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Analysis 1 - Key to open questions from previous mock
exams

1. See Fall 2018

Solution:

(a) We prove the claim by induction. First, we prove by induction that xn ≥ 1 for every
n. The base case n = 0 is given. Now, we use the strong form of induction. Fix
n ≥ 0, and assume that xk ≥ 1 for every 0 ≤ k ≤ n. Then, if n+1 = 1 (i.e., n = 0),
we know that xn ≥ 1. So, assume that we have n ≥ 1 (so that n− 1 makes sense in
N). Then, we have

xn+1 = xn + xn−1 ≥ 1 + 1 = 2 ≥ 1.

So, we settled the inductive step

Now, we turn to proving the main claim. It is given for n = 0 and n = 1. So, we
set an inductive argument starting from n = 2. For the base case, we have

x2 = x1 + x0 = 1 + 1 = 2 ≥ 2,

so the base case is settled. Now, fix n ≥ 2, and assume that xn ≥ n. Then, we have

xn+1 = xn + xn−1 ≥ n+ xn−1 ≥ n+ 1,

where we use the inductive hypothesis in the first inequality, and we use that xk ≥ 1
for every k ≥ 0 in the second inequality. So, the claim is settled.

Note: if one wants to avoid strong induction to prove that xk ≥ 1 for every k ≥ 0,
we can use a proof by contradiction as follows.

Assume that it is not true that xn ≥ 1 for every n ∈ N. Then, the set S = {n ∈
N|xn < 1} is not empty. Thus, as S ⊆ N, S has a minimum. Let N be its minimum.
We know that N ̸= 0 and N ̸= 1, as x0 = x1 = 1. So, we have N ≥ 2, and by the
recursive formula, we may write

1 > xN = xN−1 + xN−2 ≥ 1 + 1 = 2,

which is absurd, as 1 > 2 is false. Here, we used the fact that N ∈ S to argue that
1 > xN . Then, we used that N is the minimum of S to argue that xN−1 and xN−2

are both ≥ 1.

(b) By part (a), for every n, we have
xn ≥ n.

Then, for n ≥ 1, we have

xn
√
xn ≥ xn

√
n ≥ xn

√
1 = 1,

where we used that xn ≥ n ≥ 1 and the fact that xn
√
x is an increasing function in

x. Since xn ≥ n for every n, we have lim
n→∞

xn = +∞. Furthermore, (xn) is strictly

increasing for n ≥ 2. Then, as we know from class that lim
k→∞

k
√
k = 1, by a change

of variable, we know that lim
n→∞

xn
√
xn = 1. Since both sqrt[xn]xn and xn

√
1 converge

to 1, we can conclude that xn
√
n converges to 1 by the squeeze theorem.



2. See Fall 2019

Solution: To make sure that the recursion defines a sequence, we need to make sure that
we can take the square root of each step. So, to start, we show that xn ≥ 1 for every n, so
that then 3

2xn− 1
2 ≥ 1, and we can take the root defining xn+1. We proceed by induction.

The base case n = 0 is given. So now, fix n, and assume that xn ≥ 1. Then, we have

xn+1 =

√
3

2
xn − 1

2
≥

√
1 = 1.

(a) We proceed by induction, and our base case n = 0 is given by assumption. Thus,
we proceed with the inductive step. Fix n ≥ 0, and assume that xn ≥ 1. Then, we
have

xn+1 =

√
3

2
xn − 1

2
≥

√
3

2
− 1

2
=

√
1 = 1.

This settles the inductive step.

(b) Now, we proceed by induction. The base case corresponds to n = 1, i.e., we have to
show x1 ≤ x0. So, we have

x1 =

√
3

2
2− 1

2
=

√
5

2
<

√
8

2
= 2 = x0.

Now, fix n ≥ 1, and assume that xn ≤ xn−1. Then, we have

xn+1 =

√
3

2
xn − 1

2
≤

√
3

2
xn−1 −

1

2
= xn,

where we used that xn ≤ xn−1 and that the function
√
x is increasing in x.

(c) By part (b), (xn) is a monotonic sequence. By the preamble, we know that (xn) is
bounded below by 1. Then, a sequence that is decereasing and bounded below is
bounded. Then, we can conclude, as bounded monotonic sequences are convergent.

Note 1: if we do not observe that xn ≥ 1 for all n, we anyway know that xn ≥ 0,
as it is a square root (on the other hand, we needed to show xn ≥ 1 to show that
the recursion is infinite).

Note 2: we can actually compute the limit. The recursion gives us x =
√

3
2x− 1

2 .

Then, we have x2 = 3
2x− 1

2 . This equation has solutions 1 and 1
2 . Since we showed

that xn ≥ 1 for all n, the limit has to be 1.

Page 2


