration. Puisque f est globalement lipschitzienne par rapport au deuxième argu-
memt, elle est aussi localement lipschitzienne par rapport au deuxième argument. En effet,
pour tout intervalle compact K ⊂ I non vide, on a

∀t ∈ K ∀x,y ∈ Rn ∥f(t,x) − f(t,y)∥ ≤ L∥x − y∥,

où L = maxs∈K ℓ(s). Par le théorème de Cauchy–Lipschitz local 9.28 et le Théorème 9.32,
il existe une unique solution maximale (Jmax,u) du problème de Cauchy. Pour montrer le
théorème, il suffit donc de vérifier que Jmax = I.
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Raisonnons par l’absurde en supposant que Jmax est strictement inclus dans I, autre-
ment dit, sup Jmax ∈ I ou inf Jmax ∈ I (ou les deux à la fois). Traitons le cas sup Jmax ∈ I,
l’autre cas étant analogue. Pour T := sup Jmax (qui est fini puisque dans I), choisissons
µ > 0 tel que J := [T − µ, T + µ] ⊂ I, et soit δ ∈ ]0, µ] tel que δmaxt∈J ℓ(t) ≤ 1

3 .
Posons J0 = [T − δ, T + δ]. Alors, l’application ϕ : C0(J0,Rn) → C0(J0,Rn) définie

par ϕ(v)(t) = u(T − δ
2) +

∫ t
T− δ

2
f(s,v(s))ds, t ∈ J0, est contractante. En effet, pour tout

v1,v2 ∈ C0(J0,Rn) on a

max
t∈J0

∥ϕ(v1)(t) − ϕ(v2)(t)∥ ≤ max
t∈J0

∣∣∣∣∣

∫ t

T− δ
2

∥f(s,v1(s)) − f(s,v2(s))∥ds
∣∣∣∣∣

≤ max
t∈J0

∣∣∣∣∣

∫ t

T− δ
2

ℓ(s)∥v1(s) − v2(s)∥ds
∣∣∣∣∣

≤ 3δ
2

(
max
t∈J0

ℓ(t)
)(

max
t∈J0

∥v1(t) − v2(t)∥
)

≤ 1
2 max
t∈J0

∥v1(t) − v2(t)∥.

Par le théorème de point fixe de Banach on a alors une fonction u(0) ∈ C0(J0,Rn) point
fixe de ϕ qui est, en particulier, de classe C1 et solution du problème de Cauchy sur J0.

Grâce au Lemme 9.31 appliqué aux intervalles J1 = J2 = [T − δ, T [ et à la relation
u(0)(T − δ

2) = u(T − δ
2), on a u(0) = u sur [T − δ, T [. On obtient une solution locale ũ du

problème de Cauchy de départ définie sur Jmax ∪ [T, T + δ[ en posant ũ = u sur Jmax et
ũ = u(0) sur [T, T + δ[. Ceci contredit la maximalité de Jmax.

Exemple 9.38. Considérons le problème de Cauchy
{
u′(t) = sin(u(t)), t ∈ R.
u(t0) = u0.

Soit f : R2 → R la fonction f(t, y) = sin(y). Puisque |∂f∂y (t, y)| ≤ 1, ∀(t, y) ∈ R2 on a que
f est globalement lipschitzienne par rapport à y avec ℓ(t) = 1 et le problème de Cauchy
admet une unique solution globale, i.e. définie sur tout R.

Exemple 9.39. Soit I ⊂ R un intervalle ouvert et g, p ∈ C0(I). Considérons le problème
de Cauchy {

u′(t) = g(t) − p(t)u(t), t ∈ I

u(t0) = u0.

