
EPFL Lénaïc Chizat

Sections MX-EL-CGC 2 décembre 2024

Analyse I – Série 11
Echauffement. (Asymptotes)

Trouver les asymptotes verticales et horizontales de la fonction f : R∗ → R, f(x) = 1
x
.

Sol.: Une asymptote verticale ne peut exister qu’en un point où la fonction n’est pas définie, donc
ici potentiellement en x = 0. En effet, on a

lim
x→0+

f(x) = lim
x→0+

1
x

=∞ et lim
x→0−

f(x) = lim
x→0−

1
x

= −∞.

Donc f a une asymptote verticale en x = 0.

Une asymptote horizontale (si elle existe) est caractérisée par les limites de f à l’infini (positif ou
négatif). Ici on a

lim
x→∞

f(x) = lim
x→∞

1
x

= 0 et lim
x→−∞

f(x) = lim
x→−∞

1
x

= 0

si bien que f a une asymptote horizontale en y = 0. Le graphe de f est donné à la Fig. 1.
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Figure 1 –

Exercice 1. (Points stationnaires et extremums)

Trouver les extremums locaux de la fonction f ainsi que le maximum et le minimum dans l’intervalle
donné :

f(x) = x2 −
∣∣∣x+ 1

4

∣∣∣+ 1 sur [−1, 1]a) f(x) = (x− 1)2 − 2 |2− x| sur ]2, 3[b)

Sol.:

a) Avant de calculer ses dérivées, on récrit f en distinguant les deux cas. On a

f(x) =

x2 + x+ 5
4 , −1 ≤ x ≤ −1

4
x2 − x+ 3

4 , −
1
4 < x ≤ 1

, f ′(x) =

2x+ 1 , −1 < x < −1
4

2x− 1 , −1
4 < x < 1
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Pour x0 = −1
4 on a

f ′d(x0) = lim
x→x0+

f(x)− f(x0)
x− x0

= lim
x→− 1

4
+

x2 − x− 5
16

x+ 1
4

= lim
x→− 1

4
+

(
x− 5

4

) (
x+ 1

4

)
x+ 1

4
= −3

2

f ′g(x0) = lim
x→x0−

f(x)− f(x0)
x− x0

= lim
x→− 1

4
−

x2 + x+ 3
16

x+ 1
4

= lim
x→− 1

4
−

(
x+ 3

4

) (
x+ 1

4

)
x+ 1

4
= 1

2

et donc f n’est pas dérivable en ce point. De plus f ′′(x) = 2 pour tout x ∈
]
−1,−1

4

[
∪
]
−1

4 , 1
[
.

Les extremums locaux et absolus sont donc parmi les points suivants :
(a) Points stationnaires : f ′(x) = 0 ⇒ x1 = −1

2 ou x2 = 1
2 . Comme f ′′(x1) = f ′′(x2) > 0,

x1 et x2 sont des minimums locaux. On a f(x1) = 1 et f(x2) = 1
2 .

(b) Points où f ′ n’existe pas : Le seul point à examiner est x0 = −1
4 pour lequel on a f ′d(x0) =

−3
2 et f ′g(x0) = 1

2 (cf. ci-dessus). On déduit alors des signes de ces dérivées unilatérales
que x0 est un maximum local. On a f(x0) = 17

16 .
(c) Extrémités du domaine de f : Comme f est continue sur [−1, 1], on déduit des signes de

f ′ au voisinage des extrémités (négatif vers −1 et positif vers 1) que f a des maximums
locaux en a = −1 et b = 1. On a f(a) = 5

4 et f(b) = 3
4 .

(a), (b), (c) ⇒

maximum global en x = −1, f(−1) = 5
4

minimum global en x = 1
2 , f

(
1
2

)
= 1

2

(cf. Fig. 2)

b) Comme 2 − x < 0 pour tout x ∈ ]2, 3[ =: I, il ne faut pas distinguer deux cas pour f . On a en
effet

f(x) = (x− 1)2 + 2(2− x) = x2 − 4x+ 5 et f ′(x) = 2(x− 2) pour tout x ∈ I

Les extremums locaux et globaux se trouvent de nouveau parmi les points suivants :
(a) Points stationnaires : f ′(x) 6= 0 pour tout x ∈ I, donc aucun.
(b) Points où f ′ n’existe pas : f ′ existe sur tout I, donc aucun.
(c) Extrémités du domaine de f : Le domaine I est un intervalle ouvert et n’a donc pas

d’extrémités.
Ainsi la fonction f ne possède ni d’extremum local ni absolu sur I (cf. Fig. 3).
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Remarque de vocabulaire : extremums et extrema sont deux formes admises pour le pluriel de extre-
mum (la remarque s’applique à d’autres termes en -um).

