
MATH 101 (en)– Analysis I (English)

Notes for the course given in Fall 2021

Teacher:Roberto Svaldi
Head Assistant: Stefano Filipazzi

Notes written by Zsolt Patakfalvi & Roberto Svaldi

Sunday 31st October, 2021

This work is licensed under a Creative Commons “Attribution-
NonCommercial-NoDerivatives 4.0 International” license.

1

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en


CONTENTS

1 Proofs 3

2 Basic notions 8
2.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Number sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Half lines, intervals, balls . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Extended real numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Basic definitions, properties, and results. . . . . . . . . . . . . . . . . . . 11
2.3.2 Archimedean property of R . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.3 An alternative definition for infimum/supremum . . . . . . . . . . . . . 18
2.3.4 Infimum and supremum for subsets of Z . . . . . . . . . . . . . . . . . . 20

2.4 Rational numbers vs real numbers . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.1

√
3 is a real number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.2 Integral part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.3 Rational numbers are dense in R . . . . . . . . . . . . . . . . . . . . . . 23
2.4.4 Irrational numbers are dense in R . . . . . . . . . . . . . . . . . . . . . 25

2.5 Absolute value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.1 Properties of the absolute value . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.2 Triangular inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Complex numbers 28
3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Operations between complex numbers . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Polar form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 Euler formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Sequences 36
4.1 Recursive sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Bernoulli inequality and (non-)boundedness of geometric sequences . . . . . . . 41
4.4 Limit of a sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4.1 Limits and algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5 Squeeze theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5.1 Limits of recursive sequences . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5.2 Unbounded sets and infinite limits . . . . . . . . . . . . . . . . . . . . . 55

4.6 More convergence criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.7 Monotone sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.8 Subsequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.9 Cauchy convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Series 65

2



1 PROOFS

The means to explore analysis from a mathematical viewpoint within this course will be
mathematical proofs. Part of the goal of the course will be for you to learn how to prove
mathematical statements via mathematical proofs.

There are two main types of proof that we will encounter:

◦ Constructive proof: an argument in which, starting from certain hypotheses/assumptions,
one tries to explicitly construct a mathematical object or to explicitly show that a certain
mathematical property hold for a mathematical object;

◦ Proof by contradiction: an argument in which we assume that the conclusion that we
are trying to reach does not hold and we show that such assumption, together with our
starting hypotheses leads to a contradiction.

You have probably already encountered many constructive proofs; on the other hand, the
reader may be encountering proofs by contradiction for the first time. So, let us start by giving
a classical example of proof by contradiction.

Before we explain our first example, let us recall that the set of rational numbers is the set
of numbers of the form a

b , with a, b integers, b 6= 0, where the following identification between
different fractions holds: for any non-zero integer c,

a

b
=
a · c
b · c

.

We shall start by showing a classical argument by contradiction. For the time being we shall
assume that we know how to construct the real numbers, and that we know that

√
3, that

is, the positive solution to the equation X2 − 3 = 0, is a real number. For a more detailed
discussion about the real numbers, we refer the reader to Section 2.

Proposition 1.1. The real number
√

3 is not a rational number.

We are going to use a proof by contradiction; that is, we are going to assume that
√

3 is
rational and we are going to derive, by means of logical implications, a contradiction to some
other fact that we already know or to some other fact that is implied by the assumed rationality
of
√

3.
Let us recall here that a natural number p is prime if and only if the only natural numbers

that divide p are 1 and p itself.

Exercise 1.2. Prove that the following two properties for a natural number p are equivalent:

◦ p is prime;

◦ if a, b are natural numbers and p divides ab, then either p divides a or p divides b.

Proof of Proposition 1.1. Assume that
√

3 is rational. Thus, we may write

√
3 =

a

b
(1.2.a)

for some integers a and b 6= 0. As
√

3 > 0, a and b should have the same sign. If they are
both negative, by multiplying both by −1 we may assume that they are positive. Hence, we
will assume that a, b are both positive integers.
Furthermore, by dividing both a, b by their greatest commond divisor gcd(a, b)1, we may assume

1Let us recall here the Fundamental Theorem of Arithmetic: any natural number n can be written uniquely
as a product of powers of the prime numbers: namely, n = pk11 · p

k2
2 · · · · · pknn , where p1, . . . , pk are distinct prime

numbers and k1, . . . , kn are natural numbers > 0. For example, 36 = 4 · 9 = 22 · 32. In view of this, given two
natural numbers a, b, then gcd(a, b) is defined by writing it as a product gcd(a, b) = qj11 · q

j2
2 · . . . qjnn where the

qi are primes that divide both a and b and ji is the maximal natural number such that qj1i divides both a and b.

3
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that a and b are relatively prime, that is, they do not share any prime factors. Multiplying
both sides of (1.2.a) by b, then, since b 6= 0,

b
√

3 = a. (1.2.b)

Squaring both sides of (1.2.b) yields

b2 · 3 = a2. (1.2.c)

Hence, as 3 divides the left hand side of (1.2.c), 3 must divide the right hand side, too. Thus,

a = 3r. (1.2.d)

Substituting the relation (1.2.d) into equation (1.2.c), we obtain that

b2 · 3 = (3r)2 = 9r2

Hence, b2 = 3r2, which implies that 3|(b2). We write x|y, with x, y integers to mean that x
divides y. Again, as 3 is prime, then, since 3|b2,

3|b, (1.2.e)

But, (1.2.d)-(1.2.e) together contradict the relatively prime assumption on a and b. Thus, we
obtained a contradiction with our original assumption, so that

√
3 is not a rational number.

Remark 1.3. The proof of Proposition 1.1 is a nice example of a proof by contradiction. On
the other hand, it does not tell us much about the nature of

√
3.

What is
√

3? Is it a real number? How can we define real numbers? What notable properties
do those have? We will get back to these questions in Section 2.2-2.4.

We can generalize the above proof to any prime number p ∈ N.

Exercise 1.4. Imitate the proof of Proposition 1.1, to show that for every prime number p ∈ N,√
p is not rational.

In particular, Exercise 1.4 implies that also
√

2 6∈ Q.
As easy as it may seem at a first glance to find and write mathematical proofs, one ought

to be extremely careful: it is indeed very easy to write wrong proofs! This is often do to that
the fact that one may assume something wrong in the course of a proof: if the premise of an
implication is false, then anything can follow from it.

Example 1.5. Here is an example of an (incorrect) proof showing that 1 is the largest natural
number, a fact that is clearly false, since 2 > 1 and 2 ∈ N.

Claim. 1 is the largest integer.

WRONG PROOF. Let l be the largest integer.
Then l ≥ l2, so that l − l2 = l(1− l) ≥ 0. Hence, there are two possibilities for l(1− l) ≥ 0:

a) either l < 0 and 1− l ≤ 0; or,

b) l ≥ 0 and 1− l ≥ 0.

As 0 is an integer, we must be in case b), so that l ≥ 0 and l ≤ 1. Hence l = 1.
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This claim cannot possibly be true: in fact, 2 is definitely an integer and 2 > 1. Even better,
the set of integeral numbers is not bounded from above2, that is, there is no real number C such
that z ≤ C for all z ∈ Z.
What went wrong in the above proof? All the algebraic manipulations that we made following
the first line of the proof appear to be correct. [Go back and check that!!] Thus, the issue must
be contained in the (absurd) assumption we made in the first sentence:

Let l be the largest integer.

In fact, as we just explained, there cannot be a largest element in the set of integers: in fact,
given an integer l, then l+1 is also an integer and l+1 > l, which clearly shows that the above
assumption was unreasonable.

Analysis is mostly focused on the study of real and complex numbers3 and their properties.
Even more generally, analysis is concerned with studying (or analyzing, hence the name Anal-
ysis) functions defined over the real (alternatively, over the complex numbers) with values in
the real numbers (alternatively, over the complex numbers) and their important properties4.
In order to carry out such analysis, we will often need to deal with infinity. Roughly speaking,
we will often be interested in understanding numbers/functions from the point of view of an
infinitely small or at an infinitely large viewpoint. Our main goal will be to provide a frame-
work to be able to treat in a formal mathematical way all the different aspects of infinity in
the realm of real/complex numbers. To make a slightly better sense of this statement, you may
try to think (and formalize) of how to define the speed of a particle moving linearly on a rod,
at a given time t.

How should we define the real numbers? Even more importantly, how can we represent
them numerically? Intuitively, we have been taught that real numbers are those numbers that
we can represent numerically by writing down a decimal expansion, for example,

√
2 =1.414213562373095048801688724209698078569671875376948073176679737990

7324784621070388503875343276415727350138462309122970249248360 . . . .

As it suggested from this example, it may be the case that when we try to represent certain
real numbers, we have to account for an infinite decimal part5 of the expansion, that is, there
is an infinite sequence of digits to the right of the decimal dot “.”. Hence, we may at first
tempted to adopt the following definition of the set of real numbers:
The real numbers are all those numbers that we can represent with a decimal expansion whose
integral part (the digits to the left of “.”) can be written using a finite number of digits (chosen
in the set {0, 1, 2, . . . , 9}), whereas its decimal part (the digits to the right of “.”) is any infinite
sequence of digits (as above, chosen in the set {0, 1, 2, . . . , 9}). While this may seem, at first,
as an intuitively fine definition for the real numbers, it actually hides some subtleties.

Here we illustrate one of the main subtleties of this definition: namely, we show that,
in the above definition, we certainly have to be careful. We show that there is non unique
correspondence between a real number and its decimal expansion. An example is given by the
following proposition, which also provides a great basic example of how we deal with infinity
in Analysis.

2We will give a formal definition of what being bounded from above means later, cf. Definition 2.8.
3See Section 3 for the definition and basic properties of complex numbers.
4Some of the most important classes of functions that we will encounter are those of continuous, differentiable,

integrable, analytic functions, but there are many more other possible classes of functions that are heavily studied
in analysis

5The decimal part of the expansion is that part of the expansion that lays on the right hand side of the point
“.”. For example, the decimal part of the expansion of 41369.57693 is the sequence 57693. The integral part of
the decimal expansion is instead that part of the expansion that lays on the left hand side of the point “.”. The
integral part of 41369.57693 is 41369. The integral part always has finite length, that is, it can be written using
a finite number of digits.
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Proposition 1.6. 0.9̄ = 1

By 0.9̄ we denote the real number whose decimal representation is given by an infinite
sequence of 9 in the decimal part, 0.999999 . . ..

Proof. We give two proofs none of which is completely correct, at least as far as our current
definition and knowledge of the real numbers go. Nevertheless, we carefully explain what the
issues are in each case; we also explain how these issues will be clarified and taken care of
during this course.

(1) First an elementary proof:

9 · 0.9̄ = (10− 1) · 0.9̄ = 10 · 0.9̄− 1 · 0.9̄ = 9.9̄− 0.9̄ = 9

So, 0.9̄ is a solution of the equation 9X − 9 = 0; the only solution to this equation is
clearly X = 1, thus, 0.9̄ = 1.

At first sight, this proof is definitely a reasonable one from the point of view of the
algebraic manipulations that we carried out. However, we assumed that we know what
0.9̄ is. Moreover, we also assumed that we can algebraically manipulate 0.9̄ as usual,
despite the fact that it has an infinite decimal expansion. None of these facts are that
clear if you think about it, as we have not really defined what the properties of numbers
like 0.9̄ are.

So, what kind of number is 0.9̄? What are its properties? For example, what algebraic
manipulations are we allowed to make with it?

(2) Analysis provides us with a precise definition of 0.9̄

0.9̄ :=
∞∑
i=1

9

10i
.

On the hand, what kind of mathematical object is
∑∞

i=1
9

10i
? This is a series and we will

study series in detail in Section 4. By definition,

∞∑
i=1

9

10i
:= lim

n→∞

(
n∑
i=1

9

10i

)
.

We have yet to learn a precise definition of lim, thus, we cannot quite continue in a precise
way from here, nevertheless we continue the argument for completeness. If you are not
comfortable with it now, it is completely OK, just skip this part of the proof.
However, before we proceed, we need to show an identity for the sum of elements in a
geometric series6.

Claim. Let a ∈ R, a 6= 1. Then,

a+ a2 + · · ·+ an =
a− an+1

1− a
. (1.6.f)

Proof of the Claim. To prove this equality, we just multiply the left side by 1 − a to
obtain:

(a+ a2 + · · ·+ an)(1− a) = a− a · a+ a2 − a2 · a+ a3 − . . .
− an−1 · a+ an − an · a = a− an+1

This shows that (1.6.f) indeed holds, since to obtain the form of the equation in the
statement of the claim , it suffieces to .

6A geometric series is a series whose elements are of the form caq, for c, a ∈ R and q ∈ N. This will be
explicitly defined when we introduce series, later; hence, do not worry about this definition for now.
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And then we can proceed showing the statement:

∞∑
i=1

9

10i
= 9 ·

∞∑
i=1

1

10i
= 9 · lim

n→∞

(
n∑
i=1

1

10i

)
=

9 · lim
n→∞

(
1
10 −

1
10n+1

1− 1
10

)
= 9 ·

1
10 − lim

n→∞
1

10n+1

1− 1
10

=

9 ·
1
10

1− 1
10

= 9
1

9
= 1.

In Section 2 and in the following one, we will introduce all the necessary tools, definitions,
notations and conventions to answer all of the questions that were raised in these first few
pages.
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2 BASIC NOTIONS

2.1 Sets

A set S is a collection of objects called elements. If a is an element of S, we say that a
belongs to S or that S contains a, and we write a ∈ S. If an element a is not in S, we then
write a 6∈ S. If the elements a, b, c, d, . . . form the set S, we write S = {a, b, c, d, . . . }. We can
also define a set simply by specifying that its elements are given by some condition, and we
write

S := {s | s satisfies some condition}.

Notation 2.1. The symbol := indicates that we are identifying the object on the LHS (left
hand side) of “:=” with the object on the RHS (right hand side) of “:=”. You can read it as
“defined as”.

Example 2.2. The set S = {0, 1, 2, 3, 4, 5} of natural numbers that are at most 5 can be
defined as follows

S := {n | n is a natural number and n ≤ 5}.

A set T is said to be a subset of a set S if any element of T is also an element of S. If T is
a subset of S, we denote it by writing T ⊆ S. Given a set S, one can always define a subset
T ⊂ S, T := {s ∈ S|“ condition”}, that is, S′ is the set formed by those elements of S that
satisfy the given condition.

Example 2.3. The subset 2N of N of even natural numbers can be defined as

2N := {n ∈ N | 2 divides n}.

If T ⊆ S, it may happen that there are elements of S which are not contained in T . In this
case we say that T is a strict subset of S, or that T is strictly included/contained in S. When
we want to stress that we know that a subset T of a set S is strictly included in S we shall
write T ( S.

Example 2.4. 2N ( N since 1 6∈ 2N.

If we just write T ⊆ S, we mean that T is a subset of S that may be equal to S, but we are
not making any particular statement about whether or not T is a strict subset of S. Hence, in
the previous Example 2.4, we may have also used the notation 2N ⊆ N and that would have
been correct. To write that a set T is not a subset of a set S, we write T 6⊆ S.

We will consider the standard operations between sets, such as intersection, union, taking
the complent. More precisely, given two subsets U, V , we define:

Intersection: U ∩ V := {x | x ∈ U and x ∈ V };
Union: U ∪ V := {x | x ∈ U or x ∈ V };

Complement: U \ V := {x | x ∈ U and x 6∈ V }.

Exercise 2.5. Given sets E,F and D prove that the following relations hold:

Commutativity: E ∩ F = F ∩ E and E ∪ F = F ∪ E;

Associativity: D ∩ (E ∩ F ) = (D ∩ E) ∩ F and D ∪ (E ∪ F ) = (D ∪ E) ∪ F ;

Distributivity: D ∩ (E ∪ F ) = (D ∩ E) ∪ (D ∩ F ) and D ∪ (E ∩ F ) = (D ∪ E) ∩ (D ∪ F );

De Morgan laws: (E ∩ F )c = Ec ∪ F c and(E ∪ F )c = Ec ∩ F c.
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2.2 Number sets

There are a few important sets that we are going to work with all along this course:

(1) ∅: the empty set; it is the set which has no elements, ∅ := { }.

Exercise 2.6. Show that for any set S, ∅ ⊆ S.

(2) N : the set of natural numbers, N := {0, 1, 2, 3, 4, 5, 6, . . . }.
N is well ordered, that is, all its subsets contain a smallest element. We will prove that
later in Proposition 2.34.

(3) Z : the set of integral numbers7, Z := {. . . ,−1, 0, 1, . . . } .

(4) Q : the set of rational numbers, Q := {ab | a ∈ Z and b ∈ Z \ {0}}, where we impose the
following identification between fractions

a

b
=
a · c
b · c

, for c ∈ Z \ {0}.

(5) R : the set of real numbers. It is not easy to actually construct it and there are some
subtleties in trying to define real numbers by means of their decimal representation, as
we have already understood from Proposition 1.6.

Remark 2.7. In this course, we will not attempt to provide a rigorous construction of the set of
real numbers R, although there are many equivalent constructions. If you are curious, you can
click here to find out more about these constructions. Instead of going through the construction
of R in the course, we proceed to list here certain properties that uniquely define R [we also do
not prove such uniqueness, but, please, believe it] and we will assume them going forward:

(1) Q ⊆ R;

(2) R is an ordered field (see page 2 of the book for a precise list of axioms):

◦ the word field refers to the fact that addition, substraction, multiplication are all
well-defined operation within R; moreover, these operations respect commutativity,
associativity and distributivity properties and for all x ∈ R, x 6= 0 it is possible to
defined a multiplicative inverse x−1 such that x · x−1 = 1;

◦ the world ordered refers to the fact that given two elements x, y ∈ R we can always
decide whether x < y, or x > y, or x = y; moreover, this comparison is also
compatible with the operations that make R into a field.

(3) R satisfies the Infimum Axiom 2.22, that will be introduced in next section.

The following inclusions hold among the sets just defined:

∅ ( N ( Z ( Q ( R.

To justify these inclusions:

◦ ∅ ( N : N is non-empty. For example, 0 ∈ N.

◦ N ( Z : an integral number can also be negative, for example, −1 ∈ Z, while natural
number are always non-negative; thus Z 3 −1 6∈ N.

◦ Z ( Q : 1
2 ∈ Q, but 1

2 6∈ Z.

◦ Q ( R : we saw in Proposition 2.38 that
√

3 6∈ Q; we will prove formally in Section 2.4.1
that

√
3 ∈ R.

7We will often call an integral number an “integer”.
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2.2.1 Half lines, intervals, balls

We introduce here further notation regarding the real numbers and some special classes of
subsets that we will be using all throughout the course.

(1) Invertible real numbers: R∗ := {x ∈ R | x 6= 0}.

(2) Closed half lines: R+ := {x ∈ R | x ≥ 0}, R− := {x ∈ R | x ≤ 0}.
At times, these are also denoted by R≥0 and R≤0, respectively.