La méthode du facteur intégrant nous a montré que ce problème admet une unique solution
globale (définie sur tout I). On peut aussi le voir comme suit. La fonction f(t, y) = g(t) −
p(t)y est globalement lipschitzienne par rapport au deuxième argument avec ℓ(t) = |p(t)|,
qui est une fonction continue, et donc le problème de Cauchy a une solution unique globale
définie sur tout l’intervalle I. Ceci remontre que une edo linéaire scalaire avec fonctions
p, g continues a toujours une solution unique globale satisfaisant une condition initiale
u(t0) = u0.
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La condition de Lipschitz globale demandée par le théorème 9.37 de Cauchy–Lipschitz
global est assez restrictive. L’exemple 9.35 montre qu’un problème de Cauchy peut avoir des
solutions globales même si la fonction f n’est pas globalement lipschitzienne par rapport
au deuxième argument. On présente ci-après d’autres théorèmes d’existence globale qui
demandent des conditions moins restrictives sur f .

Théorème 9.40. Soit I ⊂ R un intervalle ouvert contenant t0 et f : I × Rn → Rn
une fonction continue et localement lipschitzienne par rapport au deuxième argument.
Supposons de plus qu’il existe ℓ : I → R continue telle que

y · f(t,y) ≤ ℓ(t)(1 + ∥y∥2) ∀t ∈ I, ∀y ∈ Rn. (9.17)

Alors, le problème à valeur initiale

u′(t) = f(t,u(t)), t ∈ I+ = I ∩ [t0,+∞[, u(t0) = u0

admet une solution globale unique u ∈ C1(I+,Rn). Si, de plus, ℓ est non négative et

|y · f(t,y)| ≤ ℓ(t)(1 + ∥y∥2) ∀t ∈ I, ∀y ∈ Rn, (9.18)

alors le problème de Cauchy (9.13) admet une solution globale unique sur I.

Démonstration. Par le théorème de Cauchy–Lipschitz local 9.28 et le Théorème 9.32, il
existe une solution maximale (Jmax,u) du problème de Cauchy. Si Jmax,+ = Jmax∩[t0,+∞[
est strictement contenu dans I+ alors Jmax,+ = [t0, β[, avec β ∈ I̊+ et limt→β− ∥u(t)∥ =
+∞ selon le théorème 9.34. Montrons que ceci ne peut pas arriver. Pour tout t ∈ Jmax on
a

u(t) · u′(t) = 1
2
d

dt
(∥u(t)∥2) = u(t) · f(t,u(t)) ≤ ℓ(t)(1 + ∥u(t)∥2).

Soit h(t) = ∥u(t)∥2. Alors h′(t) ≤ 2ℓ(t)(1 + h(t)) ce qui implique, pour tout t ∈ [t0, β[
∫ t

t0

h′(s)
1 + h(s)ds = ln

( 1 + h(t)
1 + h(t0)

)
≤ 2

∫ t

t0
ℓ(s)ds

et donc
h(t) ≤ −1 + (1 + h(t0)) exp

(
2
∫ t

t0
ℓ(s)ds

)
.

Mais ℓ ∈ C0([t0, β]) est bornée donc
∣∣∣
∫ t
t0
ℓ(s)ds

∣∣∣ ≤ ∫ β
t0

|ℓ(s)|ds < +∞, ∀t ∈ [t0, β[, et h(t)

est bornée uniformément sur [t0, β[. Par conséquent, si on note M =
√

1 + ∥u0∥2e

∫ β

t0
|ℓ(s)|ds

on a M < +∞ et
∥u(t)∥ ≤ M, ∀t ∈ [t0, β[,

ce qui contredit l’hypothèse que limt→β− ∥u(t)∥ = +∞.

