

Duration : 67 minutes

Analysis I

Midterm test

Fall 2016

SCIPER: 12345678

Do not turn the page before the start of the exam. This document is double-sided, has 4 pages, the last ones possibly blank. Do not unstaple.

- Place your student card on your table.
- **No other paper materials** are allowed to be used during the exam.
- Using a **calculator** or any electronic device is not permitted during the exam.
- For the **multiple choice** questions, we give
 - +3 points if your answer is correct,
 - 0 points if you give no answer or more than one,
 - 1 points if your answer is incorrect.
- For the **true/false** questions, we give
 - +1 points if your answer is correct,
 - 0 points if you give no answer or more than one,
 - 1 points if your answer is incorrect.
- Use a **black or dark blue ballpen** and clearly erase with **correction fluid** if necessary.
- If a question is wrong, the teacher may decide to nullify it.
- Observe these guidelines when **recording your answers**:

 oui | ja | sì | yes

 non | nein | non | no



First part: multiple choice questions

For each question, cross the box corresponding to the correct answer. Each question has **exactly one** correct answer.

Question 1 : Let $\{x_n\}$ be the bounded sequence defined by $x_n = \frac{5 + 3^{n+1}}{1 + (-3)^n}$.

Then

- $\liminf_{n \rightarrow +\infty} x_n = -7$
- $\limsup_{n \rightarrow +\infty} x_n = 4$
- the sequence (x_n) converges
- $\liminf_{n \rightarrow +\infty} x_n = -3$

Question 2 : The value of the limit $\lim_{n \rightarrow +\infty} \left(1 - \frac{2}{n} + \frac{1}{n^2}\right)^n$ is

- e
- 1
- e^{-2}
- 0

Question 3 : Let $E \subset \mathbb{R}$ be the subset defined by $E = \left\{ \left(1 + \frac{1}{n}\right)^{-1} : n \in \mathbb{N} \setminus \{0\} \right\}$.

Then

- $\text{Sup } E = 1$ and $\text{Inf } E = \frac{1}{2}$
- $\text{Sup } E \notin E$ and $\text{Inf } E \notin E$
- $\text{Sup } E = 1$ and $\text{Inf } E = 0$
- $\text{Sup } E = 2$ and $\text{Inf } E = \frac{1}{2}$

Question 4 : Let $n \in \mathbb{N} \setminus \{0\}$. Define the sum $S_n = \sum_{k=1}^{2n+1} (-1)^k k$.

Then we have

- $S_n = n$
- $S_n = -n - 1$
- $S_n = -1$
- $S_n = -n$

Question 5 : Let $d \in \mathbb{N} \setminus \{0\}$ and consider the series $\sum_{n=0}^{+\infty} \frac{(n!)^d}{(d \cdot n)!}$.

- The series converges only for $d = 2$
- The series converges for all d
- The series diverges for all $d \leq 5$
- The series converges for all $d \geq 2$

Question 6 : Let the function $f: [-\frac{1}{6}, \frac{1}{6}] \setminus \{0\} \rightarrow \mathbb{R}$ be defined by $f(x) = \frac{\sqrt{1+6x}-1}{\sin(2x)}$.

If it exists, let $g: [-\frac{1}{6}, \frac{1}{6}] \rightarrow \mathbb{R}$ be the extension of f by continuity at 0. Then

- f does not admit an extension by continuity at 0
- g exists and $g(0) = 1$
- g exists and $g(0) = \frac{3}{2}$
- g exists and $g(0) = \frac{1}{2}$

Question 7 : For all $x \in \mathbb{R}$ and all $y \in \mathbb{R}$ such that $x + iy \neq i$, the complex number $z = x + iy$ satisfies

- $\operatorname{Re}\left(\frac{z^2}{i-z}\right) = \frac{-2xy(1-y) + x(x^2 - y^2)}{x^2 + (1-y)^2}$
- $\operatorname{Re}\left(\frac{z^2}{i-z}\right) = \frac{-2xy(1+y) - x(x^2 - y^2)}{x^2 + (1+y)^2}$
- $\operatorname{Re}\left(\frac{z^2}{i-z}\right) = \frac{2xy(1-y) - x(x^2 - y^2)}{x^2 + (1-y)^2}$
- $\operatorname{Re}\left(\frac{z^2}{i-z}\right) = \frac{2xy(1+y) + x(x^2 - y^2)}{x^2 + (1+y)^2}$

Question 8 : The series $\sum_{n=0}^{+\infty} \frac{2^n}{3^n + n}$

- diverges and the series $\sum_{n=0}^{+\infty} (-1)^n \frac{2^n}{3^n + n}$ converges
- converges and $\sum_{n=0}^{+\infty} \frac{2^n}{3^n + n} > 6$
- converges and $\sum_{n=0}^{+\infty} \frac{2^n}{3^n + n} < 3$
- diverges and the series $\sum_{n=0}^{+\infty} (-1)^n \frac{2^n}{3^n + n}$ diverges

Second part, true/false questions

For each question, cross the box (without erasing) TRUE if the statement is **always true** and the box FALSE if it is **not always true** (i.e., it is sometimes false).

Question 9 : Let $x_0 \in \mathbb{R}$ and let (x_n) be the sequence defined recursively by $x_{n+1} = \frac{1}{4}x_n + 1$ for $n \in \mathbb{N}$. Then, for all choices of x_0 , the sequence (x_n) converges.

TRUE FALSE

Question 10 : Let (a_n) be a sequence of real numbers $a_n \geq 0$ for all $n \in \mathbb{N}$. If the series $\sum_{n=0}^{+\infty} a_n$ converges, then the series $\sum_{n=0}^{+\infty} a_n^2$ converges.

TRUE FALSE

Question 11 : Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be a strictly increasing function and $g : \mathbb{R} \rightarrow \mathbb{R}$ be a strictly decreasing function. Then the composition $f \circ g : \mathbb{R} \rightarrow \mathbb{R}$ is strictly decreasing.

TRUE FALSE

Question 12 : Let $f : [0, 1] \rightarrow \mathbb{R}$ be a continuous function. Then the image of f is an open interval.

TRUE FALSE

Question 13 : Let (a_n) and (b_n) be two sequences of positive real numbers, such that $0 < a_n \leq b_n$ for all $n \in \mathbb{N}$. If the sequence (b_n) converges, then the sequence (a_n) converges.

TRUE FALSE

Question 14 : The function $f : \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x) = x + e^x$ is bijective.

TRUE FALSE