(3) Open half lines: R∗+ := {x ∈ R | x > 0}, R∗− := {x ∈ R | x < 0}.
At times, these are also denoted by R>0 and R<0, respectively.

We use the analogous definitions also for the sets

N∗,Z∗,Q∗,
N+,Q+,Z+,

N−,Q−,Z−,
N∗+,Q∗+,Z∗+,
N∗−,Q∗−,Z∗−.

(4) Bounded intervals: if a < b are real numbers, we define

Open bounded interval: ]a, b[ := {x ∈ R | a < x < b}.
Closed bounded interval: [a, b] := {x ∈ R | a ≤ x ≤ b}.

Half-open bounded interval:

{
]a, b] := {x ∈ R | a < x ≤ b}.
[a, b[ := {x ∈ R | a ≤ x < b}.

If a = b, then [a, b] = [a, a] = {a}. When we say that a subset I is a bounded interval of
R of extreme a < b, we mean that I may be either one of

[a, b], [a, b[, ]a, b], ]a, b[.

(5) Open balls: let a, δ ∈ R, δ > 0; we define the open ball B(a, δ) ⊆ R of radius δ and center
a as

B(a, δ) :=]a− δ, a+ δ[.

(6) Closed balls: let a, δ ∈ R, δ ≥ 0; we define the closed ball B(a, δ) ⊆ R of radius δ and
center a as

B(a, δ) := [a− δ, a+ δ].

When δ = 0, then B(a, 0) = {a}.

2.2.2 Extended real numbers

The extended real line is the set

R := {−∞,+∞} ∪ R.

The symbol +∞ (resp. −∞) is called “plus infinity” (resp. “minus infinity”). In this course
±∞ shall not be treated as numbers: they are just symbols indicating two elements of the
extended real line R̄. That means that we will not try to make sense of algebraic operations
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involving ±∞; thus, be very careful not to treat those as numbers. If you think carefully a bit,
you can see that it is hard to coherently define for example the result of the addition

+∞+ (−∞).

Later in the course we will use extensively these symbols. For the time being, we just want
to use them to define the following subsets of R. Let a ∈ R, then

Open unbounded intervals: ]a,+∞[:= {x ∈ R|x > a}, ]−∞, a[:= {x ∈ R|x < a}.
Closed unbounded intervals: [a,+∞[:= {x ∈ R|x ≥ a}, ]−∞, a] := {x ∈ R|x ≤ a}.

Finally
]−∞,+∞[:= R.

These sets are also called open/closed half lines, or open/closed unbounded intervals, or
open/closed extended intervals, where open/closed is determined by whether or not a belongs
to the set.

So, from now on, when we say that a subset I of R is an interval, we will mean that I has
one of the following forms:

◦ [a, b], ]a, b[, ]a, b], [a, b[, a, b ∈ R, a < b;

◦ [a,+∞[, ]a,+∞[, ]−∞, a], ]−∞, a[, a ∈ R;

◦ ]−∞,+∞[= R.

2.3 Bounds

We now start entering the realm of modern (and rigorous) analysis.
We start by defining some important properties of subset of R.

2.3.1 Basic definitions, properties, and results.

Definition 2.8. Let S ⊆ be a non-empty subset of R.

(1) A real number a ∈ R is an upper (resp. lower) bound for S if s ≤ a (resp. s ≥ a) holds
for all s ∈ S.

(2) If S has an upper (resp. a lower) bound then S is said to be bounded from above (resp.
bounded from below).

(3) The set S is said to be bounded if it is bounded both from above and below.

For a set S ⊆ R in general upper and lower bounds are not unique.

Example 2.9. (1) The set N ⊂ R is bounded from below, since ∀n ∈ N, n ≥ 0; in particular,
0 is a lower bound. In fact, any negative real number is also a lower bound for N.
On the other hand, N is not bounded. While this fact may appear intuitively clear, it
is not immediately clear how to prove it formally. Can you find a proof using only the
concepts and tools that we have introduced so far in the course? The answer is no, at
this time of the course. For a formal proof of the unboundedness of N, we shall need
Archimedes’ property for R, see Proposition 2.30.

(2) Z is neither bounded from above nor from below. In fact, it cannot be bounded from
above since N ⊆ Z. It is also not bounded from below: if a lower bound l ∈ R existed for
Z, then −l would be an upper bound for N, which we saw above does not hold. [Prove
this assertion in detail!].
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(3) The set S := {n2|n ∈ Z} is bounded from below: in fact, ∀n ∈ N, n2 ≥ 0, thus 0 is
a lower bound. On the other hand, it is not bounded. In fact, assume for the sake of
contradiction that S were bounded from above, i.e., that there exists u ∈ R and u ≥ s,
∀s ∈ S. Since for any n ∈ N, n2 > n, then it would follow that u > n, for all n ∈ N, but
this contradicts part (1).

(4) The set S := {n3|n ∈ Z} is neither bounded from above nor from below. [Prove it! The
proof is similar to that in part (2).]

(5) The set S := {sin(n2)|n ∈ Z} is bounded since for all x ∈ R, −1 ≤ sinx ≤ 1. Examples
of possible lower bounds are −5 and −13; example of possible upper bounds are 1 and
27. As sinx ∈ [−1, 1], then it is certainly true that

◦ any real number y such that y ≥ 1 is an upper bound for S, while

◦ any real number y such that y ≤ −1 is a lower bound for S.

(6) Let S := [3, 5[= {x ∈ R | 3 ≤ x < 5}. Then, 5 is an upper bound for S since for any
element x of S, x < 5. Moreover, if c is a real number and c > 5, then c is also an upper
bound for S, since c > 5 > x for all x ∈ S.
The same reasoning shows that 3 is a lower bound for S and that for any real number d
such that d < 3, then d is a lower bound for S as well.
(It is left to you to prove that in this example you will obtain the exact same con-
clusions if instead of considering the interval [3, 5[, you considered any of the intervals
[3, 5], ]3, 5], ]3, 5[.)

Using the discussion of the above examples, we summarize here some of the main properties
of upper and lower bounds.

Proposition 2.10. Let S ⊂ R be a non-empty set. Let c ∈ R.

(1) If u is an upper bound for S, then for any d ≥ u, d is also an upper bound for S.

(2) If l is a lower bound for S, then for any e ≤ l, e is also a lower bound for S.

(3) If T ⊆ S is a non-empty subset and c is a lower (resp. an upper) bound for S, then c is
also a lower (resp. an upper) bound for T .

(4) If T ⊆ S is a non-empty subset and T is not bounded from above (resp. from below), then
also S is is not bounded from above (resp. from below).

(5) If S is a bounded interval of extremes a < b, then the set of lower bounds (resp. of upper
bounds) of S is given by

]−∞, a] (resp. [b,+∞]).

(6) If S := [b,+∞[ or S := [b,+∞, b ∈ R, then the set of lower bounds of S is given by
]−∞, b].

(7) If S :=] −∞, a] or S :=] −∞, a[, a ∈ R, then the set of upper bounds of S is given by
[a,+∞].

Proof. (1) Let u be an upper bound for S. Then ∀s ∈ S, u ≥ s. If d ≥ u, then ∀s ∈ S,
d ≥ u ≥ s, in particular, d ≥ s, which shows the desired property.

(2) Analogous to (1) and left as an exercise (see the sheet from Week 2).
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(3) If c is a lower bound for S, then c ≤ s for all element s ∈ S. Since T ⊆ S, this means
that any element t ∈ T is also an element of S. Hence, a fortiori, the inequality c ≤ s,
∀s ∈ S implies also that c ≤ t, ∀t ∈ T .
The case of an upper bound is analogous, it suffices to change the verse of the inequalities.

(4) Since T is not bounded from above, this means that ∀u ∈ R, there exists an element
xu ∈ T (which will depend in general from the real number u we fix) such that xu > u.
As T ⊆ S, then xu ∈ S, hence ∀u ∈ R, there exists an element xu ∈ S such that xu > u
and u cannot be an upper bound for S. As this holds ∀u ∈ R, then also S is not bounded
from above.
The case of T not bounded from below is analogous, it suffices to change the verse of the
inequalities.

(5) Let us assume that S :=]a, b] = {x ∈ R | a < x ≤ b}. The other cases are similar – it
is left to you to prove that in you will obtain the exact same conclusions if instead of
considering the interval ]a, b], you considered any of the intervals [a, b], [a, b[, ]a, b].
Then, a is a lower bound for S, since for all s ∈ S, a < s. Also for any real number
d < a, d is also a lower bound for S, since d < a < s, for all s ∈ S. Similarly, b is an
upper bound for S, since ∀s ∈ S, s ≤ b, by definition. Thus, for any real number c > b,
then c > b ≥ s, ∀x ∈ S and c is an upper bound for S. Then, part (1) implies that any
element of the half line [b,+∞[ (resp. ]−∞, a]) is an upper bound (resp. lower bound)
for S. To conclude we need to show that no real number c > a (resp. d < b) is a lower
bound (resp. an upper bound) of S. To show this, it suffices to show that there exists an
element m ∈ S such that m < c. Since c > a, then a < a + c−a

2 < c. If a + c−a
2 ∈ S, it

suffices to take m := a+ c−a
2 . If a+ c−a

2 6∈ S, then a+ c−a
2 > b then c > b, and it suffices

to take m := b.

(6) Analogous to the proof of (5).

We have just seen that upper/lower bounds of a set S are never unique, when some exist.
Moreover, if S is an interval of extremes a < b, then a is a lower bound and b is an upper
bound. We may be tempted to ask whether in general there exists upper lower bounds of a set
S ⊆ R that are element of S itself and what we can say in that case. In general, this is not
always true but nonetheless upper/lower bounds of S that are in S are very special elements
of S.

Definition 2.11. Let S ⊆ R be a non-empty set.

(1) The maximum of S is a real number M ∈ S which is also an upper bound for S.

(2) The minimum of S is a real number m ∈ S which is also a lower bound for S.

In Definition 2.11, we used the determinative article “the” to intriduce maximum and
minimum of a set of real numbers. This suggests that they should both be uniquely determined.
This is indeed the content of the next exercise.

Proposition 2.12. Let S be a non-empty subset of R. If maxS (resp. minS) exists, then it
is unique.

Notation 2.13. For S ⊆ R, we denote the maximum (resp. the minimum) of S by maxS
(resp. minS).

Proof. Suppose, for the sake of contradiction, that a maximum of S exists and it is not unique.
Then there are at least two distinct numbers n, n′ ∈ R which are both a maximum for S. As
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n, n′ are distinct, i.e., n 6= n′, we can assume that n < n′. As n′ is a maximum, then n′ ∈ S.
But as n is also a maximum, in particular, n is also an upper bound, i.e., n ≥ s, ∀s ∈ S; hence,
also n ≥ n′, which is in contradiction with our assumption above that n′ > n.
You can apply a similar argument for the uniqueness of the minimum.

Example 2.14. (1) Let us define S :=]1, 2[= {x ∈ R | 1 < x < 2}. Then S does not have
minimum or maximum.
In fact, if u ∈ R is an upper bound for S, then, by definition, u ≥ x, ∀x ∈ ]1, 2[, which
implies that u ≥ 2. Hence u 6∈ ]1, 2[.
Analogously, if l ∈ R is a lower bound for S, then, by definition, l ≤ x, ∀x ∈ ]1, 2[, which
implies that l ≤ 1. Hence l 6∈ ]1, 2[.

(2) S := [1, 2] has both a minimum and a maximum.
minS = 1, since 1 ∈ S and 1 ≤ s, ∀s ∈ S, so that 1 is also a lower bound for S.
maxS = 2, since 2 ∈ S and 2 ≥ s, ∀s ∈ S, so that 2 is also an upper bound for S.

(3) Let a < b be real numbers. S :=]a, b] has maximum but no minimum.
maxS = b, since b ∈ S and b ≥ s, ∀s ∈ S, so that b is also an upper bound for S.
minS, since any lower bound for S is ≤ a, hence there is no lower bound that is contained
in S.

The above examples suggest that it should not be hard to understand when an interval
S admits a maximum or a minimum. Indeed, the following characterization is an immediate
consequence of Definition 2.11 and of Proposition 2.10

Proposition 2.15. Let S ⊆ R be a bounded interval of extremes a < b.

(1) The maximum of S exists if and only if b ∈ S. In this case, maxS = b.

(2) The minimum of S exists if and only if a ∈ S. In this case, minS = b.

When S is not an interval, it may be more complicated to understand whether a maxi-
mum/minimum exists.

Example 2.16. (1) Take S :=
{
n−1
n | n ∈ Z∗+

}
. Then S has a minimum but it does not

have a maximum.
Indeed, minS = 0, since 0 = 1−1

1 ∈ S and n−1
n ≥ 0, ∀n ∈ Z∗+, so that 0 is a lower bound

which belongs to S. However, S does not have a maximum. To see this, let l ∈ R, then:

(i) assume that l < 1. Then a natural number n satisfies n > 1
1−l if and only if

1− 1
n = n−1

n > 1− (1− l) = l. then 1− 1
n = n−1

n > 1− (1− l) = 1; Thus, l cannot
be an upper bound for S, hence a fortiori it cannot be a maximum either.

(ii) on the other hand, if a ≥ 1, then l 6∈ S, so no such l can be a maximum for S.

One can actually show that the upper bounds of S are exactly the real numbers ≥ 1;
indeed, it is easy to show that any l ≥ 1 is an upper bound for S, since 1 − 1

n ≤ 1 ≤ a,
for all n ∈ Z∗+. On the other hand (i) above shows that no real number l < 1 can be an
upper bound for S. Hence, 1 is the least of all possible upper bounds for S.

Example 2.16.3 above, suggests that we might need a new notion generalizing the concept
of maximum/minimum. In that example, 1 is very close to being the maximum of S :={
n−1
n | n ∈ Z∗+

}
, as it is the least of all possible upper bounds. On the other hand, 1 cannot

be the maximum of S as 1 6∈ S. This phenomenon motivates the next definition.

Definition 2.17. Let S ⊆ R be a non-empty subset.
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(1) If the set U of all upper bounds of S is non-empty and U admits a minimum u ∈ U , then
we call u the supremum of S.

(2) If the set L of all lower bounds of S is non-empty and L admits a maximum l ∈ L, then
we call l the supremum of S.

Remark 2.18. Let S ⊆ R be a non-empty subset.
If the set U of all upper bounds of S is empty, then S is not bounded from above, cf. Defini-
tion 2.8. In this case, then the supremum of S does not exist, by the above definition.
Similarly, if the set L of all lower bounds of S is empty, then S is not bounded from below,
cf. Definition 2.8. In this case, then the infimum of S does not exist, by the above definition.

As in the case of maximum/minimum, the use of the determinative article in Definition 2.17
suggests that, when they exist, the supremum/infimum of a non-empty subset of R should be
unique.

Proposition 2.19. Let S be a non-empty subset of R. If supS (resp. inf S) exists, then it is
unique.

Notation 2.20. For S ⊆ R, we denote the supremum (resp. the infimum) of S by supS (resp.
inf S), when those exist as real number.
If S is not bounded from above, we write supS = +∞. If S is not bounded from below, we
write inf S = −∞.

Proof. By definition, if the supremum of S exists, it is the minimum of the set

U := {u ∈ R | u is an upper bound for S} .

As the maximum of a set is unique when it exists, cf. 2.12, then the conclusion follows at once.
You can apply a similar argument for the uniqueness of the minimum.

Example 2.21. (1) Let S :=
{
n−1
n

∣∣n ∈ Z∗+
}

. Then, supS = 1, cf. Example 2.16.3.

(2) Take S := {n3|n ∈ Z}. Then, S is unbounded. Thus, inf S, supS do not exist.

(3) If S is a bounded interval of extremes a < b, then

supS = b, inf S = a.

Indeed, we saw in Proposition 2.10 that the set of lower (resp. upper) bounds of S is
]−∞, a] (resp. [b,+∞[).

(4) Similarly, if S := [a,+∞[ or S := [a,+∞, a ∈ R then inf S = a, while supS does not exit
since S is not bounded from below.

(5) If S :=]−∞, b] or S :=]−∞, b[, b ∈ R, then inf S = a, while supS does not exit since S
is not bounded from below.

How do we know whether the supremum or infimum of a non-empty subset S ⊆ R exist
as real numbers? We saw in Remark 2.18 that a necessary condition for the existence of the
supremum (resp. infimum) of S is that S be bounded from above (resp. below).

On the other hand, if, for example, S is bounded from above (resp. below), then we know
that the set U (resp. L) of all upper (resp. lower) bounds of S is non-empty. Hence, it is
legitimate to ask if U (resp. L), when non-empty, admits a least (resp. largest) element.

The existence of the largest of all possible lower bounds (resp. of the least of all possible
upper bounds) is one of the features of the construction of the real numbers. As we have already
mentioned that we are not going to explain the construction of R, we will assume the existence
of such elements. Indeed, it suffices to assume the following axiom, which then implies the full
existence of infima and suprema, cf. Corollary 2.26.
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Axiom 2.22. [Infimum axiom] Each non-empty subset S of R∗+ admits an infimum (which
is a real number).

Remark 2.23. In Mathematics, an axiom is a statement that we are going to assume to be true,
without requiring for it a formal proof. When we introduce an axiom, we are free to use the
properties stated in the axiom, without requiring a proof for them, and we can use those to
derive other mathematical properties of the objects that we are studying.

The property stated in the Infimum Axiom is a very important one. In a sense, which we
will try to make more precise when we introduce sequences of real numbers, this property says
that R does not contain any gaps. While at this time, this is a rather nebulous statement,
let us at least show that this axiom does not necessarily hold for all the number sets that we
have introduced so far, cf. Section 2.2: indeed, it is possible to show that the infimum axioms
does not necessarily hold for Q, for example, cf. Example 2.24 below. Hence, the Infimum
Axiom is indeed an axiom stating a (very relevant) property that is indeed peculiar to the real
numbers and, as such, in this course we actually utilize it to characterize the real numbers,
again, cf. Remark 2.7.

Example 2.24. Let S :=]
√

3, 5[ ∩ Q.8 Then S ⊆ R∗+ and the Infimum Axiom implies that
inf S exists in the real numbers. We will show in Example 2.46 that inf S =

√
3. In particular,

the set of lower bounds of S coincides with the real numbers ≤
√

3.
Since S, by its very definition, is also a subset of Q, we may wonder whether it possible to find
a largest rational number l among the rational numbers which are lower bounds for S. Such
l ∈ Q would then be an infimum for S among the rational numbers. By the above observation,
we know that if such l existed, then l <

√
3, since

√
3 6∈ Q, cf Proposition 2.38, and l is certainly

a lower bound for l. But then, Proposition 2.44 shows that there exists a rational number m
such that l < m <

√
3. As m <

√
3, then we know that m is also a lower bound for S. This is

clearly a contradiction, as m ∈ Q nad is a lower bound for S, while we had assumed that l was
the largest of all lower bounds of S that are rational. Hence, the infimum of S cannot exist in
Q.