Dans le cas de la condition bilatérale (9.18) on a aussi

h′(t) = 2u(t) · u′(t) = 2u(t) · f(t,u(t)) ≥ −2ℓ(t)(1 + ∥u(t)∥2) = −2ℓ(t)(1 + h(t))
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et donc, pour tout t ∈ Jmax∩] − ∞, t0],
∫ t0

t

h′(s)
1 + h(s)ds = ln

(1 + h(t0)
1 + h(t)

)
≥ −2

∫ t0

t
ℓ(s)ds

ce qui implique de nouveau h(t) ≤ −1 +(1 +h(t0)) exp
(
2
∫ t0
t ℓ(s)ds

)
. Si Jmax∩]−∞, t0] =

]α, t0] et α ∈ I, alors on doit avoir limt→α+ ∥u(t)∥ = +∞ mais, d’un autre coté, on a
∥u(t)∥ ≤

√
1 + ∥u0∥2e

∫ t0
α
ℓ(s)ds < +∞, ∀t ∈ ]α, t0], ce qui est contradictoire. On conclut

alors que Jmax = I.
Il reste à prouver l’unicité. Soit l’unique solution maximale (Jmax,u) pour le problème

de Cauchy. Considérons une solution ũ : I+ → Rn pour le problème à valeur initiale.
Elle peut se prolonger sur la gauche en une solution û :]t0 − ϵ, t0[∪I+ → Rn pour un
certain ϵ > 0. Par unicité de la solution maximale, ]t0 − ϵ, t0[∪I+ ⊂ Imax et û = u sur
]t0 − ϵ, t0[∪I+, et donc forcément que ũ = u sur I+.

Considérons une solution globale ū : I → Rn pour le problème de Cauchy. Par unicité
de (Jmax,u), on a I = Jmax et ū = u sur I ; ainsi ū est uniquement déterminée.

Remarque 9.41. La condition bilatérale (9.18) du théorème 9.40 est garantie si par
exemple ∃k1, k2 : I → R+ continues et non négatives telles que

∥f(t,y)∥ ≤ k1(t) + k2(t)∥y∥ ∀t ∈ I, ∀y ∈ Rn.

En effet,

|y · f(t,y)| ≤ ∥y∥∥f(t,y)∥ ≤ k1(t)∥y∥ + k2(t)∥y∥2

≤ k1(t)
2 (1 + ∥y∥2) + k2(t)(1 + ∥y∥2) ≤

(
k1(t)

2 + k2(t)
)

(1 + ∥y∥2).

Ceci montre que l’on a des solutions globales du problème de Cauchy si la norme de f(t,y)
croit au plus linéairement par rapport à la norme de y.

Exemple 9.42. Considérons le problème à valeur initiale
{
u′(t) = −u(t)eu(t), t ≥ t0,

u(t0) = u0.

La fonction f(t, y) = −yey est localement lipschitzienne par rapport au deuxième argument,
donc ce problème admet une solution maximale unique. Toutefois, f n’est pas globalement
lipschitzienne par rapport au deuxième argument, donc on n’est pas garanti à priori que
la solution maximale soit définie sur tout [t0,+∞[. Toutefois, yf(t, y) = −y2ey ≤ 0,
∀y ∈ R, t ∈ [t0,∞[, donc la solution maximale est globale.

(Attention : on ne peut pas déduire la même conclusion si on définit le problème sur
tout R au lieu de [t0,+∞[. On a donc l’existence globale garantie seulement « à droite ».)

Le théorème prochain donne une autre condition suffisante pour l’existence et unicité
de solutions globales unilatérales.
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Théorème 9.43. Soit I ⊂ R un intervalle ouvert contenant t0 et f : I × Rn → Rn
une fonction continue et localement lipschitzienne par rapport au deuxième argument.
Supposons qu’il existe ℓ : I → R continue telle que

(f(t,x) − f(t,y)) · (x − y) ≤ ℓ(t)∥x − y∥2 ∀t ∈ I, ∀x,y ∈ Rn. (9.19)

Alors, le problème à valeur initiale

u′(t) = f(t,u(t)), t ∈ I+ = I ∩ [t0,+∞[, u(t0) = u0

a une solution globale unique u ∈ C1(I+,Rn).