Exercice 2. (Etude de fonctions)

En suivant point par point la méthode vue dans l’exemple du cours, étudier les fonctions suivantes et
esquisser leurs graphes (points stationnaires, extremums, convexité, points d’inflexion, asymptotes) :
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f(x) = x

x2 − 1a) f(x) = 3x2 − x
2x− 1b) f(x) = x2 − 2x− 1

x
e−

1
xc)

Sol.: Voir fiche de corrigé annexe sur le Moodle.

Exercice 3. (V/F : Etude de fonctions)

Soit f : R → R une fonction continue sur [a, b] ⊂ D(f), a < b, et dérivable sur ]a, b[ . Dire si les
affirmations suivantes sont vraies ou fausses. Justifier votre réponse.

V F
a) Si f est convexe sur [a, b], alors f ′ est croissante sur ]a, b[ . � �

b) Si f est deux fois dérivable sur ]a, b[ et admet un point d’inflexion en x0 ∈ ]a, b[ , alors f ′ admet
un point stationnaire en x0. � �

c) Si la tangente au point
(
c, f(c)

)
avec c ∈ ]a, b[ est horizontale, alors f admet un extremum en

c. � �

Sol.:

a) VRAI.
Soient x1, x2 ∈ ]a, b[ tels que x1 < x2. Comme f est dérivable sur ]a, b[ , on a

f ′(x1) = f ′d(x1) = lim
λ→0+

f
(
x1 + λ(x2 − x1)

)
− f(x1)

λ(x2 − x1)
= lim

λ→0+

f
(
λx2 + (1− λ)x1

)
− f(x1)

λ(x2 − x1)

≤ lim
λ→0+

λf(x2) + (1− λ)f(x1)− f(x1)
λ(x2 − x1)

= f(x2)− f(x1)
x2 − x1

,

où l’inégalité vient de la convexité de f et du fait que λ(x2 − x1) > 0. De même on a (noter
que x1 − x2 < 0)

f ′(x2) = f ′g(x2) = lim
λ→0+

f
(
x2 + λ(x1 − x2)

)
− f(x2)

λ(x1 − x2)
= lim

λ→0+

f
(
λx1 + (1− λ)x2

)
− f(x2)

λ(x1 − x2)

≥ lim
λ→0+

λf(x1) + (1− λ)f(x2)− f(x2)
λ(x1 − x2)

= f(x1)− f(x2)
x1 − x2

= f(x2)− f(x1)
x2 − x1

,

où le signe de l’inégalité est inversé parce que le dénominateur est négatif. Ainsi on a

f ′(x1) ≤
f(x2)− f(x1)

x2 − x1
≤ f ′(x2),

c.-à-d. f ′ est croissante.
Remarque : En cours, on a vu que si f est dérivable sur [a, b] et f ′ est croissante sur [a, b]
alors f est convexe sur [a, b]. Il s’agit, à quelques détails près, de la réciproque du résultat que
l’on vient de montrer. En fait, si f est dérivable sur un intervalle I, on a le résultat suivant :
f est convexe si et seulement si f ′ est croissante sur I.

b) VRAI.
Par le théorème sur les points d’inflexion, on sait que f ′′(x0) = 0. Donc si on pose g = f ′, on
a g′(x0) = 0 ce qui veut dire que g = f ′ admet un point stationnaire en x0.
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c) FAUX.
Prendre par exemple f : [−1, 1]→ R définie par f(x) = x3. Alors f a une tangente horizontale
en c = 0 car f ′(0) = 0 mais elle n’admet pas d’extremum en ce point car pour tout ε > 0 on
a f(−ε) = −ε3 < f(0) = 0 < ε3 = f(ε).