Axiom 2.22 requires that we work with subsets of R∗+ to be guaranteeed to find their
infimum. But, in general, we can find the infimum also for sets that are not necessarily contained
in R∗+, as long as we have some lower bounds.

Example 2.25. The infimum of a set S ⊆ R can exist even when S 6⊆ R∗+. For example,
let S := {x ∈ R | x > −

√
17}. As S contains −1, for example, then S 6⊆ R∗+. On the other

hand, by Proposition 2.10.6, the set of lower bounds of S is given by ] − ∞,−
√

17]. Hence,
inf S = −

√
17.

Using the Infimum Axiom 2.22, we can actually prove that the infimum (resp. the supre-
mum) exists for any subset S ⊆ R which is bounded from below (resp. from above).

Corollary 2.26. Let S ⊆ R be a non-empty set.

(1) If S is bounded from below, then S admits an infimum.

(2) If S is bounded from above, then S admits a supremum.

Proof. (1) As S is bounded from below, there exists a lower bound l ∈ R for S, that is, l ≤ s,
for all s ∈ S. We can rewrite the previous inequality as

s− l ≥ 0, ∀s ∈ S. (2.26.a)

8See Section 2.4.1 for a formal proof that
√

3 is actually a real number.
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Let W ⊆ R be the subset obtained by translating the elements of S by −l + 1,

W := {s− l + 1 | s ∈ S}.

Why did we choose to translate the elements of S by −l+1? The reason is that W ⊆ R∗+:
in fact, by (2.26.a), s− l+1 ≥ 1 > 0, for all s ∈ S.9 As W ⊆ R∗+, the Infimum Axiom 2.22
implies that inf W exists, call it a := inf S. Then a is the largest lower bound for the set
W .
How can we use a to compute inf S? To construct W , we translated all elements of S
by −l + 1. If we translate the elements of W back by l − 1, then we undo what we
did before and we recover S. So, what happens if we translate a by l − 1 as well? The
number we obtain by this translation should be the largest lower bound for S, as addition
is compatible with the order relation. Let us verify this.
Let a′ := a + l − 1. Then a′ ≤ w + l − 1 for any element w ∈ W . As any w ∈ W is of
the form w = s − l + 1 for some s ∈ S, then w + l − 1 = s. Hence, a′ ≤ s for all s ∈ S
and a′ is a lower bound for S. If a′ is not the largest lower bound for S, then there is a
real number b′ > a′ which is a lower bound for S. But then b′ − l + 1 > a = a′ − l + 1
and b′− l+ 1 would be a lower bound for W [prove it!]. But this is a contradiction, since
a = inf W .

(2) The details are left to the reader. Here is a sketch.
Let S′ ⊆ R be the set constructed by flipping the sign of the elements of S,

S′ := {−x | x ∈ S}.

Since S is bounded from above, then S′ is bounded from below. [Prove this!] Then by
part (1), inf S′ exists. It is left to you to show that supS = − inf S′.

We have seen the definition of infimum/supremum and minimum/maximum. Both the
infimum (resp. supremum) and minimum (resp. maxima) of a set S, provided that they exist,
are lower bounds (resp. upper bounds) for S. Can we be more precise about what is the
relationship among these notions?

Example 2.27. Let S := [3, 5[ ⊆ R. Then, minS = 3 = inf S. On the other hand, maxS
does not exist as supS = 5 is the least upper bound and 5 6∈ S; hence no upper bound of S is
contained in S, as any element of S is < 5.

The example above seems to suggest that, at least for intervals, if the minimum (resp.
maximum) of an interval exists, then it should coincide with the infimum (resp. the supremum)
of the interval. This property actually holds for any non-empty subset S ⊂ R, as long as the
minimum (resp. maximum) of S exists.

Proposition 2.28. Let S ⊆ R a non-empty set.

(1) If minS exists, then minS = inf S.

(2) If maxS exists, then maxS = supS.

Proof. We prove (1), whereas (2) is left as an exercise. As minS exists, then S is bounded
from below, since minS is in particular a lower bound, cf. Definition 2.11. Hence, inf S exists,
by Corollary 2.26. Then inf S ≥ minS since inf S is the largest of all lower bounds. On the
other hand, minS ∈ S, and inf S ≤ s, for all s ∈ S. In particular, inf S ≤ minS. Thus,
inf S ≤ minS and inf S ≥ minS, which implies that inf S = minS.

9We could have choosen to translate by −l + c, for any c > 0. Hence the choice of c = 1 was arbitrary, but I
needed to choose something explicit, so I went for 1.
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2.3.2 Archimedean property of R

As we have already mentioned, given any two real numbers x, y we can always compare them,
that is, we can decide whether either x = y, or x < y or x > y. On the other hand, whenever
it makes sense, for example, if x, y are both non-negative real numbers with x < y, we may
ask a more general question: namely, we may ask whether, by taking multiples of x, we can
eventually construct a real number nx > y.

Example 2.29. Let y = π20 and let x = 1. We want to find a natural number n such that
nx = n · 1 = n is > π20. If we write π20 in its decimal representation,

π20 =8769956796.082699474752255593703897066064114447195437243420984260

51841239043547990990234985186673598315695604864892372705666 . . . . 10

Then if we take n = 8769956797, that is, n is equal to the integral part of the decimal repre-
sentation of π20 + 1, then n = n · 1 = nx > π20 = y.

When we discussed real numbers at the start of the course, we saw that perhaps it is not
an ideal method that of relying on their decimal representation. After all, it is not even clear
that we can compute effectively the decimal representation of any real number. (Have you
ever thought about how computers are able to calculate decimal representations of irrational
numbers? If you are curious about that, you may want to take a look here). We said that in
this course, we should rather try to prove properties of the real numbers by relying on their
intrinsic mathematical properties, and by using mathematical proofs as the tools to connect
properties and discover new one.

The interesting fact, is that we can actually prove that the conclusion of Example 2.29
holds, in full generality, for any pair of positive numbers x, y.

Proposition 2.30 (Archimedeand property of R). Let x, y be real numbers, with x > 0, y ≥ 0.
Then there exists n ∈ N∗ such that nx > y.

Proof. If y = 0, then take n = 1. Then nx = 1 · x = x > 0 and we are done.
Let us now assume that y > 0. We make a proof by contradiction. Let us assume that

∀ n ∈ N, nx ≤ y. (2.30.b)

Let S ⊆ R be the set
S := {nx | n ∈ N}.

Then S is non-empty as x ∈ S, and S is bounded from above, as y is an upper bound by (2.30.b).
Hence, by Corollary 2.26 supS exists and (n+ 1)x ≤ supS for all n ∈ N. Thus, nx ≤ supS−x
for all n ∈ N, that is, s ≤ supS − x, for all s ∈ S. But this implies that supS − x is an upper
bound for S, too. As supS − x < supS, since x > 0, this gives a contradiction to the fact that
supS is the supremum of S, i.e., the smallest upper bound for S.

Corollary 2.31. Let y ∈ R+. Then there exists n ∈ N∗ such that n > y.

Proof. It is enough to apply Proposition 2.30 to y, taking x = 1.

2.3.3 An alternative definition for infimum/supremum

Let S ⊂ R be a non-empty set. We have seen in Section 2.3.1 that the infimum and supremum
of S are unique, when they exist. Moreover, as the infimum (resp. supremum) of S is the
largest (resp. the smallest) lower bound (resp. upper bound) of S, then whenever we take
a number c larger than inf S (resp. smaller than supS), we must be able to find an element
s ∈ S contained between inf S and c (resp. between c and supS), that is, inf S ≤ s < c (resp.
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c < d ≤ supS).
Using this reasoning, we can characterize the infimum (resp. supremum) of S in the following
alternative way.

Proposition 2.32. Let S ⊂ R be a non-empty set.

(1) A real number u is the supremum of S if and only if

(i) u is an upper bound for S, and

(ii) for all ε > 0, there is sε ∈ S, such that sε > u− ε.

(2) A real number l is the infimum of S if and only if

(i’) l is an lower bound for S, and

(ii’) for all ε > 0, there is s′ε ∈ S, such that s′ε < l + ε.

The criterion just introduced is very useful in practice when trying to prove that a certain
real number is the infimum/supremum of a given subset of the real numbers.

Example 2.33. Let S := {1− 1
n | n ∈ Z∗+}. We show that supS = 1 using Proposition 2.32.1.

To this end, we must verify that 1 satisfies both properties:

(i) 1 is an upper bound for S, and

(ii) for all ε > 0, there is sε ∈ S, such that sε > 1− ε.

Since 1 ≥ 1 − 1
n , for all n ∈ N∗, then, by definition, of upper bound, 1 is an upper bound for

S; thus, property (i) is satisfied.
To verify (ii), let, for example, ε = 3

17 ; then we have to show that there exists an element sε of
S such that

1− 3

17
< sε < 1.

(The second inequality comes for free from the fact that 1 is an upper bound for S). If we take
sε = 1− 1

17 , then sε ∈ S, and since 1
17 <

3
17

1− 3

17
< 1− 1

17
< 1

which is what we wanted.
To make the proof more general, we have to fix a positive real number ε (this could be any
positive real number, but we are thinking that we have fixed one specific value for ε). Again,
we have to find an element sε ∈ S (this element that we construct will depend on the initial
choice of ε, that is why we denote it as sε, to remind ourselves about the dependence from ε)
such that 1− ε < sε.
If ε > 1 then 1− ε < 0, hence we can just take sε = 0 = 1− 1

1 ∈ S. If ε ≤ 1, then 1− ε ∈ [0, 1[.
How can find find n ∈ N such that 1 − ε < 1 − 1

n? The inequality 1 − ε < 1 − 1
n is equivalent

to the inequality n > 1
ε [Check that!]. As ε > 0, also 1

ε > 0. Hence, by Corollary 2.31 we can
find a natural number k such that k > 1

ε . Then 1− ε < 1− 1
k , so that we can take sε := 1− 1

k .

Proof of Proposition 2.32. We show part (1). The proof of part (2) is completely analogous
and is left as an exercise for the reader.
We first prove the implication

l = inf S =⇒ l satisfies properties (i) and (ii) in Proposition 2.32.

Let l = inf S. As inf S is the largest of all lower bounds for S, by Proposition 2.32.1, in
particular l is a lower bound for S; thus, l satisfy said property. As inf S is the largest lower

19



bound, by itw definition, then if we take any ε > 0, l + ε cannot be a lower bound for S.
This means that there exists an element of S (which will depend on the choice of ε in general,
cf. Example 2.33), call it sε, such that sε < l+ ε, which shows that l satisfies also property (ii)
of Proposition 2.32.
We then prove the other implication:

l satisfies properties (i) and (ii) in Proposition 2.32 =⇒ l = inf S.

Let us assume, by contradiction, that l 6= inf S. Since by property (i) l is a lower bound, the
assumption that l 6= inf S means that l is not the largest lower bound. Hence, there exists
l′ ∈ R, l′ > l and l′ is a lower bound for S. In particular,

for all s ∈ S, s ≥ l′. (2.33.c)

Take ε := l′ − l > 0 =⇒ l + ε = l′. Then (2.33.c) implies that no element of S is < l + ε.
But, this is in contradiction with property (ii) of Proposition 2.32 which we assumed to begin
with.

2.3.4 Infimum and supremum for subsets of Z

When we defined the natural numbers in Section 2.2 we mentioned that any subset of N has a
minimum. We have now all the tools to prove this statement, which will be one of our standard
tools for the duration of the course.

Proposition 2.34. Let S ⊆ R be a non-empty set of natural numbers. Then, inf S = minS.

What is the important information contained in the statement of the above proposition?
As S ⊆ N, S is bounded from below. Hence, the Infimum Axiom 2.22 implies that inf S
exists. On the other hand, we know from Proposition 2.28 that if the minimum of S exists,
then it must always coincide with inf S. Hence, the important bit of information contained
in Proposition 2.34 is that the minimum of any set S ⊆ N indeed exists, a property that we
had already mentioned in Section 2.2.

Example 2.35. Let

S := {x ∈ R | x ∈ N∗ and x is divisible by at least 5 distinct prime numbers} .

Then, by definition, S is a set of natural numbers and certainly 1, 2, 3, 5 are not elements of S;
even better, no prime number p ∈ N is an element of S. On the other hand, Proposition 2.34
implies that S has a minimum.
How can we compute minS? That is, what is the minimum natural number that is divisible
by 5 distinct prime numbers? As any natural number can be written essentially uniquely as a
product of prime numbers, then minS is the product of the 5 smallest prime numbers. The
first few prime numbers are

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, . . . .

Hence, minS = 2 · 3 · 5 · 7 · 11 = 2310.

Proof of Proposition 2.34. Let d := inf S, which exists by Corollary 2.26, since S is bounded
from below. We have to show that d ∈ S.
Assume by contradiction that d 6∈ S. Then, as inf S is the largest lower bound of S, for each
ε > 0, d+ ε is not a lower bound. Hence:

for all ε > 0, there is sε ∈ S, such that sε < d+ ε. (2.35.d)
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Apply (2.35.d) with ε′ := 1
2 . This yields an element sε′ of S such that

d < sε′ < d+ ε′ = d+
1

2

Apply then again the above property of S, but now for ε′′ := sε′ − d > 0. Then, we can find
sε′′ ∈ S such that

d < sε′′ < d+ ε′′ = sε′ < d+ ε′ = d+
1

2
.

In particular, 0 < sε′ − sε′′ < d+ 1
2 − d = 1

2 . This gives a contradiction, since sε′ , sε′′ ∈ N and
the distance between two different natural numbers is always at least 1 one from. Hence, our
initial assumption that d 6∈ S must be false, so that d ∈ S.

Exercise 2.36. Let S ⊆ R a subset of the integers.

(1) If S is bounded from below, then minS = inf S.

(2) If S is bounded from above, then maxS = supS.

[Hint: for (1), let a be a lower bound for S; then a > [a] − 1 is an integer > a. Consider the
set S′ := {s− [a] + 1 | s ∈ S} ⊆ N and try to imitate the proof of Corollary 2.26.
For (2), define the set S′′ := {−x | x ∈ S} and then imitate the proof of Corollary 2.26 and use
(1) to prove (2).]

2.4 Rational numbers vs real numbers

2.4.1
√

3 is a real number

We have seen that
√

3 is not a rational number, cf. Proposition 1.1.

Question 2.37. Why is
√

3 a real number?

We are going to show that using the Axiom 2.22, we can formally show that there exists
a positive real number x satisfying the equation x2 = 3. By, its own definition, then x =

√
3.

To this end, let us consider S := {x ∈ R | x2 ≤ 3}. First of all, S is a non-empty subset of R,
since 1 ∈ S. Moreover, S is bounded: in fact, 3 is an upper bound and −3 is a lower bound for
S. [Prove it! Remember that for real numbers x > y > 0, then x2 > y2 > 0.] As S is bounded
then by Corollary 2.26 both the infimum and the supremum of S exists. As 1 ∈ S, then the
supremum of S is ≥ 1, in particular it is > 0. We will show that supS =

√
3.

Proposition 2.38. Let S ⊆ R be the subset

S := {x ∈ R | x2 ≤ 3}.

Then inf S < 0 < supS and (supS)2 = 3 = (inf S)2. Thus, supS =
√

3, inf S = −
√

3.

Proof. We have already shown above that inf S and supS exist. Moreover, as ±1 ∈ S, then it
follows at once that inf S < −1 < 0 < 1 < supS. Hence, if (supS)2 = 3 = (inf S)2, then the
above chain of inequalities implies that supS =

√
3, inf S = −

√
3.

We now show that (supS)2 = 3. The verification for inf S is analogous.
Let us assume, for the sake of contradiction, that (supS)2 6= 3 and let us show that we obtain
a contradiction. We have 2 possible cases:{

(supS)2 > 3,

(supS)2 < 3
.

Case 1: Assume (supS)2 > 3.
We shall show that there exists a sufficiently large n ∈ N such that supS− 1

n is an upper bound
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for S. This immediately yields the desired contradiction, since supS − 1
n < supS and supS is

by definition the least of all upper bounds.
As supS > 1, then supS− 1

n > 0 for all n ∈ N∗. Hence to show that for some n ∈ N∗, supS− 1
n

is an upper bound for S, it suffices to show that (supS− 1
n)2 > 3, since for x > 0, x < supS− 1

n
if and only if x2 < (supS − 1

n)2. But

(supS − 1

n
)2 = (supS)2 +

1

n2
− 2 supS

n
> (supS)2 − 2 supS

n
.

Hence, it suffices to show that we can find n ∈ N large enough such that (supS)2− 2 supS
n > 3.

Let us denote by d := (supS)2 − 3 which is a positive real number. But then, finding n ∈ N∗
such that (supS)2 − 2 supS

n > 3 is equivalent to finding n ∈ N∗ such that 2 supS
n < d, and the

last inequality is equivalent to n > d
2 supS , since supS > 0. The existence of n ∈ N∗ such that

n > d
2 supS is guaranteed by the archimidean property, Proposition 2.30. This concludes the

proof in Case 1.
Case 2: Assume (supS)2 < 3.

We shall show that there exists n ∈ N∗ such that (supS + 1
n)2 < 3. As supS + 1

n > supS > 0,
this implies that supS + 1

n ∈ S which will yield the desired contradiction, since supS must be
an upper bound of S. Let d′ be the positive real number d′ := 3− (supS)2. Then since

(supS +
1

n
)2 = (supS)2 +

1

n2
+

2 supS

n
< (supS)2 +

1

n
+

2 supS

n
,

it suffices to show that there exists n ∈ N∗ such that (supS)2 + 1
n + 2 supS

n < 3. But this is

equivalent to finding n ∈ N∗ such that n > d
1+2 supS . The existence of one such n ∈ N∗ is again

guaranteed by the archimidean property of R, cf. Proposition 2.30.

2.4.2 Integral part

Let x be a real number. According to Exercise 2.36, the set S := {n ∈ N | n ≤ x} has a
maximum, since it is bounded from above. Call m := maxS. Then m+ 1 is not in S, as m is
the largest element of S. We call the integer m the integral part of x and we denote it by [x].

Definition 2.39. Let x ∈ R.

(1) The round-down bxc of x is the largest integer that is ≤ x.

(2) The round-up dxe of x is the least integer that is ≥ x.

(3) The integral part [x] of x is defined as

[x] :=

{
bxc for x ≥ 0,

dxe for x < 0.

We can also define the fractional part of x.

Definition 2.40. Let x be a real number. Then the fractional part {x} of x is defined as

{x} := x− [x].

Exercise 2.41. For all x ∈ R,

(1) bxc ≤ x < bxc+ 1;

(2) dxe − 1 < x ≤ dxe;
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(3) [x] = −[−x];

(4) {x} ∈]− 1, 1[ and {x} = −{−x}

(5) x = [x] + {x};

(6) x ∈ Z if and only if x = bxc = dxe = [x].