Démonstration. La condition (9.19) est plus forte que la condition (9.17) du théorème
9.40. En effet, si on prend y = 0 en (9.19) on obtient pour tout x ∈ Rn

f(t,x) · x ≤ f(t,0) · x + ℓ(t)∥x∥2

≤ ∥f(t,0)∥∥x∥ + |ℓ(t)|∥x∥2

≤
(∥f(t,0)∥

2 + |ℓ(t)|
)

(1 + ∥x∥2).

où dans la dernière inégalité on a utilisé que ∥x∥ ≤ 1
2(1 + ∥x∥2). Donc le résultat suit par

le théorème 9.40.

Remarque 9.44. Si, de plus, ℓ est non négative et
∣∣∣(f(t,x) − f(t,y)) · (x − y)

∣∣∣ ≤ ℓ(t)∥x − y∥2 ∀t ∈ I, ∀x,y ∈ Rn, (9.20)

alors le problème de Cauchy (9.13) admet une solution globale unique sur I. En effet, on
vérifie de la même manière que (9.20) est une condition plus forte que (9.18). Comme être
globalement Lipchitz par rapport au deuxième argument implique (9.20), ceci donne une
nouvelle preuve du Théorème 9.37.

9.5 EDO scalaires linéaires du second ordre
Soit I ⊂ R un intervalle ouvert, E ⊂ R2 un ouvert et f : I × E → R une fonction

continue. Une équation différentielle scalaire du second ordre est une équation du type

u′′(t) = f(t, u(t), u′(t)), t ∈ I,

dont l’inconnue est une fonction u : I → R de classe C2 telle que (u(t), u′(t)) ∈ E, ∀t ∈ I.
Comme on l’a vu dans l’introduction du chapitre, une telle équation peut toujours être
réécrite sous forme d’un système de deux équations différentielles ordinaires du premier
ordre en introduisant les nouvelles inconnues u1(t) = u(t), u2(t) = u′(t). On a alors

{
u′

1(t) = u2(t),
u′

2(t) = f(t, u1(t), u2(t)),
t ∈ I.
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Si on note u = (u1, u2) et f(t,y) = (y2, f(t, y1, y2)) : I×E → R2, alors le système précédent
peut s’écrire sous forme compacte

u′(t) = f(t,u(t)), t ∈ I

et peut être analysé du point de vu théorique utilisant les résultats de la section 9.4. Le
problème de Cauchy correspondant s’écrit pour un t0 ∈ I et u0 = (u0, v0) ∈ E :

{
u′(t) = f(t,u(t)), t ∈ I,

u(t0) = u0,
⇐⇒

{
u′′(t) = f(t, u(t), u′(t)), t ∈ I,

u(t0) = u0, u′(t0) = v0.

On voit donc que, pour une edo du second ordre, on a de façon naturelle deux conditions
initiales, une sur la solution u(t0) = u0 et une sur la dérivée première u′(t0) = v0.

Dans le reste de la section, on restreint notre étude aux équations différentielle scalaires
linéaires du second ordre, pour lesquelles la fonction f(t,y) est une fonction affine de
y. Soient a, b, g : I → R trois fonctions continues. Une équation différentielle linéaire du
second ordre est une équation de la forme

u′′(t) + a(t)u′(t) + b(t)u(t) = g(t), t ∈ I,

ou, sous forme de système de deux équations du premier ordre,

u′(t) = f(t,u(t)), t ∈ I, avec f(t,y) =
(

y2
g(t) − b(t)y1 − a(t)y2

)
.

Il est facile de montrer (exercice) que cette fonction f : I×R2 → R2 est toujours continue et
globalement lipschitzienne par rapport au deuxième argument (voir définition 9.36). Donc,
pour tout (t0, u0, v0) ∈ I × E, le problème de Cauchy avec condition initiale u(t0) = u0,
u′(t0) = v0 a toujours une solution unique globale.

Pour la construction de l’intégrale générale et de la solution du problème de Cauchy,
on procède comme dans la section 9.3 en analysant séparément le cas homogène (g = 0) et
le cas non-homogène (g ̸= 0).