Exercice 4. (Développements limités)

Déterminer le développement limité d’ordre 3 de f autour de a = 0 et donner le reste R3(x).
f(x) = sin(3x)a) f(x) = Log(2 + x)b)

Sol.: Le développement limité d’ordre 3 autour du point a d’une fonction f est donné par la formule
de Taylor

f(x) = f(a) + f ′(a)
1! (x− a) + f ′′(a)

2! (x− a)2 + f ′′′(a)
3! (x− a)3 +R3(x) ,

où R3(x) = f (4)(u)
4! (x− a)4 pour un certain u entre a et x, ce qui veut dire que u ∈ ]a, x[ si x > a

et que u ∈ ]x, a[ si x < a, cf. cours.
a) On calcule les dérivées de f :

f ′(x) = 3 cos(3x), f ′′(x) = −9 sin(3x), f ′′′(x) = −27 cos(3x), f (4)(x) = 81 sin(3x)

f(0) = 0, f ′(0) = 3, f ′′(0) = 0, f ′′′(0) = −27.

Donc le développement limité de f d’ordre 3 autour de 0 est

f(x) = sin(3x) = 0 + 3x+ 0 · x2 − 27
3! x

3 +R3(x) = 3x− 27
3! x

3 +R3(x) = 3x− 9
2x

3 +R3(x) ,

avec R3(x) = 81 sin(3u)
4! x4 = 27 sin(3u)

8 x4 pour un certain u entre 0 et x.

b) On calcule

f ′(x) = 1
2 + x

, f ′′(x) = − 1
(2 + x)2 , f ′′′(x) = 2

(2 + x)3 , f (4)(x) = − 6
(2 + x)4

f(0) = Log(2), f ′(0) = 1
2 , f ′′(0) = −1

4 , f ′′′(0) = 1
4 .

Ainsi, le développement limité de f d’ordre 3 autour de 0 est

f(x) = Log(2 + x) = Log(2) + 1
2x−

1
8x

2 + 1
24x

3 +R3(x)

avec R3(x) = − 6
4!(2 + u)4 x

4 = − 1
4(2 + u)4 x

4 pour un certain u entre 0 et x.

Exercice 5. (Composition de développements limités)

Trouver le développement limité d’ordre n autour de a = 0 de
f(x) = Log(cos(x)), n = 4a) f(x) = exp(sin(x)), n = 4b)

f(x) =
√

1 + sin(x), n = 3c)

Sol.:
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a) On a vu au cours que f(u) = Log(1 + u) admet le développement limité suivant autour de
u = 0 :

Log(1 + u) = u− u2

2 + u2ε(u) .

Ici 1 + u = cos(x), donc u = cos(x)− 1 = −x
2

2! + x4

4! + x4ε(x) . On obtient donc

Log(cos(x)) =
(
−x

2

2! + x4

4! + x4ε(x)
)
− 1

2

(
−x

2

2! + x4

4! + x4ε(x)
)2

︸ ︷︷ ︸
= x4

4 +x4ε(x)

+x4ε(x)

= −1
2x

2 − 1
12x

4 + x4ε(x) .

Notez bien que comme on demande le développement limité d’ordre 4, toutes les puissances
supérieures vont dans le reste x4ε(x) et ne doivent donc pas être calculées explicitement.

b) On utilise les développements limités d’ordre 3 autour de a = 0 de la fonction exponentielle et
du sinus qui sont valables pour tout x ∈ R :

ex = 1 + x+ x2

2! + x3

3! + x4

4! + x4ε(x) et sin(x) = x− x3

3! + x4ε(x).

Ainsi

exp(sin(x)) = 1 +
(
x− x3

6 + x4ε(x)
)

+ 1
2

(
x− x3

6 + x4ε(x)
)2

+ 1
6

(
x− x3

6 + x4ε(x)
)3

+ 1
24

(
x− x3

6 + x4ε(x)
)4

+ x4ε(x)

= 1 +
(
x− x3

6

)
+ 1

2

(
x2 − x4

3

)
+ 1

6x
3 + 1

24x
4 + x4ε(x)

= 1 + x+ x2

2 −
x4

8 + x4ε(x) .

c) Les développements limités d’ordre 3 autour de a = 0 de sin(x) et (1 + y)1/2 sont

sin(x) = x− x3

6 + x3ε(x) et
√

1 + y = 1 + y

2 −
y2

8 + y3

16 + y3ε(y) .