Example 2.42. (1) [−4] = −4 and hence {−4} = 0. In general, if z ∈ Z, then [z] = z,
{z} = 0.

(2) Considering the number x = π2 + π,

π2 + π =13.0111970546791518572971343831556540195108688066158964473882939

68527861228705414241629808229060669299806174000287305450724866192 . . .

Hence, [π2 + π] = 13, and {π2 + π} = π2 + π− 13 – not a number that we can fully write
down with decimals.

(3) For rational numbers, things are a bit easier. For example,
[
−3

2

]
= −1 and

{
−3

2

}
= −1

2 .

(4) Roughly speaking, when we write a real number x by means of its decimal representation,
then the integral part [x] (as its name suggests) stands for the integral number whose
digits are left of the “.” dividing integral and decimal part, while {x} stands for the real
number in ] − 1, 1[ whose digits are right of the “.” dividing integral and decimal part:
for example, [7.8324123] = 7, {7.8324123} = 0.8324123.

2.4.3 Rational numbers are dense in R

We have already observed that Q ( R. It would be nice to have some more information about
how rational numbers are distributed among real numbers. For example, we may ask if we can
find rational numbers between two arbitrary real numbers.

Example 2.43. For example, is there a rational number c, such that 0 < c < π? The left
inequality, that is, 0 < c, is an easy one to guarantee. It suffices to choose c to be a positive
rational number. But, how do we guarantee that the inequality on right holds as well? Well,
as soon as c is positive, c < π is equivalent to 1

c >
1
π . So, if one chooses 1

c to be any integer
that is larger than 1

π we are fine. For example, we can choose

1

c
=

[
1

π

]
+ 1 that is, c =

([
1

π

]
+ 1

)−1

.

It is not too hard to show that the above example can be extended in more generality to
any two real numbers.

Proposition 2.44. If a < b are real numbers, then there is a rational number c, such that
a < c < b.

We can summarize the property stated in Proposition 2.44 by saying that “rational numbers
are arbitrarily close to any real number”. In more precise mathematical terms, we refer to the
property stated in Proposition 2.44 above by saying that Q is dense in R.

Example 2.45. Let us consider

√
2 =1.414213562373095048801688724209698078569671875376948073176679737990

7324784621070388503875343276415727350138462309122970249248360 . . . .
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We know that
√

2 is not a rational number. Then, how can we show that rational numbers are
arbitrarily close to

√
2? We could try to approximate

√
2 by means of rational numbers.

So, for example, what is a rational number that is close within 1
10 of

√
2? Proposition 2.44

tells us that such approximation certainly exists, as it guarantees that we can find a rational
number c such that

√
2 − 1

10 < c <
√

2. But, in practice, how can we find such c? Using the

decimal expansion of
√

2 above, we can immediately notice that

√
2− 1.4 =0.014213562373095048801688724209698078569671875376948073176679737990

7324784621070388503875343276415727350138462309122970249248360 . . . .

Hence,
√

2− 1
10 < 1.4 <

√
2.

In the same way, if we want to approximate
√

2 up to 1
10000 with rational, we can search for a

rational number c′ such
√

2 − 1
10000 < c′ <

√
2. As before, by taking c′ = 1.41421 we obtain

that

√
2− 1.41421 =0.000003562373095048801688724209698078569671875376948073176679

7379907324784621070388503875343276415727350138462309 · · · < 1

10000
.

In the same way, if we want to approximate
√

2 within 1
10n , then it is enough to take the

rational number whose decimal representation is given by taking that of
√

2 and truncating it
after the n-th decimal digit.

Proof. Let us start with a simple case of our proof.
Easy case; we assume a = 0:

We have
[

1
b

]
+ 1 > 1

b and
[

1
b

]
+ 1 is a positive integer. We conclude that

0 <
1[

1
b

]
+ 1

< b ,

so we can take c = 1

[ 1
b ]+1

.

General case:
Let us define the number n :=

[
1
b−a

]
. Then,

n =

[
1

b− a

]
+ 1⇒ n >

1

b− a
⇒ 1

n
< b− a

a =
an

n
<

[an] + 1

n
≤ an+ 1

n
= a+

1

n
< a+ b− a = b

Furthermore, [an]+1
n is a rational number. Hence, to conclude it suffices to take c = [an]+1

n .
[This is not the unique rational number between a and b, it is just one example of a rational
number between a and b.]

Example 2.46. This is a continuation of Example 2.24. We can finally prove that for S :=
]
√

3, 5[ ∩ Q then the infimum of S in R is
√

3.
By definition of S, any element of S is >

√
3 =⇒

√
3 is a lower bound.

Let us assume by contradiction that that
√

3 is not the infimum of S =⇒
√

3 < inf S < 5
and by Proposition 2.44, there exists a rational number c such that

√
3 < c < inf S < 5. But

then c ∈ S since c ∈ Q and c ∈ ]
√

3, 5[, and c < inf S, which provides a contradiction. Hence
inf S =

√
3.
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2.4.4 Irrational numbers are dense in R

The same property of density in R that we showed holds for Q, in the previous section, holds
also for the complement R \Q of Q in R. The set R \Q is called the set of irrational numbers.

Proposition 2.47. If a < b are real numbers, then there is c ∈ R \Q, such that a < c < b.

The set R \Q of real numbers which are not rational is called the set of irrational numbers.

Remark 2.48. Let us recall that if f ∈ Q∗ and g ∈ R∗ \Q, then fg ∈ R∗ \Q.

Proof. Apply Proposition 2.44 to a√
3
< b√

3
. This yields a rational number d such that a√

3
<

d < b√
3
. Additionally we can assume that d 6= 0: indeed, if d = 0 then it suffices to replace d

by the rational number that one can obtain by applying Proposition 2.44 to 0 and b√
3
. Hence,

a <
√

3d < b and d 6= 0.

It remains to show that
√

3d is irrationalbut this follows at once from Remark 2.48.

2.5 Absolute value

Definition 2.49. If x ∈ R, then the absolute value |x| of x is defined as follows:

|x| =
{

x if x ≥ 0
−x if x ≤ 0.

Example 2.50. |3| = 3, | − 5| = 5, | − π| = π, |0| = 0 and |5| = 5.

It is useful to remember the graph of the absolute value function,see Figure 1.

Figure 1: The graph of f(x) = |x|

Another way to define the absolute value |x| of x ∈ R is to define it as the distance between
x and 0 on the real line.

2.5.1 Properties of the absolute value

How does the absolute value |x| of a real number x compare to x itself, in relation to the usual
ordering on R?

Example 2.51. −
∣∣−√3

∣∣ ≤ −√3 and | −
√

3| ≥ −
√

3.

The inequalities in the above example hold for any real number: that is, for x ∈ R

−|x| ≤ x ≤ |x|. (2.51.a)

The absolute value behaves well with respect to the multiplication.

25



Example 2.52. |5 · (−3)| = | − 15| = 15 = 5 · 3 = |5| · | − 3|. Similarly,∣∣∣(−√2) · (−4)
∣∣∣ =

∣∣∣4√2
∣∣∣ = 4

√
2 =
√

2 · 4 =
∣∣∣−√2

∣∣∣ · | − 4|.

We can generalize Example 2.52: indeed, for all x, y ∈ R

|x| · |y| = |x · y|.

To prove this, you can just list all possible combinations for the signs of x, y (that is,
“positive”–“positive”; “positive”– “negative”; “negative”–“negative”) and prove the equality
in each case. Analogously, in the case of division, for x, y ∈ R, y 6= 0, we have that∣∣∣∣xy

∣∣∣∣ =
|x|
|y|
.

Example 2.53.
∣∣∣ 5
−4

∣∣∣ = |5|
|−4| .

The absolute value is also needed to relate powers and roots.

Example 2.54.
√

(−3)2 =
√

9 = 3 = | − 3| and
√

(7)2 =
√

49 = 7 = |7|.

In general, for x ∈ R,
√
x2 = |x|. This can be generalized to any n-th root of the n-th

power of a real number when n is an even natural number.

2.5.2 Triangular inequality

While we have seen that the absolute value is compatible with multiplication,that is, the abso-
lute value of a product of two terms is equal to the product of the absolute values of the terms,
the same does not hold for addition.

Example 2.55. |(−3) + 2| = | − 1| = 1 6= | − 3| + |5| = 8. To be more precise, |(−3) + 2| =
1 < 8 = | − 3|+ |5|.

So, while it is clear from the above example the the absolute value of a sum of two real
numbers is not necessarily equal to the sum of their absolute values, perhaps we may hope to
still be able to say something. What the second part of the example suggests is that Is this a
general property of the absolute value over the real numbers?

Indeed, it is. A deep property of the absolute value is the so-called triangle inequality,
whose name is rooted in geometric considerations that we already clear at the times of Euclid.

Question 2.56. Can you draw a triangle with sides of length 1, 4, and 600?

I do not think so. On the other hand, it is possible to draw a triangle whose sides have
length 3,4 and 6 (give it a try, you might need a compass).

What kind of constraints should we place on The reason is that for every triangle, the sum
of the length of two edges is always bigger then the length of the third edge. This implies a
triangle inequality for the absolute value, we will understand better the relation with triangles
when dealing with complex numbers, let us give a couple of examples now:

|3 + (−7)| ≤ |3|+ | − 7|

and
|(−5) + (−4)| ≤ | − 5|+ | − 4|

In general, we can prove the following.
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Proposition 2.57 (Triangle inequality). For all x, y ∈ R

|x+ y| ≤ |x|+ |y|.

Proof. Recall that x ≤ |x| and y ≤ |y|. So, if x+ y ≥ 0, then |x+ y| = x+ y ≤ |x|+ |y|.
Similarly, x ≥ −|x| and y ≥ −|y|. So, if x+ y ≤ 0, then |x+ y| = −x− y ≤ |x|+ |y|.

Exercise 2.58. Prove that for any x, y ∈ R

|x− y| ≥ ||x| − |y||
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3 COMPLEX NUMBERS

When we work over the real numbers, we will be often working with functions of the form
f : R → R. We will be intersted in understanding and studying the properties (e.g., deriva-
tives, integrals, monotonicity) of certain classes of functions (e.g., continuous, differnetiable,
integrable functions). Oftentimes, we will also be interested in understanding if and when a
function f : R→ R attains a specific value c ∈ bR. Let us give an example.

Example 3.1. Imagine that we are observing a particle moving along a linear rod. We can
model the linear rod with the real line. We would like to keep track of how the particle moves
as a function of time. Hence, we can think of the position of the particle as a function p : R→ R
defined as follows

p(t) := position of the particle along the line at time t.

We can assume that at time t = 0 (the starting time of our observation) the particle is placed
at the origin. Let us assume that we also know that at time t = 0 the particle is moving
with velocity v11. If no outer forces act on the particle, then the velocity of the particle stays
constant and the position can be easily written in terms of time in the form p(t) = v · t.
Let us assume instead that we know that there is there is a force acting on the particle and that
force applies a (constant) deceleration to the particle of magnitude a directed in the opposite
verse than that of the velocity. In this casem then the position of the particle is given by
p(t) = −1

2at
2 + vt. Hence, if we wanted to know whether at a certain point in time the particle

passes at a fixed point c ∈ R on the rod, we have to solve the equation

p(t) = c

which we can rewrite as

−1

2
at2 + vt− c = 0 ⇐⇒ at2 − 2vt+ 2c = 0,

where the second equality follows from the first by flipping the signs and multiplying the first
equation by 2. In the equation

at2 − 2vt+ 2c = 0, (3.1.a)

a, v, t are fixed real numbers, while the unknown that we are trying to compute is given by
t. As you have already seen in high school, the above equation admits the following two real
solutions

t1 =
2v +

√
4v2 − 8ac

2a
, t2 =

2v −
√

4v2 − 8ac

2a
,

provided that the quantity 4v2−8ac ≥ 0 (since the square root of a real number is well defined
only for non-negative real numbers). If 4v2 − 8ac < 0, then we cannot possibly find any real
solution to (3.1.a)

How do we remedy the lack of solutions for polynomial equations in the real numbers?
Polynomials are a big and relatively simple class of functions that appear rather naturally in
many contexts. Hence, it would be nice to know that we can always find solutions to polynomial
equations. On the other hand, the above example tells us that this is not possible, if we just
work with real numbers. The solution to this problem is a classic piece of mathematical wisdom.
When you are lacking a tool, why not invent it yourself? This is the idea behind the definition
of the complex numbers that we now proceed to explain.

11Here v could have both positive or negative sign, meaning that the particle is moving in the direction of the
positive real numbers or in the direction of the negative ones, along the linear rod.
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3.1 Definition

As discussed in the previous section, one obstruction to finding real solutions already for
quadratic equations is the lack, within the real numbers, of the square root for negative real
numbers.

To define the complex numbers, we introduce a new number i called the imaginary unit.
The number i is the square root of −1, that is, it satisfies the property

i2 = −1. (3.1.a)

The introduction of the imaginary unit i can be compared in terms of the philosophical leap
that to the introduction of 0, or of the negative numbers. It is remarkable that the equation
x2 = −1 has no solution in the set of real numbers, but two distinct solutions in the set of
complex numbers, namely i and −i.

The complex numbers can be intuitively defined as all those numbers that can be created
by using the real numbers and the usual operations (+,−, ·, /), together with i, keeping in mind
the relation in (3.1.a). Let us give a more formal definition of the complex numbers.

Definition 3.2. (1) A complex number is an expression of the form x + yi, where x, y are
real numbers, and i is the imaginary unit defined above.

(2) The set of complex numbers is denoted by C.

Thus,
C := {x+ yi | x, y ∈ R, i2 = −1}.

Often elements of C are denoted with the letter z.

Definition 3.3. Let z = x+ iy be a complex number.

(1) The real part Re(z) of z is the real number x.

(2) The imaginary part Im(z) of z is the real number y.

We will write z = x+ yi when we want to remind ourselves the real and imaginary part of
z.

Remark 3.4. When we write a complex number z whether we write it in the form x + yi,
x, y ∈ R, or in the form x+ iy,both representations stand for the same complex number, as the
imaginary unit i commutes with all real numbers; that is,

s · i = i · s, ∀s ∈ R.

Considering the notation for complex numbers introduced in Definition 3.2, in the form
x+ yi, taking y = 0 and letting x vary in R, we immediately obtain that R ⊆ C. As i 6∈ R, by
the definition of i, cf. (3.1.a), then we can be even more precise and write R ( C.

Example 3.5. (1) The real numbers 0, 3, and −π are complex numbers.

(2) Other examples of complex numbers are 5− i, 3i, −2i and 1
2 +
√

2i.

(3) Re(5 + 3i) = 5, Im(5 + 3i) = 3; Re(−3i) = 0, Im(−3i) = −3.

Complex numbers are not ordered: it makes no sense to ask if a complex number is bigger
than another; in particular, it does not make sense to ask if a complex number is positive or
negative
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3.2 Operations between complex numbers

We can add and multiply complex numbers using the standard formal properties of addition
and multiplication, always remembering that i2 = −1.

Example 3.6. (1) (5 + 3i) + (2− i) = (2 + 5) + (3− 1)i = 7 + 2i. In general:

(x1 + y1i) + (x2 + y2i) = (x1 + x2) + (y1 + y2)i.

(2) (1− 2i)(3 + 4i) = 3− 6i+ 4i− 8i2 = 3− 6i+ 4i+ 8 = 11− 2i. In general:

(x1 + y1i) · (x2 + y2i) = (x1x2 − y1y2) + (x1y2 + x2y1)i.

In the previous section we defined complex numbers as those numbers that we can write in
the form x + yi, with x, y ∈ R. In particular, it follows from our definition that any complex
number z ∈ C is completely determined by its real and imaginary part. Hence, we could think
of parametrizing all complex numbers by means of their real and imaginary part. This is indeed
possible, as shown in Figure 2. We identify the set of complex numbers with the points in the
Cartesian plane, which we will in this case rename the complex plane.

Figure 2: The complex plane.

Thus, thus for a complex number of the form z = x+ yi, we will use the real part x (resp.
the imaginary part y) as the cartesian coordinates of z in the complex plane. Then, the line
{y = 0} in the complex plane is automatically identified with the set of real numbers within
the complex numbers. For this reason, this line is called the real axis. The line {x = 0} in the
complex plane identifies instead with the set of complex numbers whose real part is 0. Numbers
of this form are called purely imaginary numbers. For this reason, the line {x = 0} is called
the imaginary axis.

Using this representation complex numbers become vectors, and the sum of complex num-
bers is equal to the sum of vectors, as in Figure 3. Moreover, multiplication of a complex
number z by a positive real number r > 0 corresponds to scaling the length of the vector
representing z by the factor r.

Definition 3.7. The modulus (or, absolute value) |z| of a complex number z ∈ C is its distance
from the origin in the complex plane. It is computed using the Pythagorean Theorem in terms
of the real and imaginary part of z:

|z| =
√

Re(z)2 + Im(z)2.

Example 3.8. (1) |3− 2i| =
√

32 + 22 =
√

25 = 5,
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Figure 3: Sum of complex numbers as vectors

(2) | − 3i| =
√

32 + 02 = 3

Using the representation of a complex number z ∈ C as z = x + yi, then the formula for
the modulus |z| of z can be written as

|z| = |x+ yi| =
√
x2 + y2.

As we can represent the addition of complex numbers as addition of the corresponding vectors,
we can derive from this the classical triangle inequality

∀z, w ∈ C, |z + w| ≤ |z|+ |w| (3.8.a)

cf. Figure 4.

Figure 4: Triangle inequality.

With reference to the picture, we can compose a triangle using the vector connecting the origin
to z1 (corresponding to the side of the triangle in the picture of length C), the vector connecting
the origin to z1 +z2 (corresponding to the side of length AC in the picture), and the translation
of the vector connecting the origin to z2, where we have moved the starting point of the vector
to z1 (this corresponds to the side of length B in the picture). The classical triangle inequality
tell us that A ≤ B+C. But given the way we constructed the triangle, this inequality translates
to

|z + w| ≤ |z|+ |w|. (3.8.b)

Definition 3.9. The conjugate z of a complex number z = x + yi is defined as the complex
number z = x+ iy := x− iy.

Hence, the conjugate of z is simply obtained by changing the sign of the imaginary part of
z. It is important to understand that geometrically in the complex plane this corresponds to
reflection across the real line.

Example 3.10. 3− 4i = 3 + 4i, 3i = −3i, 1 = 1.
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Figure 5: Conjugate of a complex number.

Conjugation is compatible with all operations by explicit computation: namely,for z1, z2 ∈
C, z3 ∈ C∗,

z1 + z2 = z1 + z2,

z1 · z2 = z1 · z2,(
z1

z3

)
=
z1

z3
.

To verify the formulas above, it suffices to write all numbers involved as x+ iy and expand all
the expressions obtained.