9.5.1 Solution générale de l’équation homogène

Par les considérations précédentes, le problème de Cauchy associé à l’équation homogène
{
u′′(t) + a(t)u′(t) + b(t)u(t) = 0, t ∈ I,

u(t0) = u0, u′(t0) = v0,
(9.21)

admet une solution unique globale pour toute donnée initiale u0 = (u0, v0). En particulier,
si u0 = (0, 0), la solution (unique) est identiquement nulle.

Définition 9.45. On dit que deux solutions z1, z2 : I → R de l’équation homogène

u′′(t) + a(t)u′(t) + b(t)u(t) = 0, t ∈ I. (9.22)
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sont linéairement indépendantes si, pour tout choix des constantes α, β ∈ R, l’implication
suivante est vraie :

αz1(t) + βz2(t) = 0, ∀t ∈ I =⇒ α = β = 0.

Inversement, on dit que z1, z2 sont linéairement dépendantes s’il existe deux constantes
réelles α, β non simultanément nulles telles que αz1(t) + βz2(t) = 0, ∀t ∈ I. Dans ce cas,
on peut exprimer une de deux solutions en fonction de l’autre, i.e. z1(t) = −β

αz2(t) ou
bien z2(t) = −α

β z1(t).

Définition 9.46. Soit z1, z2 deux solutions de l’équation homogène (9.22). On appelle
wronskien de z1, z2, noté W [z1, z2] la fonction W [z1, z2] : I → R définie par

W [z1, z2](t) = det
(
z1(t) z2(t)
z′

1(t) z′
2(t)

)
= z1(t)z′

2(t) − z2(t)z′
1(t), t ∈ I.

Le théorème suivant montre que deux solutions z1, z2 de l’équation homogène sont
linéairement indépendantes si et seulement si leur wronskien est non nul pour tout t ∈ I.

Théorème 9.47. Deux solutions z1, z2 de l’équation homogène sont linéairement indé-
pendantes si et seulement si pour tout t ∈ I les deux vecteurs z1(t) = (z1(t), z′

1(t)) et
z2(t) = (z2(t), z′

2(t)) de R2 sont linéairement indépendants, ce qui équivaut à dire que

W [z1, z2](t) ̸= 0, ∀t ∈ I.

Démonstration.
« ⇒ » : Soient z1, z2 : I → R linéairement indépendants. On veut montrer que pour

tout t ∈ I les deux vecteurs z1(t), z2(t) ∈ R2 sont linéairement indépendants. Par l’absurde
supposons qu’il existe t0 ∈ I tel que z1(t0), z2(t0) sont linéairement dépendants, c’est-à-dire
∃α, β non simultanément nuls tels que αz1(t0) + βz2(t0) = 0, i.e.

αz1(t0) + βz2(t0) = 0, αz′
1(t0) + βz′

2(t0) = 0.

Mais alors, la fonction v(t) = αz1(t) + βz2(t) satisfait le problème de Cauchy
{
v′′(t) + a(t)v′(t) + b(t)v(t) = 0, t ∈ I,

v(t0) = 0, v′(t0) = 0,

dont on connaît l’unique solution globale : v(t) = 0, ∀t ∈ I. On obtient la contradiction
que αz1(t) + βz2(t) = 0 pour tout t ∈ I.

« ⇐ » : Soit z1(t), z2(t) linéairement indépendants pour tout t ∈ I. On veut montrer que
z1, z2 sont linéairement indépendants. Par l’absurde, si z1, z2 sont linéairement dépendants
alors ∃α, β non simultanément nuls tels que αz1(t)+βz2(t) = 0, ∀t ∈ I. Mais ceci implique
αz′

1(t) + βz′
2(t) = 0, ∀t ∈ I et donc αz1(t) + βz2(t) = 0, ce qui est une contradiction.