En posant y = x− x3

6 on a donc

√
1 + sin(x) = 1 + 1

2

(
x− x3

6 + x3ε(x)
)
− 1

8

(
x− x3

6 + x3ε(x)
)2

+ 1
16

(
x− x3

6 + x3ε(x)
)3

+ x3ε(x)

= 1 + 1
2

(
x− x3

6

)
− 1

8x
2 + 1

16x
3 + x3ε(x)

= 1 + x

2 −
x2

8 −
x3

48 + x3ε(x) .
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Exercice 6. (Limites)

En utilisant des développements limités d’ordre convenable autour de 0, calculer les limites sui-
vantes :

lim
x→0

x− x3

6 − sin(x)
x5a) lim

x→0

ex + sin(x)− cos(x)− 2x
x− Log(1 + x)b)

lim
x→0

x sin(sin(x))− sin(x)2

x6c)

Sol.:

Il faut choisir l’ordre des développements limités tel qu’on puisse éliminer le dénominateur. Comme
on s’intéresse seulement à des limites, il suffit d’exprimer le reste avec la notation (x− a)nε(x), où
lim
x→a

ε(x) = 0 .

1. Comme
sin(x) = x− x3

6 + x5

120 + x5ε(x) ,
on a

lim
x→0

1
x5

(
x− x3

6 − sin(x)
)

= lim
x→0

(
− 1

120 + ε(x)
)

= − 1
120 ,

puisque ε(x)→ 0 quand x→ 0.
2. Comme

ex + sin(x)− cos(x)− 2x = 1 + x+ x2

2 + x− 1 + x2

2 − 2x+ x2ε(x) = x2 + x2ε(x)

et
x− Log(1 + x) = x− x+ x2

2 + x2ε(x) = x2

2 + x2ε(x),
on a

lim
x→0

ex + sin(x)− cos(x)− 2x
x− Log(1 + x) = lim

x→0

x2 + x2ε(x)
x2

2 + x2ε(x)
= lim

x→0

1 + ε(x)
1
2 + ε(x) = 2.

3. Pour le développement limité d’ordre 6 du numérateur, il faut obtenir le développement limité
d’ordre 5 de sin(sin(x)) et celui d’ordre 6 de sin(x)2.

Comme sin(x) = x− x3

3! + x5

5! + x5ε(x), il suit que

sin(sin(x)) = sin(x)− sin(x)3

3! + sin(x)5

5! + sin(x)5ε
(

sin(x)
)

︸ ︷︷ ︸
=x5ε(x)

, (1)

où le remplacement de sin(x)5ε
(

sin(x)
)
par x5ε(x) s’explique comme suit : Puisque sin(0) = 0

et lim
x→0

ε(x) = 0, on a lim
x→0

ε
(

sin(x)
)

= 0 et donc ε
(

sin(x)
)
se comporte comme ε(x). Ensuite,

sin(x)
x

est borné autour de 0 si bien que sin(x)5ε(x) = sin(x)5

x5 x5ε(x) se comporte comme x5ε(x).
Pour les puissances de sin(x) on a

sin(x)2 =
(
x− x3

6 + x5

120 + x6ε(x)
)2

= x2 − x4

3 + 2x6

45 + x6ε(x),

sin(x)3 =
(
x2 − x4

3 + x5ε(x)
)(

x− x3

6 + x5

120 + x5ε(x)
)

= x3 − x5

2 + x5ε(x),

sin(x)5 =
(
x2 − x4

3 + x5ε(x)
)(

x3 − x5

2 + x5ε(x)
)

= x5 + x5ε(x),
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où on a calculé le développement limité d’ordre 6 de sin(x)2 juste à cause du deuxième terme du
numérateur de la limite demandée. Pour les autres puissances le développement limité d’ordre
5 suffit.
Ainsi on obtient

sin(sin(x)) = x− x3

6 + x5

120 −
1
6

(
x3 − x5

2

)
+ x5

120 + x5ε(x)

= x− x3

3 + x5

10 + x5ε(x)

et finalement

lim
x→0

x sin(sin(x))− sin(x)2

x6 = lim
x→0

1
x6

(
x2 − x4

3 + x6

10 − x
2 + x4

3 −
2x6

45 + x6ε(x)
)

= lim
x→0

( 1
18 + x6ε(x)

)
= 1

18 .