Similarly, we can use conjugation also to compute the modulus of a complex number:

zz = (x+ iy)(x+ iy) = (x+ iy)(x− iy) = x2 + ixy − ixy − i2y2 = x2 + y2 = |z|2

Hence, if z 6= 0, we can use the formula above to show that any such z ∈ C has a multiplicative
inverse, that is, z−1 exists12 and moreover it can be computed as

z−1 =
z

|z|2
=

x− iy
x2 + y2

. (3.10.c)

We can use the above formula to better understand division between two complex numbers.
Given two complex numbers z and w, with w 6= 0, we would like explicitly write z

w in the form
x+ yi.

Example 3.11. We can try to turn the denominator of the fraction into a real number by
multiplying with the conjugate of w, both above and below.

2− 3i

5 + i
=

(2− 3i)(5− i)
(5 + i)(5− i)

=
7− 17i

26
=

7

26
− 17

26
i

In fact, we can write down a general formula using (3.10.c):

z

w
=

zw

w · w
=

zw

|w|2
.

12By z−1 we denote the (unique) complex number that z · z−1 = 1 = z−1 · z.

32



Example 3.12. Here is another example.

1

3−
√

3i
=

3 +
√

3i

12
=

1

4
+

√
3

4
i, or

i

1− i
=
i(1− i)

2
=

1

2
+

1

2
i

We also have the following relation between conjugation, real part and imaginary part

Re(z) =
1

2
(z + z) and Im(z) =

1

2i
(z − z).

3.3 Polar form

We can associate to every non-zero complex number z ∈ C an angle, called the argument or
the phase of z, and denoted arg z, in the following way. In the complex plane, we take the the
angle formed by the half line R+ of the non-negative real numbers and the half-line Lz spanned
by the vector connecting the origin to z. For example, in Figure 6, the angle arg z has been
denoted with φ. The argument arg z is then defined as the angle between R+ and Lz, moving
in the anti-clockwise direction.

Example 3.13. arg 3 = 0; arg i = π
2 ; arg

√
2

2 (1 + i) = π
4 .

Take now a non-zero complex number z, we have seen that its distance from the origin is
|z|. Let φ be its argument. The number z

|z| has distance 1 from the origin, so it lies on the

trigonometric (or, unit) circle

S1 := {z ∈ C | |z| = 1} = {x+ yi ∈ C | x, y ∈ R, and x2 + y2 = 1}.

Hence, the real part of z
|z| (resp. the imaginary part of z) is just cos(φ) (resp. sin(φ)), where

φ is the angle (measured in radiants) formed by the positive part of the real axis and the half
line passing through the origin and the point z on the complex plane, cf. Figure 6.

Figure 6

Thus, under this assumptions, we conclude that

z = |z|(cos(φ) + sin(φ)i). (3.13.a)

The expression of a complex number z ∈ C given in (3.13.a) is called the polar form of z. It is a
very important and useful way to represent complex numbers, as we will see below. Conversely,
when we write a complex number z in the form x+ iy, we say that we are using the Cartesian
form, or Cartesian representation. Let us note that because of the presence of cos and sin, one
can add any multiple of 2π to the argument on the right hand side.
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Example 3.14. The polar form of 1 + i is
√

2
(
cos(π4 ) + sin(π4 )i

)
The multiplication of complex numbers becomes simple if we use the polar form and we use

some well-known trigonometric identities.

Example 3.15. Let φ and ψ be two numbers. Then

(5(cos(φ) + sin(φ)i))(3(cos(ψ) + sin(ψ)i)) =

=15(cos(φ) cos(ψ)− sin(φ) sin(ψ)) + (cos(φ) sin(ψ) + sin(φ) cos(ψ))i =

=15(cos(φ+ ψ) + sin(φ+ ψ)i),

where we have used the addition formulas for sine and cosine

cos(φ+ ψ) = cos(φ) cos(ψ)− sin(φ) sin(ψ), (3.15.b)

sin(φ+ ψ) = cos(φ) sin(ψ) + sin(φ) cos(ψ).

Thus, the example above can be immediately generalized to show that for two non-zero
complex numbers z1, z2 ∈ C, then arg z1 · z2 = arg z1 + arg z2, while we already saw that
|z1 · z2| = |z1| · |z2|,

z1 · z2 = |z1| · |z2| · (cos(arg z1 + arg z2) + sin(arg z1 + arg z2)i). (3.15.c)

Thus, when we multiply two non-zero complex numbers, the modulus of the product is the
product of the moduli and the argument of the product is the sum of the arguments!

Example 3.16.
∣∣∣12 +

√
3

2 i
∣∣∣ = 1, and arg

(
1
2 +

√
3

2 i
)

= π
3 . Thus,(

1

2
+

√
3

2
i

)2017

=

(
1

2
+

√
3

2
i

)
.

because 12017 = 1, so the absolute values does not change; then 2017 = 336 ·6+1, so 2017 · π3 =
336 · 2π + π

3 , so also the argument does not change.

The above example shows that the polar form is really useful to compute, for example,
powers of complex numbers.

We can also use the polar form to divide complex numbers. As with multiplication when
the moduli (plural of the modulus) multiplied and the arguments added up, with division, we
have to do the inverse. That is, the absolute value of a fraction is the fraction of the absolute
values and its argument is just the difference of the arguments:

z

w
=
|z|(cos(φ) + sin(φ)i)

|w|(cos(ψ) + sin(φ)i)
=
|z|
|w|

(cos(φ− ψ) + sin(φ− ψ)i).

Example 3.17. Let z ∈ C be given in polar form by

z := 3

(
cos

(
2π

7

)
+ i sin

(
2π

7

))
Then the inverse of z is

z−1 =
1

3

(
cos

(
−2π

7

)
+ i sin

(
−2π

7

))
=

1

3

(
cos

(
2π − 2π

7

)
+ i sin

(
2π − 2π

7

))
=

1

3

(
cos

(
12π

7

)
+ i sin

(
12π

7

))
.
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3.4 Euler formula

We can write the polar form of a non-zero complex number z in an even more compact
form.

Definition 3.18 (Euler’s formula). Let φ be a real number. We define

eiφ := cos(φ) + i sin(φ) (3.18.a)

Figure 7: Euler’s formula

We will treat the Euler formula above as a formal definition, a shorten notation to describe
the points on the unitary circle. At this point, we have not developed the tools to actually
discuss the mathematics behind this formula, as we have not defined exponentiation for complex
numbers. So, for now, just think about it as a shortcut for the part of the polar form depending
on the argument.

As an immediate consequence of Definition 3.18, we have the following properties.

Proposition 3.19. Let φ, ψ ∈ R and k ∈ Z. Then,

(1) eiφ · eiψ = ei(φ+ψ);

(2) eiφ+2kπ = eiφ.

Proof. (1) Use the trigonometric formulas in (3.15.b).

(2) As we measure angles in radiants, this is a simple consequence of the 2π-periodicity of
the sine and cosine functions.

We have mentioned above that we can use Euler’s formula to write the polar form of z in a
more compact form than the one introduce in (3.13.a). Indeed, in view of Definition 3.18, we
can rewrite the polar form of z as

z = |z|(cos(φ) + sin(φ)i) = |z|eiφ.

Example 3.20. Let z = 1 + i. Then

z =
√

2

(
1√
2

+
i√
2

)
=
√

2ei
π
4 .

We can rewrite the formula for multiplication of polar forms, (3.15.c), as

zw =
(
|z|eiφ

)(
|w|eiψ

)
= |z||w|ei(φ+ψ). (3.20.b)
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4 SEQUENCES

Definition 4.1. A sequence is a function x : N→ R.

Traditionally, we denote the value of the function x at n ∈ N by xn, that is, xn := x(n).
We denote instead by (xn) the whole sequence.

Let us start by looking at a few simple examples of sequences.

Example 4.2. (1) Let us fix a real number C ∈ R. Then the constant sequence of value C
is the sequence (xn) defined as follows

xn := C ∀n ∈ N.

(2) Arithmetic progression: let a, b be real numbers; we define sequence (xn) by

x0 := a, x1 := a+ b, x2 := a+ 2b, . . . , xn := a+ nb, . . . .

We call the type of sequence just constructed an arithmetic progression. For example,
the arithmetic progression given by a = 1 and b = 2 is x0 = 1, x1 = 3, x2 = 5, . . . ; this
particular arithmetic progression takes up as values all the positive odd numbers.

(3) Geometric progression: let a, q be real numbers; we define a sequence (xn) by

x0 := a, x1 := aq, x2 := aq2, . . . , xn := aqn, . . . .

We call the type of sequence just constructed an geometric progression. For example, the
geometric progression given by a = 2 and b = 4

5 is

x0 = 2, x1 = 2 · 4

5
=

8

5
, x2 = 2 ·

(
4

5

)2

=
32

25
, x3 = 2 ·

(
4

5

)3

=
128

125
, . . . .

(4) Let (xn) be the sequence defined by xn := (−1)n. Then the sequence only takes two
values:

xn =

{
−1 if n is odd,

1 if n is even.

Notation 4.3. At times, it may happen that the terms of a sequence (xn) are not defined for
all natural number values of the index n. For example, the sequence (xn) defined as

xn :=
1

n

is only well-defined when n 6= 0.
In discussing sequences (and their limits, or lack thereof), we will mostly be concerned with

properties of a sequence which are eventually true. That means that we will look for properties
of a sequence (xn) that hold starting from a certain index l ∈ N and then holds also for all the
indices > l. Hence, what will matter for us is that all terms of a sequence (xn) are defined for
all values of n greater or equal of a given natural number l ∈ N.

Hence, when we want to highlight that a sequence the terms of a sequence (xn) are defined
for all n ≥ l ∈ N, we will write

(xn)n≥l

When we can take l = 0, we will also write (xn)n∈N. When we omit the subscript n ≥ l, i.e.,
when we write (xn), we simply are not specifying what is the initial index starting from which
the sequence is defined.
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Similarly to what we did for the case of subset of R, we would like to define the concept
of boundedness, boundedness from above/below also in the case of sequences. To this end, it
suffices to notice that given a sequence (xn)n≥l, then it uniquely defines a subset S ⊂ R given
by all the values that the sequence takes,

S := {xn | n ∈ N, x ≥ l}. (4.3.a)

We can then use S to make sense of the concept of boundedness for a sequence, as follows.

Definition 4.4. Let (xn)n≥l be a sequence. We say that (xn)n≥l is


bounded from above,

bounded from below,

bounded,

if the set {xn | n ∈ N, x ≥ l} of values of the sequence is


bounded from above,

bounded from below,

bounded,

respectively.

It is an immediate consequence of Definition 2.8 that a sequence (xn)n≥l is bounded if and
only if it is both bounded from above and below.

Remark 4.5. Let (xn)n≥l be a sequence. Then (xn)n≥l is bounded if and only if there exists a
positive real number C such that the set of values of the sequence is a subset of the interval
[−C,C]. In particular, (xn)n≥l is bounded if and only the sequence (yn)n≥l, defined by yn :=
|xn| is bounded, too.

Example 4.6. (1) Let (xn)n∈N be the constant sequence of value C.
The set of value of this sequence is the singleton set {C} ⊂ R.

(2) Let (xn)n∈N be the sequence defined by xn := (−1)n, cf. Example 4.2.4. Then the set of
values of this sequence is {xn ∈ R | n ∈ N} and it coincides with set {−1, 1} ⊂ R. As
S is a finite subset of R, it follows that it is bounded and possesses both maximum and
minimum, 1 and −1, respectively.

(3) Let (xn)n∈N be an arithmetic progression with a = 0, b = 2. Then

{xn | n ∈ N} = {2n | n ∈ N}

where the latter is the set of even numbers. In particular, (xn) is not bounded.

We have also the following definitions focusing on the behavior of a sequence (xn) in the
terms both of ordering of the indices of the sequence, which vary in N, and of the ordering of
the values of the sequence, which instead vary in R.

Definition 4.7. Let (xn)n≥l be a sequence.

(1) We say that

(xn)n≥l is


increasing

strictly increasing

decreasing

strictly decreasing

if for each n ∈ N, n ≥ l,


xn ≤ xn+1

xn < xn+1

xn ≥ xn+1

xn > xn+1

.

(2) We say that

(xn)n≥l is

{
monotone,

strictly monotone,
if (xn) is

{
increasing or decreasing

strictly increasing or strictly decreasing
.
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Example 4.8. (1) Let C ∈ R and let (xn)n∈N be constant sequence of value C. Then
{xn | n ∈ N} = {C}. Hence (xn)n∈N is bounded.

(2) Let (xn)n∈N be an arithmetic progression of the form xn := a+ nb, a, b ∈ R. Then,

(i) the sequence is constant sequence of value a if and only if b = 0;

(ii) the sequence is increasing if and only if b ≥ 0: indeed, xn+1 = xn + b. The sequence
is strictly increasing if and only if b > 0;

(iii) analogously, the sequence is decreasing if and only if b ≤ 0. It strictly decreasing if
and only if b < 0;

(iv) the sequence is bounded from below if and only if b ≥ 0: indeed, in that case, we
already know that xn+1 ≥ xn, ∀n ∈ N, thus, xn ≥ x0 ∀n ∈ N and x0 is a lower
bound for the set of values of the sequence;

(v) the sequence is bounded from above if and only if b ≤ 0: indeed, in that case, we
already know that xn+1 ≤ xn, ∀n ∈ N, thus, xn ≤ x0 ∀n ∈ N and x0 is an upper
bound for the set of values of the sequence;

(vi) the sequence is bounded if and only if b = 0: indeed, (xn)n∈N is bounded if and only
if it is both bounded from above and below. But that is possible if and only if b = 0.

(3) Let (xn)n∈N be an arithmetic progression of the form xn := aqn, a, q ∈ R. Then,

(i) if a = 0 or q = 0, xn = 0, for all n ∈ N;

(ii) if q = 1, xn = a, for all n ∈ N;

Hence, in both these cases, (xn)n∈N is a constant sequence. We will assume that a 6= 0,
q 6= 1.

(iii) q = −1, then xn = (−1)na. This sequence is bounded but not monotone;

(iv) if q = 1
2 , then xn = a

2n . This sequence is strictly decreasing and bounded;

(v) if q = −1
2 , then xn = (−1)na

(2)n . This sequence is bounded but not monotone;

(vi) if q = 2, then xn = 2n. This sequence is strictly increasing and bounded from below;

(vii) q = −2, then xn = (−2)n. This sequence is neither bounded nor monotone.

We will analyze in general for what values of a and q the sequence (xn) is bounded in
Examples 4.14 and 4.20.

(4) The sequence (xn)n≥1 defined by xn := 5− 1
n is strictly increasing. In fact, for all n ∈ N∗,

1
n >

1
n+1 , hence xn+1 > xn.

4.1 Recursive sequences

We say that a sequence (xn) is recursive if the n-th term of the sequence xn is defined by a
formula f(xn−1, . . . , xn−j) which depends on the previous terms xn−1, . . . , xn−j of the sequence,
for some fixed integer j > 0 – here, j does not depend on n. We also require that the formula
f(. . . ) is fixed, i.e. it does not depend on n. For this definition to make sense, we will also have
to fix the values of x0, x1, . . . , xj−1 as those cannot be established using the formula otherwise.
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Notation 4.9. We will denote a recursive sequence (xn) defined by xn := f(xn−1, . . . , xn−j)
and with assighned initial values c0, c1, c2, . . . , cj−1 with the following notation

xn = f(xn−1, . . . , xn−j)

x0 = c0

x1 = c1

x2 = c2

...

xj−1 = cj−1

Example 4.10. Let us recall the Fibonacci sequence (xn)n∈N:{
xn = xn−1 + xn−2

x0 = 1 = x1.

Then, x2 = 2, x3 = 3, x4 = 5, x5 = 8, . . . and (xn) is strictly increasing as xk > 0, ∀k ∈ N.
[Prove this claim!]

Example 4.11. We can define arithmetic and geometric progressions as recursive sequences.

(1) An arithemetic sequence (xn)n∈N, xn := a+ bn, a, b ∈ R, can be defined recursively as{
xn = xn−1 + b

x0 = a.

(2) A geometric sequence (xn)n∈N, xn := aqn, a, q ∈ R, can be defined recursively as{
xn = qxn−1

x0 = a.

Example 4.12. Let us consider the following recursive sequence (xn)n∈N{
xn = xn−1 + (−1)nn2,

x0 = 0.
(4.12.a)

Equivalently, xn =
∑n

i=0(−1)ii2. What can we say about this sequence? For example, is it
bounded (resp. bounded from above or from below)? The answer to the above question can
be given using induction which we will now introduce.

4.2 Induction

Induction is a method of proving a property P (k) which depends on a parameter k which
varies among the natural numbers that are greater or equal than a fixed natural number C ∈ N.
More precisely, we want to be able to prove infinitely many different statements – all the versions
of property P (k), when k ≥ C in N; hence, we want to find a method that allows us to prove
all of these statements at once, without having to do infinitely many verifications (one for each
value of k).

To prove that property P (k) holds when k ≥ C ∈ N and k ∈ N, we can try to use the
following 2-step recipe, known as a proof by induction:

(1) we first show that P (k) holds for k = C – this is called the starting step of a proof by
induction;
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(2) we then proceed to show that P (k) holds for a given value k = n ∈ N (where n here is to
be treated as an unspecified number), under the assumption that we already know that
P (k) holds all choices of k starting from C and up to n − 1. This second step is called
the inductive step of a proof by induction. The assumption that P (k) statement holds
for k = C,C + 1, C + 2, . . . , n− 2, n− 1 is called the inductive hypothesis.

Hence, we can think of

Example 4.13. We continue to work with the sequence (xn)n∈N defined in Example 4.12. We
will prove by induction the following claim related to this sequence.

Claim. For the recursive sequence (xn)n∈N defined in (4.12.a), the even elements of the
sequence satisfy the following equality:

x2k = (2k + 1)k, ∀k ∈ N.

Hence, the property P (k) that we want to prove by induction is the following

P (k) : “x2k = (2k + 1)k”

and k is any natural number, i.e., we have to prove that P (k) holds for all values of k ∈ N.

Proof of the Claim. We prove that P (k) holds by induction on k ≥ 0.

◦ Starting Step: we need to show that P (0) holds.
Tat means that we need to show that the equality x2k = (2k + 1)k holds when we take
k = 0. But, x0 = 0 and (2 · 0 + 1) · 0 = 0, hence, indeed, x2k = (2k + 1)k.
The starting step is proven.

◦ Inductive Step: We will now assume that property P (k) holds for all values 0 ≤ k < n,
that is, we assume that we know already that for all 0 ≤ k < n, x2k = (2k + 1)k and we
will show that P (k) holds for k = n, i.e., we will show that x2n = (2n+ 1)n. Thus,

x2n = x2n−1 + (2n)2︸ ︷︷ ︸
recursive formula applied to x2n

= x2(n−1) − (2n− 1)2︸ ︷︷ ︸
recursive formula applied to x2n−1

+(2n)2

= x2(n−1) − ((2n)2 − 4m+ 1)︸ ︷︷ ︸
=(2n−1)2

+(2n)2 = x2(n−1) + 4n− 1

= (2n− 1)(n− 1)︸ ︷︷ ︸
inductive hypothesis: x2(n−1) = (2(n− 1) + 1)(n− 1)

+4n− 1 = 2n2 − 3n+ 1 + 4− 1

= 2n2 + n = (2n+ 1)n.