L’ensemble S = {z ∈ C2(I) : z′′ + az′ + bz = 0 sur I} est un espace vectoriel : si
z1, z2 ∈ S et α, β ∈ R, alors αz1 + βz2 ∈ S. Dans ce cadre, z1, z2 ∈ S sont linéairement
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indépendants s’il n’existe pas deux constantes réelles α, β non simultanément nulles telles
que αz1 + βz2 = 0 sur I, comme nous l’avons déjà mentionné. De plus, pour t0 ∈ I fixé,
l’application z 7→ (z(t0), z′(t0)) ∈ R2 pour z ∈ S est linéaire. Cette application est aussi
bijective car, pour chaque (u0, v0) ∈ R2, il existe une unique fonction z ∈ S telle que
z(t0) = u0 et z′(t0) = v0, comme nous l’avons vu. Il en résulte que S et R2 sont deux
espaces vectoriels isomorphes, ce qui donne une nouvelle preuve du théorème précédent. En
particulier ils ont la même dimension. Ainsi S est de dimension 2 et toute paire z1, z2 ∈ S
linéairement indépendante en est une base : S = {C1z1 + C2z2 : C1, C2 ∈ R}.

Ces considérations permettent de conclure que la solution générale de l’équation
homogène a la forme

u(t) = C1z1(t) + C2z2(t), t ∈ I, (9.23)
où z1, z2 sont deux solutions linéairement indépendantes de l’équation homogène et C1, C2 ∈
R deux constantes arbitraires. Si on souhaite résoudre le problème de Cauchy (9.21) il
faudra encore trouver les bonnes valeurs des constantes pour satisfaire la condition initiale
u(t0) = u0, u′(t0) = v0.

La méthode de variation des constantes, déjà présentée dans la section 9.3, permet, à
partir d’une solution de l’équation homogène, d’en construire une deuxième linéairement
indépendante. Étant donnée une solution non identiquement nulle z1 : I → R de l’équation
homogène, l’idée est d’en chercher une deuxième sous la forme z2(t) = C(t)z1(t), où
C : I → R est une fonction non constante de classe C2. Les calculs sont laissés comme
exercice.

9.5.2 Solution générale de l’équation non-homogène

Considérons maintenant l’équation non-homogène

u′′(t) + a(t)u′(t) + b(t)u(t) = g(t), t ∈ I.

En utilisant le principe de superposition de solutions (voir section 9.3) la solution
générale de l’équation non-homogène peut s’écrire comme

u(t) = w(t) + C1z1(t) + C2z2(t), t ∈ I,

où w est une solution particulière de l’équation non-homogène et C1z1(t) + C2z2(t) est la
solution générale de l’équation homogène, avec z1, z2 linéairement indépendantes.

De nouveau, on peut utiliser la méthode de variation des constantes pour construire
une solution particulière de l’équation non-homogène à partir des solutions de l’équation
homogène. Étant donné deux solutions z1, z2 linéairement indépendantes de l’équation
homogène, on peut toujours trouver une solution particulière de l’équation non-homogène
de la forme

w(t) = C1(t)z1(t) + C2(t)z2(t) =
2∑

i=1
Ci(t)zi(t)

où C1, C2 : I → R sont deux fonctions de classe C2 à déterminer. On a

w′ =
2∑

i=1
(C ′

izi + Ciz
′
i), w′′ =

2∑

i=1
(C ′′

i zi + 2C ′
iz

′
i + Ciz

′′
i ).
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Donc

w′′ + aw′ + bw =
2∑

i=1
(C ′′

i zi + 2C ′
iz

′
i +���Ciz

′′
i + aC ′

izi +���aCiz
′
i +���bCizi)

=
2∑

i=1
(C ′

iz
′
i + aC ′

izi + d

dt
(C ′

izi))

= C ′
1z

′
1 + C ′

2z
′
2 + a

( 2∑

i=1
C ′
izi

)
+ d

dt

( 2∑

i=1
C ′
izi

)
= g.