Remarque : On peut aussi directement emboiter les développements limités du sinus sans passer
par l’équation (1). On aurait alors

sin(sin(x)) =
(
x− x3

6 + x5

120 + x5ε(x)
)
− 1

6

(
x− x3

6 + x5

120 + x5ε(x)
)3

+ 1
120

(
x− x3

6 + x5

120 + x5ε(x)
)5

+ x5ε(x)

=
(
x− x3

6 + x5

120 + x5ε(x)
)
− 1

6

(
x− x3

6 + x3ε(x)
)3

+ 1
120

(
x+ xε(x)

)5
+ x5ε(x)

=
(
x− x3

6 + x5

120

)
− 1

6

(
x3 − 3x5

6

)
+ 1

120x
5 + x5ε(x)

= x− x3

3 + x5

10 + x5ε(x).

Exercice 7. (Développement limité en a 6= 0)

Calculer le développement limité d’ordre 4 autour de a = π
3 de la fonction

f(x) = 1
1 + cos(x) .

Aide pour commencer : Introduire la variable y := x− π/3, puis utiliser de la trigonométrie et des
DL connus pour calculer le DL de cos(x)

Sol.: Remarque préliminaire : L’idée n’est pas de dériver la fonction donnée (si vous le faites vous
verrez pourquoi. . .) mais de se baser sur des développements limités (DL) autour de 0 qui sont bien
connus.

Pour trouver le DL de cos(x) autour de a = π
3 , on introduit la variable auxiliaire y := x− π

3 . Ainsi
on a

cos(x) = cos
(
y + π

3

)
= cos(y) cos

(
π

3

)
− sin(y) sin

(
π

3

)
= 1

2 cos(y)−
√

3
2 sin(y) .
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Comme x = π
3 ⇔ y = 0 , on peut utiliser les DL de cos(y) et sin(y) autour de y = 0 pour obtenir

cos(x) = 1
2

(
1− y2

2 + y4

24 + y4ε(y)
)
−
√

3
2

(
y − y3

6 + y4ε(y)
)

= 1
2 −
√

3
2 y − 1

4 y
2 +
√

3
12 y3 + 1

48 y
4 + y4ε(y) . (2)

On pose u = cos(x). Il faut alors trouver le DL de (1 + u)−1 autour de u = cos
(
π
3

)
= 1

2 . En
introduisant v := u− 1

2 , on peut récrire

1
1 + u

= 1
1 + v + 1

2
= 1

3
2 + v

= 2
3 ·

1
1 + 2

3 v
,

Pour le dernier terme, on utilise le DL 1
1+x = 1− x+ x2 − x3 + x4 + x4ε(x) autour de x = 0 :

1
1 + u

= 2
3

(
1−

(
2
3 v
)

+
(

2
3 v
)2
−
(

2
3 v
)3

+
(

2
3 v
)4

+ v4ε(v)
)
. (3)

De (2) on déduit

2
3 v = 2

3

(
u− 1

2

)
= 2

3

(
cos(x)− 1

2

)
= 2

3

(
−
√

3
2 y − 1

4 y
2 +
√

3
12 y3 + 1

48 y
4 + y4ε(y)

)

= −
√

3
3 y − 1

6 y
2 +
√

3
18 y3 + 1

72 y
4 + y4ε(y)

qu’on met ensuite dans (3) pour obtenir

1
1 + cos(x) = 2

3

[
1−

(
−
√

3
3 y − 1

6 y
2 +
√

3
18 y3 + 1

72 y
4 + y4ε(y)

)

+
(

1
3 y

2 + 1
36 y

4 +
√

3
9 y3 − 1

9 y
4 + y4ε(y)

)

−
(
−
√

3
9 y3 − 1

6 y
4 + y4ε(y)

)
+
(1

9 y
4 + y4ε(y)

)
+ y4ε(y)

]

et donc
1

1 + cos(x) = 2
3

[
1 +
√

3
3 y +

(1
6 + 1

3

)
y2 +

(
−
√

3
18 +

√
3

9 +
√

3
9

)
y3

−
( 1

72 −
1
36 + 1

9 −
1
6 −

1
9

)
y4 + y4ε(y)

]
= 2

3

[
1 +
√

3
3 y + 1

2 y
2 +
√

3
6 y3 + 13

72 y
4 + y4ε(y)

]

= 2
3 + 2

√
3

9 y + 1
3 y

2 +
√

3
9 y3 + 13

108 y
4 + y4ε(y) .