Hence we have shown that P (k) holds for k = n, which concludes the proof of the
inductive step and, thus, the whole proof by induction of our claim.

The claim implies that, as x2k = (2k + 1)k, then (xn)n∈N is not bounded from above: in
fact, for any real number b, we can find kb ∈ N such that

(2kb + 1)kb = 2(kb)
2 + kb ≥ (kb)

2 > b.

In fact,

(kb)
2 > b if and only if kb >

√
|b|, (4.13.a)
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and the Archimedean property Corollary 2.31 shows that the second inequality in (4.13.a) is
indeed satisfied for some kb ∈ N – it suffices to take kb = [

√
|b|] + 1. Thus, any given b ∈ R

cannot be an upper bound for the set of values of the sequence, since form > kb, x2m > x2kb > b.
We can also prove that the sequence is not bounded from below, one can also show that [prove
it, by induction again!]

x2k+1 = x2k − (2k + 1)2 = (2k + 1)k − (2k + 1)2 = −(2k + 1)(k + 1).

Hence, one can use a similar argument as before to show that (xn)n∈N is also not bounded from
below.

4.3 Bernoulli inequality and (non-)boundedness of geometric sequences

Example 4.14. Let (xn)n∈N be a geometric progression, that is, xn := aqn for some real
numbers a and q. If either a = 0 or |q| ≤ 1, then the sequence is bounded: more precisely,

(1) for a = 0 or q = 0, 1, the sequence is a constant sequence, cf. Example 4.8.3;

(2) if instead a 6= 0 and |q| ≤ 1 then |xn| ≤ |a|, for all n ∈ N.

We show that (2) holds for xn by induction on n ∈ N. Indeed:

◦ Starting Step: for n = 0, x0 = aq0 = a, hence |x0| = |a|.

◦ Inductive Step: assuming that |xj | ≤ |a|, for all natural numbers j < n then we need to
prove that also xn ≤ |a|. But then,

|xn| = |aqn| = |aqn−1||q| = |xn−1||q| ≤ a · 1 = a.

What can we say in regards to the boundedness of a geometric progression xn = aqn, when
a 6= 0 and |q| > 1? In this section we will show that, when a 6= 0 and |q| > 1, then the sequence
is unbounded. In order to do that, we need to show that

∀C ∈ R, ∃nC ∈ R, such that |xnC | ≥ C,

which is to say that there are no upper or lower bounds for the set of values of the sequence
(xn). Equivalently, we need to show that

∀C ∈ R, ∃nC ∈ R, such that |qnC | ≥ C

|a|
.

We saw in Example 4.11 that we can define a geometric sequence recursively. In view of that
and of the fact that we are assuming |q| > 1, then, as xn = qxn−1 it immediately follows that
|xn| > |xn−1|. Even better, we can inductively compute that |xn+l| > ql|xn|, for any l ∈ N.
Hence the absolute value of xn is increasing indefinitely with n. Is this enough to prove the
unboundedness of a geometric sequence with |q| > 1? We will answer this question in the
course of this section.

Example 4.15. While one may be tempted to think that an increasing sequence must even-
tually be unbounded, let us show that this is not always the case.

Let (xn)n≥1 be the sequence defined as xn := 5− 1
n . We have already seen in Example 4.2

that xn is strictly increasing. On the other hand, 0 < xn < 5 which implies that (xn) is
bounded. Hence, being strictly monotone does not suffice to imply boundedness of a sequence
as this example very simply illustrates.

Before we continue in our analysis of geometric sequences, we introduce the following result
that will be useful in proving that aqn is unbounded when a 6= 0, |q| > 1.
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Proposition 4.16 (Bernoulli’s inequality). Let q be a positive real number satisfying q > 1.
Then qn ≥ 1 + n(q − 1).

To prove Proposition 4.16, we first need to introduce a few new mathematical tools and
results. The first is the concept of binomial coefficient.

Definition 4.17. If 0 ≤ k ≤ n are natural numbers, then
(
n
k

)
is defined as(

n

k

)
:=

n!

k!(n− k)!
=
n · (n− 1) · · · · · (n− k + 1)

k · (k − 1) · · · · · 1
.

Here the symbol n! for n ∈ N is the factorial notation, that is, n! is the product of the first
n natural numbers (starting from 1):

n! = 1 · 2 · 3 · 3 · · · · · (n− 2) · (n− 1) · n.

We also define 0! := 1. The number n! can be recursively defined, for n ≥ 1, by the recurrence{
(n+ 1)! = (n+ 1) · n!

0! = 1.

Remark 4.18. Given natural numbers 0 ≤ k ≤ n, then the natural number
(
n
k

)
is equal to the

number of possible ways one can choose a subset of unordered13 k elements from a set of n
elements. You can find an explanation of this fact here.

One can show, using induction, the following properties of binomial coefficients.

Proposition 4.19. Let n, k be natural numbers and let x, y be real numbers. Then,

(1) For 0 ≤ k ≤ n, (
n

k

)
=

(
n

n− k

)
.

(2) For 1 ≤ k ≤ n− 1, (
n− 1

k

)
+

(
n− 1

k − 1

)
=

(
n

k

)
.

(3) (Binomial formula) For any x, y ∈ R,

(x+ y)n =

n∑
i=0

(
n

i

)
xiyn−i.

Proof. This is an exercise in the exercise sheet for Week 4.

We are now ready to fully prove Bernoulli’s inequality.

Proof of Proposition 4.16. The inequality is an actual equality when n = 0, 1. Then, we can
assume that n ≥ 2. Let us apply the binomial formula, Proposition 4.19; then,

qn = (1 + (q − 1))n =
n∑
i=0

(
n

i

)
(q − 1)i · 1n−i

=

(
n

0

)
(q − 1)0 +

(
n

1

)
(q − 1)1 +

n∑
i=2

(
n

i

)
(q − 1)i · 1n−i

=1 + n(q − 1) +
n∑
i=2

(
n

i

)
(q − 1)i · 1n−i.

13By unordered we mean that we do not distinguish the order in which the k elements are chosen.
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As q > 1, then (q − 1)i > 0, for all i ∈ N∗. Thus,
∑n

i=2

(
n
i

)
(q − 1)i · 1n−i > 0 and

qn = (1 + (q − 1))n =
n∑
i=0

(
n

i

)
(q − 1)i · 1n−i

=1 + n(q − 1) +
n∑
i=2

(
n

i

)
(q − 1)i · 1n−i > 1 + n(q − 1).

Example 4.20. Let (xn)n∈N be a geometric progression for some real numbers a and q, xn :=
aqn. Assume that |q| > 1 and a 6= 0.
Under these assumptions, Bernoulli’s inequality, Proposition 4.16, implies that (xn) is not
bounded. In fact,

|aqn| = |a||q|n ≥ |a|(1 + n(|q| − 1))︸ ︷︷ ︸
Bernoulli’s inequality

We can turn the latter expression into a sequence (yn), that is, yn := |a|(1 + n(|q| − 1)). The
sequence (yn) is not bounded since, for a fixed positive real number b ∈ R+,

|a|(1 + n(|q| − 1)) ≤ b ⇐⇒ n ≤
b
|a| − 1

|q| − 1
,

which does not hold for n ≥
[

b
|a|−1

|q|−1

]
+ 1. So, no b can be an upper bound for |xn|.

One can show similarly:

(1) (xn)n∈N is bounded if and only if |q| ≤ 1 or a = 0;

(2) (xn)n∈N is increasing if and only if

{
q ≥ 1 and a ≥ 0, or
0 ≤ q ≤ 1 and a ≤ 0.

;

(3) (xn)n∈N is strictly increasing if and only if

{
q > 1 and a > 0, or
0 < q < 1 and a < 0 .

(4) (xn)n∈N is decreasing if and only if

{
0 ≤ q ≤ 1 and a ≥ 0, or
q ≥ 1 and a ≤ 0.

(5) (xn)n∈N is strictly decreasing if and only if

{
0 < q < 1 and a > 0, or
q > 1 and a < 0 .

(6) (xn)n∈N is bounded from above if and only if |q| ≤ 1 or q > 1 and a ≤ 0;

(7) (xn)n∈N is bounded from below if and only if |q| ≤ 1 or q > 1 and a ≥ 0.

4.4 Limit of a sequence

Definition 4.21. Let (xn)n≥l be a sequence.

(1) We say that (xn)n≥l converges (or is convergent) to a number y ∈ R, if for each ε ∈ R∗+,
there exists nε ∈ N such that

∀n ∈ N such that n ≥ nε, then |xn − y| ≤ ε.

(2) If (xn)n≥l does not converge to any y ∈ R then we say that it is not convergent.
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If the number y ∈ R defined above exists then y is called the limit of the sequence (xn).
Once again, as we are talking about the limit of a sequence, this is only possible if the limit is
unique, when it exists. That is indeed the case.

Proposition 4.22. If a sequence (xn)n≥l converges, then its limit is unique.

Proof. Let us assume by contradiction that (xn)n≥l admits two distinct limits t1 6= t2 ∈ R.
Then, for each 0 < ε ∈ R there are nε, n

′
ε ∈ N such that for all n ≥ nε, then

|t1 − xn| ≤ ε,

and for all n ≥ n′ε, then

|t2 − xn| ≤ ε.

So, if we take nε := max{nε, n′ε}, then both of the above inequalities hold for all integers
n ≥ nε. In particular, for such n, we have

|t1 − t2| ≤ |t1 − xn|+ |xn − t2|︸ ︷︷ ︸
triangle inequality

≤ ε+ ε = 2ε

Since, this holds for all 0 < ε ∈ R, we obtain that t1 = t2.

Notation 4.23. When the limit y ∈ R or a sequence (xn)n≥l exists, we denote that by

lim
n→∞

xn = y. Alternatively, we also write xn
n→∞ // y .

Example 4.24. The sequence (xn)n≥1, defined as xn := 1− 1√
n

, is convergent.

Indeed, lim
n→∞

(
1− 1√

n

)
= 1. To verify this claim, for any fixed ε ∈ R∗+ we have to find an

index nε ∈ N such that

∀n ≥ nε,
∣∣∣∣1− 1√

n
− 1

∣∣∣∣ ≤ ε.
On the other hand, ∣∣∣∣1− 1√

n
− 1

∣∣∣∣ =

∣∣∣∣ 1√
n

∣∣∣∣ =
1√
n
.

Hence, it suffices to show that there exists an index nε ∈ N such that ∀n ≥ nε, then 1√
n
< ε.

The latter inequality is equivalent to the inequality
√
n > 1

ε , which in turn is equivalent to the
inequality n > 1

ε2
. Hence, for any fixed ε ∈ R∗+, we have to find an index nε ∈ N such that

∀n ≥ nε, n >
1

ε2
.

Thus, for a fixed ε > 0, it suffices to take nε :=
[

1
ε2

]
+ 1.

Example 4.25. Let us introduce an example of a non-converging sequence.
Let us consider the sequence (xn)n∈N defined by xn := (−1)n. Indeed, if (xn) was convergent
with limit y, then we could apply Definition 4.21 with ε := 1

2 and find n 1
2
∈ N such that for

all integers n ≥ n 1
2
, |xn − y| < 1

2 . In particular, if n′ ≥ n 1
2

is any other integer, then we would

have:

|xn′+1 − xn′ | = |xn − y + y − xn′ | ≤ |xn − y|+ |y − xn′ |︸ ︷︷ ︸
triangle inequality

<
1

2
+

1

2
= 1

However, in our sequence |xn′+1 − xn′ | = |1 − (−1)| = 2 > 1 which prompts a contradiction.
Thus, this sequence cannot converge to any limit y ∈ R.
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Remark 4.26. In fact, the argument used in Example 4.25 shows that if (xn)n≥l is a convergent
sequence, then for all 0 < ε ∈ R there is an nε ∈ N such that for all n, n′ ≥ nε, |xn − xn′ | < 2ε.
[Verify this fact using again the triangle inequality!] We will see that this observation can be
formalized into the notion of Cauchy sequence, see Section 4.9.

Also, using a similar argument as in Example 4.25 above, we can show the following result.

Proposition 4.27. Let (xn)n≥l be a sequence. If (xn)n≥l is convergent, then it is bounded.

Proof. Set y := lim
n→∞

xn. Applying Definition 4.21 with ε := 1, then there exists n1 ∈ N, such

that for all integers n ≥ n1, |xn − x| ≤ 1. That is, for all integers n ≥ n1,

−1 + x < xn < 1 + x, and |xn| < max(| − 1 + x|, |1 + x|). (4.27.a)

Let us define

R := max{|xl|, |xl+1|, |xl+2| . . . , |xn1−3|, |xn1−2|, |xn1−1|, |x+ 1|, |x− 1|}.

We claim that R is an upper bound and−R is a lower bound for the set of values of the sequence.
Indeed, R (resp. −R) is an upper bound (resp. a lower bound) for the set {xl, xl+1 . . . , xn1−1}
just because R is ≥ than the absolute values of all these elements of the sequence, by the
very definition of R above. Furthermore, R (resp. −R) is an upper bound (resp. a lower
bound) for the other elements of the sequence, because these elements are lying in the interval
I = [x − 1, x + 1], R (resp. −R) is an upper bound (resp. a lower bound) for I, again, by
definition of R.

Example 4.28. The sequence (xn)n∈N defined by xn :=
√
n3 cannot be convergent as it is not

bounded.

Remark 4.29. The viceversa of the above proposition is not true: that is, if a sequence (xn)n≥l
is bounded, then it is not necessary convergent. An example of that is given by the sequence
(xn)n∈N defined by xn := (−1)n, see Example 4.25.
In Section 4.7 we shall see that a monotone bounded sequence (xn)n≥l is always convergent.
Of course, the sequence (xn) defined by xn := (−1)n is not monotone.

4.4.1 Limits and algebra

In this section we show that (finite) limits of sequences respect the standard operations.

Proposition 4.30. Let (xn) and (yn) be two convergent sequences and let x := lim
n→∞

xn and

y := lim
n→∞

yn be their limits. Then:

(1) the sequence (xn + yn) is also convergent, and lim
n→∞

(xn + yn) = x+ y,

(2) the sequence (xn · yn) is also convergent, and lim
n→∞

(xn · yn) = x · y,

(3) if y 6= 0, then the sequence
(
xn
yn

)
is also convergent, and lim

n→∞

(
xn
yn

)
= x

y , and

(4) if there is an n0 ∈ N, such that xn ≤ yn for each integer n ≥ n0, then x ≤ y.

Remark 4.31. Let us note that, since y 6= 0, there exists n0 ∈ N such that yn 6= 0 for n ≥ n0.
Hence dividing the quotient xn

yn
makes sense for n ≥ n0, provided that xn is defined for such

choice of index.

45



Proof. We prove only (1). We refer to 2.3.3 and 2.3.6 in the book for the proofs of the others.
Fix 0 < ε ∈ R. Let us try to explain how the proof should intuitively go. We need to show
that for big enough an index n ∈ N, |(xn + yn)− (x+ y)| is smaller than ε. However, as (xn),
(yn) are both convergent with limit x, y, respectively, we know that |xn − x| and |yn − y| are
small for big n; moreover,

|(xn + yn)− (x+ y)| = |(xn − x) + (yn − y)| ≤ |xn − x|+ |yn − y|︸ ︷︷ ︸
triangle inequality

. (4.31.b)

So, to make |(xn + yn)− (x+ y)| smaller than ε, it suffices to make the sum |xn − x|+ |yn − y|
smaller than ε. That we can attain for example if we make both |xn − x| and |yn − y| smaller
than ε

2 . The choice of ε
2 is rather arbitrary: the proof would work with any two positive

numbers that add up to ε, for example with ε
3 and 2ε

3 , but for simplicity, we shall stick with ε
2 .

After this initial discussion, we proceed to the formal proof.
We work with ε > 0 fixed above. Thus, there exist integers n′ε

2
and n′′ε

2
, such that

∀n ≥ n′ε
2
, |x− xn| ≤

ε

2
, and

∀n ≥ n′′ε
2
, |y − yn| ≤

ε

2
.

Let us define nε := max
{
n′ε

2
, n′′ε

2

}
. Then, (4.31.b) implies that for every n ≥ nε,

|(xn + yn)− (x+ y)| ≤ |xn − x|+ |yn − y| ≤
ε

2
+
ε

2
= ε.

This shows that (xn + yn) satisfies Definition 4.21 for convergence with respect to the finite
limit x+ y.

Property (4) in Proposition 4.30 implies the following immediate corollary.

Corollary 4.32. Let (xn)n≥l be a converging sequence and let x := lim
n→∞

xn be its limit. If

there exists n0 ∈ N such that xn ≥ 0, ∀n ≥ n0, then x ≥ 0

Example 4.33. In Corollary 4.32, it may well happen that x = 0 even if xn > 0, ∀n ∈ N as
shown by the sequence xn = 1

n .

Example 4.34. With the above machinery we can already compute the limits of series that
are defined as fractions of polynomials; a fracion whose numerator and denominator are both
polynomials is called a rational function.

(1) xn := n2+2n+3
4n2+5n+6

. Then

lim
n→∞

xn = lim
n→∞

n2 + 2n+ 3

4n2 + 5n+ 6
= lim

n→∞

1 + 2
n + 3

n2

4 + 5
n + 6

n2︸ ︷︷ ︸
dividing both the numerator
and the denominator by n

=

lim
n→∞

(
1 + 2

n + 3
n2

)
lim
n→∞

(4 + 5
n + 6

n2 )︸ ︷︷ ︸
using Proposition 4.30.3 as
both the numerator and de-
nominator have finite limit

=
lim
n→∞

1 + lim
n→∞

2
n + lim

n→∞
3
n2

lim
n→∞

4 + lim
n→∞

5
n + lim

n→∞
6
n2︸ ︷︷ ︸

addition rule for finite limits

=

1 + lim
n→∞

2
n + 3 ·

(
lim
n→∞

1
n

)2

4 + lim
n→∞

5
n + 6 ·

(
lim
n→∞

1
n

)2

︸ ︷︷ ︸
product rule for finite limits &
limits of constant sequences

=
1 + 0 + 0

4 + 0 + 0
=

1

4

Here are a few comments on the manipulation we just performed:
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(i) dividing the numerator and the denominator by n is an operation that one cannot
perform for n = 0. So, after the second equality sign the expression that we wrote
does not make sense for n = 0. But this is not an issues, for when we study a
sequence for the purpose of understanding its convergence, we are only interested
in the values of the index for big enough values of the index n. So you are free to
substitute the 0-th term with any real number, e.g., 0, after the second equality sign.
The same issue will show up many other times in this sectio, for example, when we
are computing limits of sequences of the form 2

n , or 3
n2 . Hence, from now onwards,

whenever we work with sequences to discuss their convergence, we will not worry too
much about what may happen to a finite number of values of the sequence, whenever
we perform some algebraic manipulations, or we show that certain estimates holds,
etc.