C’est une seule équation pour les deux fonctions inconnues C1 et C2. On peut donc en
principe imposer une relation supplémentaire entre C1 et C2. L’équation précédente se
simplifie beaucoup si on impose la condition ∑2

i=1C
′
izi = 0. On obtient alors le système

de deux équations différentielles
{
C ′

1z1 + C ′
2z2 = 0

C ′
1z

′
1 + C ′

2z
′
2 = g

qui peut être écrit sous forme matricielle comme
[
z1 z2
z′

1 z′
2

] [
C ′

1
C ′

2

]
=
[
0
g

]
ce qui implique

[
C ′

1
C ′

2

]
=
[
z1 z2
z′

1 z′
2

]−1 [0
g

]
= 1
W [z1, z2]

[
z′

2 −z2
−z′

1 z1

] [
0
g

]

et donc C ′
1 = − z2g

W [z1,z2] et C ′
2 = z1g

W [z1,z2] . Par intégration on obtient finalement





C1(t) =
∫ t

t0

−z2(s)g(s)
W [z1, z2](s)ds+ κ1,

C2(t) =
∫ t

t0

z1(s)g(s)
W [z1, z2](s)ds+ κ2,

avec κ1, κ2 ∈ R et t0 ∈ I fixés librement. Par conséquent, on peut choisir comme solution
particulière

w(t) =
∫ t

t0
K(t, s)g(s)ds, K(t, s) = z1(s)z2(t) − z1(t)z2(s)

W [z1, z2](s) . (9.24)

La fonction K : I × I → R a l’interprétation suivante : pour chaque s ∈ I fixé, la
fonction t 7→ K(t, s) := Ks(t) est solution du problème homogène associé :

K ′′
s (t) + a(t)K ′

s(t) + b(t)Ks(t) = 0, t ∈ I,

sous les conditions

Ks(s) = K(s, s) = 0, K ′
s(s) = ∂K

∂t
(t, s)|t=s = 1.
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9.5.3 EDO linéaires du second ordre à coefficients constants

On s’intéresse ici à des équations de la forme :

u′′(t) + au′(t) + bu(t) = g(t), t ∈ I,

où a, b ∈ R sont des coefficients constants (ne dépendent pas de t).

Équation homogène : u′′(t) + au′(t) + bu(t) = 0, t ∈ I.
On cherche des solutions exponentielles z(t) = eλt. Remplaçant dans l’équation on

obtient λ2eλt + aλeλt + beλt = 0 qui donne l’équation caractéristique

λ2 + aλ+ b = 0.

On distingue les trois cas correspondants au signe du discriminant ∆ := a2 − 4b de
l’équation caractéristique.

Cas ∆ > 0. On a deux solutions réelles distinctes :

λ1 = −a+
√
a2 − 4b

2 , λ2 = −a−
√
a2 − 4b

2 .

On vérifie facilement que z1(t) = eλ1t et z2(t) = eλ2t sont deux solutions linéairement
indépendantes. La solution générale de l’équation homogène est donc

u(t) = C1e
λ1t + C2e

λ2t

avec C1, C2 ∈ R constantes arbitraires.
Cas ∆ < 0. On a deux solutions complexes conjuguées :

λ1 = −a+ i
√

4b− a2

2 , λ2 = −a− i
√

4b− a2

2 ,

ce qui conduit à considérer les fonctions à valeurs complexes eλ1t et eλ2t, c’est-à-dire,
z̃1(t) = e− a

2 teiµt et z̃2(t) = e− a
2 te−iµt avec µ =

√
4b−a2

2 . Puisque l’on cherche des
solutions réelles, on pose

z1(t) = z̃1(t) + z̃2(t)
2 = e− a

2 t cos(µt)

z2(t) = z̃1(t) − z̃2(t)
2i = e− a

2 t sin(µt)

qui sont effectivement des solutions linéairement indépendantes. La solution générale
de l’équation homogène est donc

u(t) = e− a
2 t (C1 cos(µt) + C2 sin(µt))

avec C1, C2 ∈ R constantes arbitraires.
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Cas ∆ = 0. On a ici une seule solution réelle caractérisée par λ = −a
2 ce qui donne la

solution z1(t) = e− a
2 t de l’équation homogène. On cherche une deuxième solution sous

la forme z2(t) = C(t)z1(t). On trouve z2(t) = te− a
2 t (vérifiez-le comme exercice) qui

est linéairement indépendante de z1(t). La solution générale de l’équation homogène
est donc

u(t) = (C1 + C2t)e− a
2 t

avec C1, C2 ∈ R constantes arbitraires.