En remplaçant finalement y = x− π
3 on obtient

1
1 + cos(x) = 2

3 + 2
√

3
9

(
x− π

3

)
+ 1

3

(
x− π

3

)2
+
√

3
9

(
x− π

3

)3
+ 13

108

(
x− π

3

)4
+
(
x− π

3

)4
ε(x) .

Exercice 8. (V/F : Limites de quotients)

Soient f, g : R→ R des fonctions dérivables sur R avec g′(x) 6= 0 pour tout x ∈ R.
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a) Si lim
x→∞

f(x) = lim
x→∞

g(x) =∞, alors lim
x→∞

f(x)
g(x) = lim

x→∞
f ′(x)
g′(x) .

b) Si lim
x→∞

f ′(x)
g′(x) n’existe pas, alors lim

x→∞
f(x)
g(x) n’existe pas.

Sol.:
a) FAUX.

Prendre par exemple f(x) = x+sin(x) et g(x) = x. Dans ce cas on a lim
x→∞

f(x)
g(x) = lim

x→∞

(
1 + sin(x)

x

)
=

1 mais f ′(x)
g′(x) = 1 + cos(x) n’admet pas de limite à l’infini (et donc la dernière hypothèse de

Bernoulli-l’Hospital n’est pas satisfaite).
b) FAUX.

Prendre les fonctions de la question précédente.
Remarque : Dans ce cas particulier (puisque lim

x→∞
f(x) = lim

x→∞
g(x) = ∞), l’affirmation est

en quelque sorte une réciproque de Bernoulli-l’Hospital qui est, comme en cours, en général
fausse.

Exercice 9. (QCM : Prolongement par continuité)

Pour x ∈ R, on considère la fonction

f(x) =


sin(cos(x)−1)−cos(sin(x))+1

x4 pour x 6= 0,
c pour x = 0.

Pour quelle valeur de c ∈ R, la fonction f est-elle continue en x = 0?

� 0 � − 1
6

� 1
2 � 1

4

Sol. :
Vu que sin(x) = x− 1

3!x
3 + x3ε(x) et cos(x) = 1− 1

2!x
2 + 1

4!x
4 + x4ε(x), on a

sin(cos(x)− 1) = sin
(
−1

2x
2 + 1

24x
4 + x4ε(x)

)
= −1

2x
2 + 1

24x
4 + x4ε(x),

1− cos(sin(x)) = 1
2

(
x− 1

3!x
3
)2
− 1

4!x
4 + x4ε(x) = 1

2x
2 − 1

6x
4 − 1

24x
4 + x4ε(x).

On obtient
lim
x→0

(sin(cos(x)− 1)) + 1− cos(sin(x))
x4 = lim

x→0

(
−1

6 + ε(x)
)

= −1
6

et donc c = −1/6.

Exercice 10. (QCM : Calcul d’une limite)

La limite
lim
x→0

(
e

2
x2
(
cos

(
e−

1
x2
)
− 1

))
est égale à

� +∞ � − 1
2

� 0 � e2
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Sol. :
On a cos(x) = 1− 1

2x
2 + x2ε(x) et donc

e
2

x2
(
cos(e−

1
x2 )− 1

)
= e

2
x2

(
−1

2(e−
1

x2 )2 + (e−
1

x2 )2ε(e−
1

x2 )
)

= −1
2 + xpε(x)

avec p > 0 arbitraire car limx→0
1
xp e
−1/x2 = 0 (voir les “croissances comparées” vues en cours) et

donc
lim
x→0

e
2

x2
(
cos(e−

1
x2 )− 1

)
= −1

2 .
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