(ii) for any number c ∈ R, lim
n→∞

c
n = 0: infact, given a fixed ε ∈ R∗+, we may choose

nε :=
[
c
ε

]
+ 1, and for this choice we have for each integer n ≥ nε:∣∣∣ c

n

∣∣∣ < c
c
ε

= ε.

(iii) in the step where we use that limits behave well with respect to fractions, we should
check first that the limit of the denominator is not 0. However, following our argu-
ment, we see that this limit is 4, so we are fine.

(2) xn = n+2
3n2+4n+5

. Here we will not give the above explanations again (as they are the
same):

lim
n→∞

xn = lim
n→∞

n+ 2

3n2 + 4n+ 5
= lim

n→∞

1
n + 2

n2

3 + 4
n + 5

n2

=
0 + 0

3 + 0 + 0
= 0

(3) xn = n2+2n+3
4n+5 . For n ≥ 1, we have 0 ≤ 3

n and 1 ≥ 5
n . Hence, for n ≥ 1:

xn =
n2 + 2n+ 3

4n+ 5
=
n+ 2 + 3

n

4 + 5
n

≥ n+ 2

5

This shows that (xn) is not bounded and hence cannot be convergent by Proposition 4.27.

Using the method of the above exercise one can show the following result on limits of
sequences defined by means of rational functions.

Proposition 4.35. If (xn) and (yn) are sequences given by polynomials

xn := P (n), P (X) = a0 + a1X + · · ·+ apX
p, with ap 6= 0, and

yn := Q(n), Q(X) = b0 + b1X + · · ·+ bqX
q, with bq 6= 0,

then

(1) if p ≤ q, then
(
xn
yn

)
is convergent, and

(i) if p = q, then lim
n→∞

xn
yn

=
ap
bq

,

(ii) if p < q, then lim
n→∞

xn
yn

= 0,

(2) if p > q, then
(
xn
yn

)
is not bounded and thus it does not converge.

Proof. See page 22 of the book for a precise proof. The book contains states an unnecessary
assumption: it is requested that yn 6= 0 for all n ∈ N, but in fact it is enough if yn 6= 0 for some
n ∈ N, as, in that case, yn is a given by evaluating a non-zero polynomial at natural numbers,
and a non-zero polynomial has at most as many roots as its degree.
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4.5 Squeeze theorem

Theorem 4.36 (Squeeze Theorem). Let (xn), (yn), and (zn) be three sequences. Assume
that:

(1) the sequences (xn), (zn) are convergent, and limn→∞ xn = a = limn→∞ zn; and

(2) there exists n0 ∈ N such that for all integers n ≥ n0,

xn ≤ yn ≤ zn.

Then the sequence (yn) is convergent, and

lim
n→∞

yn = a.

Proof. For each ε > 0, there are natural numbers n′ε and n′′ε , such that

∀n ≥ n′ε, a− ε < xn, and,

∀n ≥ n′′ε , a+ ε > zn.

Set nε := max{n′ε, n′′ε , n0}. Then, for each integer n ≥ nε

a− ε < xn ≤ yn ≤ zn < a+ ε,

which in particular implies that |yn − a| < ε.

Example 4.37. Let (xn)n≥1 be the sequence defined by xn := 1
n + 1√

n
. We show that

lim
n→∞

(
1
n + 1√

n

)
= 0.

In fact, we may squeeze xn as follows

0 ≤ 1

n
+

1√
n
≤ 2√

n
, ∀n ≥ 1

Indeed:

(1) 0 ≤ 1
n + 1√

n
holds for every integer n ≥ 1.

(2) For every integer n ≥ 1 we also have:

1

n
+

1√
n
≤ 1√

n
+

1√
n︸ ︷︷ ︸

n≤n2⇔
√
n≤n

=
2√
n

;

On the other hand,

(i) the limit of the constant sequence of value 0 is 0;

(ii) lim
n→∞

1√
n

= 0 by the computation of Example 4.24.

Hence, we can apply the Squeeze Theorem 4.36 to conclude that (xn)n∈N converges and its
limit is 0.

Example 4.38. In general, we can show that a geometric sequence (xn)n∈N, xn := aqn is
convergent if and only if a = 0 or −1 < q ≤ 1.
Indeed:
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(1) When a = 0 or q = 0, 1, then the sequence is constant. If q = −1, then xn = (−1)na and
the sequence does not converge.

(2) If |q| > 1, we have already shown in Example 4.14 that the sequence is not bounded.
Hence, Proposition 4.27 implies that the sequence is also non-convergent.

(3) If |q| < 1, we show that the sequence converges and that lim
n→∞

aqn = 0.

To prove that, we should understand when |aq|n < ε for a given 0 < ε ∈ N. But,

|aq|n < ε ⇐⇒ |a|
ε
<

(
1

|q|

)n
(4.38.a)

As |q| < 1, then
∣∣∣1q ∣∣∣ > 1 and we can apply Bernoulli’s inequality, Proposition 4.16,

showing that (
1

|q|

)n
≥ 1 + n

(
1

|q|
− 1

)
> n

(
1

|q|
− 1

)
. (4.38.b)

Putting (4.38.a), (4.38.b) together, then the inequality |aq|n < ε holds as long as

|a|
ε
< n

(
1

|q|
− 1

)
. (4.38.c)

Since the inequality in (4.38.c) is satisfied for all integer n ≥ nε, where

nε =

 |a|
ε(

1
|q| − 1

)
+ 1,

we can conclude that for all n ≥ nε, |aqn| < ε.

Example 4.39. Let (yn)n∈N be the sequence defined by yn := 2n

n! .
We claim that lim

n→∞
2n

n! = 0. Indeed, we have for all integers n ≥ 3:

0︸︷︷︸
xn

≤ 2n

n!︸︷︷︸
yn

≤ 2n

2 · 3n−2
=

32 · 2n

2 · 32 · 3n−2
=

9

2
·
(

2

3

)n
︸ ︷︷ ︸

zn

Furthermore lim
n→∞

xn = lim
n→∞

0 = 0 and lim
n→∞

zn = lim
n→∞

9
2 ·
(

2
3

)n
= 9

2 · lim
n→∞

(
2
3

)n
= 9

2 · 0 = 0

by Example 4.38. So, the Squeeze Theorem 4.36 concludes our claim.

Example 4.40. Let (yn)n∈N be the sequence defined by yn := n
√
n. we show that lim

n→∞
xn = 1.

To prove the above claim, we show that we can squeeze the sequence (yn) as follows:

1︸︷︷︸
xn

≤ yn ≤ zn := 1 +
1√
n
, ∀n� 1.

As the limit of both sides is 1, and xn is not smaller than 1, it is enough to prove the second
inequality, for high enough values of n, that is, we shall prove that there exists n0 ∈ N such
that the above inequality holds ∀n ≥ n0. To do that, consider the following equivalence of
inequalities:

n
√
n ≤ 1 +

1√
n
⇐⇒ n ≤

(
1 +

1√
n

)n
=

n∑
i=0

(
n

i

)
1

(
√
n)i
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Note that the sum on the right hand side for i = 4 is

n(n− 1)(n− 2)(n− 3)

24

1

(
√
n)4

=
n(n− 1)(n− 2)(n− 3)

24n2
.

So, we know the desired inequality (i.e., that n
√
n ≤ 1 + 1√

n
) as soon as n ≥ 4 and n ≤

n(n−1)(n−2)(n−3)
24n2 . The latter is equivalent to

24n2

(n− 1)(n− 2)(n− 3)
≤ 1.

However, we have just learned that

lim
n→∞

24n2

(n− 1)(n− 2)(n− 3)
= 0,

so there is an integer n1, such that for each n ≥ n1,∣∣∣∣ 24n2

(n− 1)(n− 2)(n− 3)

∣∣∣∣ ≤ 1.

[There is a different proof in the book, on page 24: check that out, too!].

Corollary 4.41. Let (xn) be a convergent sequence, and let (yn) be a bounded sequence. If
lim
n→∞

xn = 0, then (xnyn) is convergent and lim
n→∞

xnyn = 0.

Remark 4.42. Given a sequence (xn), then lim
n→∞

xn = 0 if and only if lim
n→∞

|xn| = 0.

In fact, if we assume that lim
n→∞

xn = 0, then we can use a similar argument to show that

lim
n→∞

|xn| = 0.

Proof of Corollary 4.41. Let us note that showing that lim
n→∞

xnyn = 0 is equivalent to showing

that lim
n→∞

|xnyn| = 0. This follows immediately from Remark 4.42.

As yn is bounded, there is an integer M > 0 such that |yn| ≤M for all n ∈ N. Hence, we may
squeeze |xnyn|:

0 ≤ |xnyn| ≤M · |xn|,

Since lim
n→∞

M · |xn| = M · lim
n→∞

|xn| = 0, then also lim
n→∞

|xnyn| = 0.

Example 4.43. Let (xn)n≥1 be the sequence defined by xn := 1
n2 sin(n). We show that

lim
n→∞

1
n2 sin(n) = 0.

Let us note that we do not know whether sin(n) does or does not converge in itself – it is possible
to prove that indeed it does not converge. So, we may not apply the previous multiplication
rule of limits. However, we may apply the previous corollary, as lim

n→∞
1
n2 = 0, and sin(n) is

bounded (by −1 and 1).

Example 4.44. Let us define the sequence (xn)n∈N recursively as{
xn+1 = sin(xn)

2 ,

x0 = 1.

Then,

|xn+1|
|xn|

=
| sin(xn)|

2

|xn|
≤ 1

2
,
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where the last inequality follows from the fact that | sin(x)|
|x| ≤ 1 for all x ∈ R. To show this,

just notice that |x| measures the length of the circle segment of angle (measured in radiants)
x, where we count multiple revolutions too, and | sin(x)| gives the absolute value of the y-
coordinate of the endpoint of the circle segment, as shown in the figure below.
In particular,

Figure 8: | sin(θ)| ≤ |θ|

|xn+1| =
|xn+1|
|xn|

|xn| ≤
1

2
|xn|. (4.44.d)

Iterating the observation in (4.44.d), we obtain

|xn+1| ≤
1

2
|xn| ≤

1

22
|xn−1| ≤

1

23
|xn−2| ≤ · · · ≤

1

2n
|x1| ≤

1

2n+1
.

So, we may use the Squeeze Theorem 4.36 to show that lim
n→∞

xn = 0, squeezing since

0 ≤ xn ≤
1

2n
, ∀n ∈ N.

4.5.1 Limits of recursive sequences

Example 4.45. The Fibonacci sequence (xn)n∈N is defined by{
xn+1 = xn + xn−1

x0 = x1 = 1.

If we define the sequence (yn)n∈N by yn := xn+1

xn
, then the sequence (yn) admits a recursive

definition as follows {
yn+1 = 1 + 1

yn

y0 = 1.
(4.45.e)

We call (yn)n∈N the sequence of Fibonacci quotients.

Proposition 4.46. If (yn) is the sequence of Fibonacci quotients, then ∀n ∈ N, 1 ≤ yn ≤ 2.

Proof. We prove the above statements by induction on n ∈ N.

◦ Starting step: the n = 0 case; by definition we have 2 ≥ y0 = 1.
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◦ Inductive step: we can assume that we know that statement for n and then we prove it
for n+ 1 below:

yn+1 = 1 +
1

yn
≥ 1 +

1

2
≥ 1,

and

yn+1 = 1 +
1

yn
≤ 1 +

1

1
= 2,

Example 4.47. Let us continue with Example 4.45. As we know that the sequence of Fibonacci
quotients is bounded, we can ask whether it converges or not.
If a limit exists, can we use the recursive relation in (4.45.e) to find what that limit is? Let us
try! Let us assume now that (yn) is convergent, and lim

n→∞
yn = y. Then, as yn ≥ 1, it follows

that y ≥ 1. Furthermore, by (4.45.e),

y = lim
n→∞

yn = lim
n→∞

yn+1 = lim
n→∞

(
1 +

1

yn

)
︸ ︷︷ ︸

recursive relation in (4.45.e)

= 1 +
1

lim
n→∞

yn
= 1 +

1

y︸ ︷︷ ︸
algebraic rules of limit

.

This yields that the limit y satisfies the equation y = 1+ 1
y which we can rewrite as y2−y−1 = 0

(since we know that y 6= 0) and whose solutions are

y =
1±
√

1 + 4

2
=

1±
√

5

2

As we have seen that 1 ≤ y ≤ 2, then this forces the equality y = 1+
√

5
2 . Thus, if the limit of

(yn) exists, then y = 1+
√

5
2 However, we have not proven yet that (yn) converges. As we have

figured out that if (yn) converges the only possible limit is 1+
√

5
2 , we may show that that the

sequence zn :=
∣∣∣yn − 1+

√
5

2

∣∣∣ converges to 0. But then,

zn+1 =

∣∣∣∣∣yn+1 −
1 +
√

5

2

∣∣∣∣∣ =

∣∣∣∣∣1 +
1

yn
− 1− 1

1+
√

5
2

∣∣∣∣∣ =

∣∣∣∣∣ 1

yn
− 1

1+
√

5
2

∣∣∣∣∣︸ ︷︷ ︸
we apply the definition of the sequence to yn+1, and

then as we found 1+
√

5
2

as the solution of y = 1 + 1
y

we may replace 1+
√

5
2

by 1 + 1
1+

√
5

2

=

∣∣∣yn − 1+
√

5
2

∣∣∣
yn

1+
√

5
2

≤ |zn|
1+
√

5
2

Iterating this reasoning, we get that

zn+1 ≤
|zn|

1+
√

5
2

≤ |zn−1|
(1+
√

5
2 )2

≤ |zn−2|
(1+
√

5
2 )3

≤ · · · ≤ |zn−k|
(1+
√

5
2 )k+1

.

and thus,

0 ≤ zn ≤
|z0|(

1+
√

5
2

)n ,
where

lim
n→∞

|z0|(
1+
√

5
2

)n = 0.

52



So, the Squeeze Theorem (Theorem 4.36) shows that lim
n→∞

zn = 0. This in turn implies, by the

definition of zn that lim
n→∞

yn = 1+
√

5
2 . Summarizing, we showed that for the Fibonacci sequence

(xn)

lim
n→∞

xn+1

xn
=

1 +
√

5

2

The number 1+
√

5
2 is also known as the Golden ratio.

The general approach to finding the limit of a recursive sequence (xn),

xi = f(xi−1, xi−2, . . . , xi−n)

x0 = c0

x1 = c1

x2 = c2

...

xn−1 = cn−1

is similar to the one we just explained in Example 4.47.
It can be summarized in the following 3-step recipe:

(1) assuming that there exists a finite limit for (xn), lim
n→∞

xn = x, then find the solutions of

the equation

x = f(x, x, x, . . . , x). (4.47.f)

In setting up such equation, one has to be careful as to whether the equation itself and its
solutions are well-defined – e.g., one has to be careful when x appear in the denominator
of a fraction: for which values of x is f(x, x, x, . . . , x) makes sense? Can we make sure that
those values of x for which f(x, x, x, . . . , x) is not well-defined are values which cannot
be attained by lim

n→∞
xn?

If the above equation does not admit any solutions, then the sequence (xn) cannot admit
limit;

(2) we try to exclude all but one of the possibilities for among the values of x obtained in
the previous point by using some argument coming from the explicit definition of (xn);

(3) if we found a unique solution x̄ of(4.47.f), we can try to make a direct verification hat
lim
n→∞

xn = x̄ by showing that the x̄ satisfies the definition of limit for (xn).

Example 4.48. This method of finding the limit does not always work.
For example, consider the recursive sequence (xn)n∈N defined by{

xn+1 = 1
2(xn + xn−1)

x0 = C.

Then applying Step 1 in the above recipe gives the equation x = 1
2(x + x). Of course, this

equation is satisfied for any value of x ∈ R. Hence, we cannot use it to restrict th epossible
values of the limit of (xn)n∈N.
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Example 4.49. Here is an example of a recursive sequence where our recipe does not work.
Let a, b ∈ (0,+∞) and let (xn)n∈N be the recursive sequence defined by the recurrence relation{

xn+1 = ax2
n

x0 = b.

Claim 1. For all n ∈ N, xn = a2n−1b2
n
.

Proof. We prove the claim by induction on n ∈ N.

◦ Starting step: For n = 0, x0 = a20−1b2
0

= b.

◦ Inductive step: Assuming that xk = a2k−1b2
k

for all 0 ≤ k < n, then

xn =ax2
n−1

=a ·
(
a(2n−1−1) · b2n−1

)2

=a · a(2·2n−1−2) · b2·2n−1

=a(2n−1)b2
n
.

Now, applying the first step of our recipe, we assume that lim
n→∞

xn = x and we solve the

equation
x = ax2.

Solutions are x = 0 and x = 1
a – the latter is well defined since a 6= 0.

We can actually compute lim
n→∞

xn directly: we have to distinguish 3 different cases:

(1) if ab = 1 then

lim
n→+∞

xn = lim
n→∞

(ab)2n

a
=

1

a
.

Hence, in this case the limit of (xn)n∈N corresponds to one of the solutions that we found
above;

(2) if ab < 1 then

lim
n→+∞

xn = lim
n→∞

(ab)2n

a
= 0.

Also in this case the limit of (xn)n∈N corresponds to one of the solutions that we found
above;

(3) if ab > 1 then xn = (ab)2n

a which is not bounded; even better,

lim
n→+∞

xn =
(ab)2n

a
= +∞.

In this case, our algorithm could not possibly work since (xn)n∈N being unbounded cannot
possibly converge to a finite limit.
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4.5.2 Unbounded sets and infinite limits

Definition 4.50. Let (xn) be a sequence.

(1) We say that (xn) approaches +∞ if for all C ∈ R there is an index nC ∈ N such that for
all integers n ≥ nC , xn ≥ C.

(2) We say that (xn) approaches −∞ if for all C ∈ R there is an index nC ∈ N such that for
all integers n ≥ nC , xn ≤ C.

Notation 4.51. If a sequence (xn) approaches +∞ (resp. −∞), we write

lim
n→∞

xn = +∞ (resp. lim
n→∞

xn = −∞).

If a sequence (xn) satisfies lim
n→∞

xn = ±∞, then it cannot possibly converge to a finite limit,

as Definition 4.50 implies that (xn) is unbounded.

Example 4.52. Let (xn)n∈N be a geometric sequence, xn := aqn.

(1) The Bernoulli inequality, see Proposition 4.16, implies that for every geometric progres-
sion (xn)n∈N, xn := aqn, with a > 0 and q > 1 limxn = +∞. An example is the sequence
(xn)n∈N defined by xn := 3 · 2n. In fact, xn ≥ 3(1 + n(2 − 1)) = 3 + 3n, and by the
Archimidean property, cf. Proposition 2.30, given C ∈ R, then

if C ≤ 0, then ∀n ∈ N, 3n+ 3 > 0 ≥ C,

if C > 0, then ∀n ≥
[
C

3

]
, 3n+ 3 > 3

C

3
= C.