Équation non-homogène : u′′(t) + au′(t) + bu(t) = g(t), ∀t ∈ I.

Pour trouver une solution particulière de l’équation non-homogène, on peut toujours
utiliser la formule générale (9.24). Toutefois, si la fonction g a une forme particulière
(polynomiale, exponentielle, etc.) on peut souvent chercher la solution particulière dans
une famille appropriée de fonctions paramétrées. Voici quelques exemples.

g est un polynôme de degré n : g(t) = ∑n
j=0 ajt

j .
Si b ̸= 0, on cherche w sous la même forme : w(t) = ∑n

j=0 βjt
j .

Si b = 0 et a ̸= 0, on cherche w sous la forme : w(t) = t
∑n
j=0 βjt

j (remarquez que
dans ce cas la fonction t 7→ 1 est solution de l’équation homogène associée, mais pas
la fonction t 7→ t).
Si b = 0 et a = 0, on cherche w sous la forme : w(t) = t2

∑n
j=0 βjt

j (remarquez
que dans ce cas les fonctions t 7→ 1 et t 7→ t sont solutions de l’équation homogène
associée). En fait, dans ce cas, on peut résoudre l’équation u′′(t) = g(t) directement
par une double intégration.

g est un polynôme multiplié par des fonctions trigonométriques-exponentielles :

g(t) =
( n∑

j=0
ajt

j
)
eδt sin(ωt) +

( n∑

j=0
ãjt

j
)
eδt cos(ωt), ω ̸= 0, δ ∈ R.

Si la fonction t 7→ eδt cos(ωt) n’est pas solution du problème homogène associé (et
donc t 7→ eδt sin(ωt) non plus), on cherche w(t) sous la même forme :

w(t) =
( n∑

j=0
βjt

j
)
eδt sin(ωt) +

( n∑

j=0
β̃jt

j
)
eδt cos(ωt).

Si la fonction t 7→ eδt cos(ωt) est solution du problème homogène associé, on cherche
w(t) sous la forme

w(t) = t
( n∑

j=0
βjt

j
)
eδt sin(ωt) + t

( n∑

j=0
β̃jt

j
)
eδt cos(ωt).

Plus explicitement, la fonction t 7→ eδt cos(ωt) est solution du problème homogène
associé si et seulement si à la fois δ = −a/2, 4b− a2 > 0 et ω = ±

√
4b− a2 /2.
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g est un polynôme multiplié par une fonction exponentielle : g(t) =
(∑n

j=0 ajt
j
)
eδt.

Si δ = 0, la discussion qui suit redonne celle que l’on a déjà vu pour g un polynôme.
Si la fonction t 7→ eδt n’est pas solution du problème homogène associé, on cherche
w(t) sous la même forme :

w(t) =
( n∑

j=0
βjt

j
)
eδt.

On est dans ce cas exactement lorsque, à la fois, δ ̸= λ1 et δ ̸= λ2.
Si la fonction t 7→ eδt est solution du problème homogène associé, mais pas la fonction
t 7→ teδt, on cherche w(t) sous la forme

w(t) = t
( n∑

j=0
βjt

j
)
eδt.

On est dans ce cas exactement lorsque à la fois λ1 ̸= λ2 et δ ∈ {λ1, λ2}.
Si les fonction t 7→ eδt et t 7→ teδt sont solutions du problème homogène associé, on
cherche w(t) sous la forme

w(t) = t2
( n∑

j=0
βjt

j
)
eδt.

On est dans ce cas exactement lorsque λ1 = λ2 = δ.
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