(2) Similarly, limxn = −∞ for every geometric progression xn = aqn with a < 0 and q > 1.
An example is the sequence defined by xn := −3 · 2n.

(3) On the other hand, if a 6= 0 and q < 0, then (xn) is unbounded but it neither approaches
+∞ not it approeaches −∞. For example xn = (−2)n is non-convergent but it also does
not admit limit equal to +∞ or −∞.

The infinite limits satisfy some algebraic rules, and do not satisfy others. Check out page
29 and 30 of the book for full list.

Proposition 4.53. Let (xn), (yn) be two sequences.

(1) Assume that lim
n→∞

xn = +∞ and that (yn) is bounded from below. Then,

(i) lim
n→∞

xn + yn = +∞;

(ii) if there exists A ∈ R∗+ and n0 ∈ N such that ∀n ≥ n0, yn ≥ A, then lim
n→∞

xn·yn = +∞;

(iii) if (yn) is bounded, then lim
n→∞

yn
xn

= 0.

(2) Assume that lim
n→∞

xn = −∞ and that (yn) is bounded from above. Then,

(i) lim
n→∞

xn + yn = −∞;

(ii) if there exists A ∈ R∗+ and n0 ∈ N such that ∀n ≥ n0, yn ≥ A, then lim
n→∞

xn·yn = −∞;

(iii) if (yn) is bounded, then lim
n→∞

yn
xn

= 0.
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Example 4.54. Let (xn)n∈N be the sequence defined by xn := 2n + sin(n). Then

lim
n→∞

xn = lim
n→∞

(2n + sin(n)) = +∞,

because lim
n→∞

2n = +∞ and sin(n) ≥ −1.

Remark 4.55. Part (3) for both of the above propositions claims that if lim
n→∞

|xn| = +∞ and (yn)

is bounded then lim
n→∞

yn
xn

= 0. It is important to remark that one cannot drop the assumptions

on the boundedness of (yn). That is, if we do not assume that (yn) is bounded, then we cannot
conclude anything about lim

n→∞
yn
xn

, as shown by the next examples. In fact, taking

(1) xn := n, yn := n, then lim
n→∞

yn
xn

= lim
n→∞

1 = 1;

(2) xn := n, yn := n2, then lim
n→∞

yn
xn

= lim
n→∞

n = +∞;

(3) xn := n, yn :=
√
n, then lim

n→∞
yn
xn

= lim
n→∞

1√
n

= 0;

(4) xn := (−1)nn, yn := n, then yn
xn

= (−1)n, thus, ( ynxn ) does not converge.

Example 4.56. Here we show examples of sequences (xn) and (yn), for which lim
n→∞

xn = +∞,

lim
n→∞

yn = −∞ and for which the sequence (xn + yn) displays all possible behaviors in terms of

its convergence (or lack thereof). In fact, taking

(1) xn := n, yn := −n lim
n→∞

(xn + yn) = 0;

(2) xn := 2n, yn := −n lim
n→∞

(xn + yn) = +∞;

(3) xn := n, yn := −2n lim
n→∞

(xn + yn) = −∞;

(4) xn := 2n, yn := (−1)nn, then

xn + yn =

{
n for n odd,

3n for n even.

Hence, xn + yn is unbounded, thus, non-converging, and its limit cannot be ±∞.

It is a homework to cook up similar examples for multiplication and division. For example,
a famous case where ”anything can happen” for multiplication is that of sequence (xn), (yn)
such that lim

n→∞
xn = +∞ and lim

n→∞
yn = 0.

Similarly to the argument for finite limits, we can prove squeeze theorems for infinite limits:

Theorem 4.57 (Squeeze Theorem for sequences approaching infinities). Let (xn) and (yn) be
two sequences.

(1) Assume that there exists n0 ∈ N such that

∀n ≥ n0, xn ≤ yn.

(i) If lim
n→∞

xn = +∞, then lim
n→∞

yn = +∞.

(ii) If lim
n→∞

yn = −∞, then lim
n→∞

xn = −∞.

(2) Assume that lim
n→∞

xn
yn

= q.
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(i’) If lim
n→∞

xn = +∞ and q ∈ R∗+ ∪ {+∞}, then lim
n→∞

yn = +∞.

(ii’) If lim
n→∞

yn = −∞ and q ∈ R+, then lim
n→∞

xn = −∞.

Proof. (1) Let us prove (i). The other case is proven analogously.
Fix C ∈ R. As lim

n→∞
xn = +∞, there exists nC ∈ N such that ∀n ≥ nC , xn ≥ C. Taking

n′C := maxn0, nC , then ∀n ≥ n′C , yn ≥ xn ≥ C. Hence, lim
n→∞

yn = +∞.

(2) Let us prove (i′) when q ∈ R∗+. All the other cases are proven analogously.
Hence, we assume that lim

n→∞
xn
yn

= q > 0 and lim
n→∞

xn = +∞. In particular, the latter

implies that there exists n0 such that ∀n ≥ n0, xn > 0.
Let us take ε = q

2 . Hence, there exists n q
2
∈ N such that ∀n ≥ n q

2

−q
2
≤ q − xn

yn
≤ q

2
.

Hence, ∀n ≥ n q
2
,

q

2
≤ xn
yn
≤ 3

q

2
.

Thus, ∀n ≥ maxn0, n q
2
,{
yn ≥ q

2xn
> 0, since n ≥ n0

xn ≤ 3q
2 yn, , since yn > 0 and n ≥ n q

2
.

Hence, by part (1) of the theorem, lim
n→∞

3q
2 · yn = 3q

2 · lim
n→∞

yn = 3q
2 yn = +∞.

Example 4.58. (1) Let (xn)n∈N be the sequence define by xn := n!
2n We compute lim

n→∞
n!
2n .

We have n!
2n ≥

2·3·3···3·3
2n = 1

2

(
3
2

)n−2
, and lim

n→∞
1
2

(
3
2

)n−2
= +∞ according to Example 4.52.

Hence, Theorem 4.57 part (1.i) yields lim
n→∞

n!
2n = +∞.

(2) Similarly, but using part (1.ii) of Theorem 4.57, then lim
n→∞

− n!
2n = −∞.

4.6 More convergence criteria

We can apply the Squeeze Theorem 4.36 to obtain more convergence criteria.

Corollary 4.59 (Quotient criterion). Let (xn) be a sequence. Assume that

lim
n→∞

|xn+1|
|xn|

= q ∈ R+ ∪ {+∞}.

(1) If q < 1, then both (xn) and (|xn|) converge and the limit is 0 for both sequences.

(2) If q > 1 or q = +∞, then (xn) and (|xn|) both are non-converging sequences. Moreover,
lim
n→∞

|xn| = +∞.

Remark 4.60. As in the statement of the Corollary we are assuming that the sequence yn :=
|xn+1|
|xn| converges, then since yn ≥ 0, ∀n � 1, then the limit q of yn is automatically a non-

negative real number, cf. Corollary 4.32. Thus q ≥ 0.
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Proof. We show here only the 0 ≤ q < 1 case; the other case is similar, and is left as a
homework.
Fix ε := 1−q

2 . In particular ε > 0 and q + ε < 1. There is an index nε ∈ N, such that

∀n ≥ nε,
∣∣∣∣ |xn+1|
|xn|

− q
∣∣∣∣ < ε, or equivalently,

∀n ≥ nε, q − ε < |xn+1|
|xn|

< q + ε,

thus, |xn+1| < (q + ε)|xn|. Denoting q := q + ε, then

q < 1 and ∀i ∈ N, |xnε+i| ≤ |xnε | qi.

Hence, as

∀n ≥ nε, 0 ≤ |xn| ≤ |xnε |qn−nε ,

we may apply the Squeeze Theorem 4.36 to |xn| since

lim
n→∞

|xnε |qn−nε =
|xnε |
qnε

lim
n→∞

qn =
|xnε |
qnε

· 0︸ ︷︷ ︸
|q|<1⇒limn→∞ |q|n=0

= 0.

Example 4.61. We present some examples showing that if in Corollary 4.59 q = 1, then we
cannot conclude anything about the behavior of the sequence (xn).

(1) If xn := n, then (xn) is non-convergent and limn→∞ xn = +∞, while

lim
n→∞

|xn+1|
|xn|

= lim
n→∞

n+ 1

n
= 1.

(2) If xn := (−1)nn, then (xn) is not bounded and its limit does not exist in R, while

lim
n→∞

|xn+1|
|xn|

= lim
n→∞

n+ 1

n
= 1.

(3) If xn := n+1
n , then (xn) is convergent to 1, while

lim
n→∞

|xn+1|
|xn|

= lim
n→∞

n+2
n+1
n+1
n

= lim
n→∞

(n+ 2)n

(n+ 1)2
= 1.

(4) If xn := (−1)n, then (xn) is bounded but it does not admit a finite limit, while

lim
n→∞

|xn+1|
|xn|

= lim
n→∞

1 = 1.

Hence, all possible behaviors of a sequence, in terms of its convergence or lack thereof, can
appear when q = 1 in Corollary 4.59.

Another consequence

Corollary 4.62 (Root criterion). Let (xn) be a sequence. Assume that

lim
n→∞

n
√
|xn| = q ∈ R+ ∪ {+∞}.

58



(1) If q < 1, then both (xn) and (|xn|) converge and their limit is 0.

(2) If q > 1 or q = +∞, then (xn) and (|xn|) both are non-converging sequences. Moreover,
lim
n→∞

|xn| = +∞.

Proof. We prove part (2). The proof of the case is analogous.
We start assuming that q ∈ (1,+∞).
If q = +∞, instead, then there exists n2 ∈ N such that ∀n ≥ n2, n

√
|xn| ≥ 2 or, equivalently,

|xn| ≥ 2n. Since lim
n→∞

2n = +∞, by ??, then

4.7 Monotone sequences

Let us recall that we say that a sequence (xn) is monotone if it is increasing or decreasing,
cf. Definition 4.7.

Theorem 4.63. Let (xn)n≥l be a monotone sequence.

(1) If (xn)n≥l is bounded and increasing (resp. decreasing), then (xn)n≥l is convergent and

lim
n→∞

xn = sup{xn | n ∈ N, n ≥ l} (resp. lim
n→∞

xn = inf{xn | n ∈ N, n ≥ l}).

(2) If (xn)n≥l is unbounded and increasing (resp. decreasing) then lim
n→∞

xn = +∞ (resp.

lim
n→∞

xn = −∞).

Proof. We prove only the increasing case. We leave as a homework to change the words in it
to obtain a proof for the decreasing case.
Set S := sup{xn | n ∈ N, n ≥ l} and let 0 < ε ∈ R be arbitrary. By definition, S is the
smallest upper bound, so S − ε is not an upper bound. Hence, there exists nε ∈ N such that
S − ε < xnε . In particular, for any integer n ≥ nε:

S − ε < xnε︸ ︷︷ ︸
definition of nε

≤ xn︸ ︷︷ ︸
(xn) is monotone

≤ S︸ ︷︷ ︸
S is the supremum

< S + ε.

Example 4.64 (Nepero’s number e). Let us consider the sequence (xn)n≥1 defined by

x :=

(
1 +

1

n

)n
, n ∈ N∗.

Claim. The sequence (xn)n≥1 is strictly increasing.

Proof. We need to show that
(
1 + 1

n

)n
<
(

1 + 1
n+1

)n+1
, ∀n ∈ N∗. Indeed,

(
1 +

1

n

)n
=

n∑
i=0

(
n

i

)
1

ni
=

n∑
i=0

n!

i!(n− i)!
1

ni
=

n∑
i=0

1

i!

n(n− 1) . . . (n− (i− 1))

ni

= 1︸︷︷︸
=(n0)

1
n0

+ 1︸︷︷︸
=(n1)

1
n

=n
n

+

n∑
i=2

1

i!

n

n︸︷︷︸
=1

i−1 terms︷ ︸︸ ︷
(n− 1)

n

(n− 2)

n

(n− (i− 1))

n
(4.64.a)

= 1 + 1 +

n∑
i=2

1

i!

(
1− 1

n

)
. . .

(
1− i− 1

n

)
︸ ︷︷ ︸

i−1 terms
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Similarly,(
1 +

1

n+ 1

)n+1

=

n+1∑
i=0

1

i!

(
1− 1

n+ 1

)
. . .

(
1− i− 1

n+ 1

)
(4.64.b)

= 1 + 1 +


n∑
i=2

1

i!

(
1− 1

n+ 1

)
︸ ︷︷ ︸

> (1− 1
n)

(
1− 2

n+ 1

)
︸ ︷︷ ︸

> (1− 2
n)

. . .

(
1− i− 1

n+ 1

)
︸ ︷︷ ︸
> (1− i−1

n )

+

(
1

n+ 1

)n+1

> 2 +

n∑
i=2

1

i!

(
1− 1

n+ 1

)
. . .

(
1− i− 1

n+ 1

)

Having proved our claim, then (xn)n≥1 is a monotone increasing sequence. Is it bounded? Yes,
it is: indeed, (

1 +
1

n

)n
=2 +

n∑
i=2

1

i!

(
1− 1

n

)
. . .

(
1− i− 1

n

)

≤
n∑
i=0

1

i!
≤ 1 +

n∑
i=1

1

2i−1
= 1 +

1− 1
2n

1
2

= 3− 1

2n
≤ 3,

where, for evaluating the sum, we used the formula that we proved in Proposition 1.6

(1 + · · ·+ an−1) =
1− an

1− a
,

for a = 1
2 . Hence, (xn)n≥1 is not only increasing, but also bounded above by 3. Thus, lim

n→∞
xn

exists, according to Theorem 4.63.

Definition 4.65. We define e := lim
n→∞

(
1 + 1

n

)n
.

Theorem 4.63 also gives another method for showing the existence of limits for recursive
sequences:

Example 4.66. We consider the recursive sequence (xn)n∈N defined as{
xn+1 = 1

2

(
xn + 1

xn

)
x0 = 2.

First we claim that xn > 0 for all integers n ∈ N. This is certainly true for n = 0, and if we
assume it for n − 1, then the recursive formula gives it to us also for n. Hence, by induction,
∀n ∈ N, xn > 0. In particular, the division in the definition does make sense.
Next, we claim that xn ≥ 1 for all integers n ≥ 1. Indeed, a similar induction shows that this
claim: indeed, for n = 0, we have x0 = 2 ≥ 1. Furthermore,

xn+1 =
1

2

(
xn +

1

xn

)
≥ 1⇔ xn +

1

xn
≥ 2⇔ x2

n + 1 ≥ 2xn ⇔ (xn − 1)2 ≥ 0, (4.66.c)

where we used that we already know that xn > 0, when we multiplied by xn. So, by (4.66.c),
the induction step works too. That is, assuming xn ≥ 1, we obtain that xn+1 ≥ 1 holds as well.
Next, we claim that the sequence is decreasing indeed,

xn − xn+1 = xn −
1

2

(
xn +

1

xn

)
=

1

2

(
xn −

1

xn

)
≥ 0,
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where we obtained the last inequality using that xn ≥ 1 ≥ 1
xn

.
So, (xn) is decreasing (hence bounded from above) and also bounded from below by 1. In

particular, xn is convergent, and lim
n→∞

xn ≥ 1. Hence to find the actual limit we may just apply

limit to the recursive equation to obtain that if y is the limit, then

y =
1

2

(
y +

1

y

)
⇔ y

2
=

1

2y
⇔ y2 = 1

As we also know that y ≥ 1, y = 1 has to hold. So, lim
n→∞

xn = 1.

4.8 Subsequences

Definition 4.67. Let (xn)n≥l be a sequence. A subsequence (yk)k∈N of (xn)n≥l is a sequence
sequence defined by yk := xnk where nk ∈ N is defined by a function

f : N→ {n ∈ N | n ≥ l}
k 7→ f(k) =: nk

which is a strictly increasing function of k.

To say that f is strictly increasing simply means that ∀k ∈ N, f(k) < f(k + 1).
Thus, a subsequence of (xn)n≥l is a new sequence (yk)k∈N constructed taking the values of

(xn)n≥l along a subset of the indices of (xn)n≥l, where we remember the order in which those
values appear.

Example 4.68. (1) for the sequence (xn)n∈N defined by xn := (−1)n, then both the constant
1 sequence and the constant −1 sequences are subsequences.
In fact for

(i) for f(k) := 2k, then yk := xnk = x2k = (−1)2k = 1; and

(ii) for f(k) := 2k = 1, then yk := xnk = x2k+1(−1)2k+1 = −1.

(2) for the sequence (xn)n∈N defined by xn := n2, then yk := xnk = k6 is the subsequence
obtained by setting nk := k3.

(3) for the sequence (xn)n≥1 defined by xn =
(
1 + 2

n

)n
and nk := 2k, then

lim
k→∞

xk = lim
k→∞

(
1 +

2

2k

)2k

= lim
k→∞

((
1 +

1

k

)k)2

=

(
lim
k→∞

(
1 +

1

k

)k)2

= e2.

We can ask whether (xn)n≥1 converges and, if so, what its limit is? Is lim
n→∞

xn = e2?

The next proposition illustrates the (simple) connection between the convergence of a se-
quence and that of a subsequence.

Proposition 4.69. Let (xn) be a sequence.
If lim

n→∞
xn = a ∈ R, then for any subsequence (yk), yk := xnk , lim

k→∞
yk = a.

Let us recall that a ∈ R means that either a is a real number or a = ±∞.
The proof of Proposition 4.69 is just about invoking the definition of limit, cf. Definition 4.21

and 4.50, thus we do not spell out the details here.

Example 4.70. Let (xn)n≥1 be the sequence defined as xn := (−1)n
(
1 + 1

n

)n
.

(1) If nk = 2k, then the subsequence (yk)k≥1 defined by yk := x2k =
(
1 + 1

2k

)2k
and lim

k→∞
yk =

e;
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(2) if nk = 2k+ 1, then the subsequence (yk)k≥1 defined by yk := x2k+1 = −
(

1 + 1
2k+1

)2k+1

and lim
k→∞

yk = −e.

Hence, the sequence (xn)k≥1 cannot converge.

We just saw an example of a sequence which does not converge, but which admits converging
subsequences – which converge to different limits. Given a sequence (xn), does it always admit a
converging subsequence? The answer, for a general sequence (xn) is no. In fact, Proposition 4.69
shows that if lim

n→∞
xn = ±∞, then any subsequence will have the same limit, thus, (xn) will not

admit any converging subsequence.

Remark 4.71. It actually follows from the definition, that if a sequence (xn) is unbounded then
it admits a subsequence (yk), yk := xnk such that either lim

k→∞
yk = +∞ or lim

k→∞
yk = −∞. [Try

to prove this claim!]

Hence, in view of the claim, we can ask whether for a bounded sequence (xn), there always
exists a convergent subsequence (yk), yk := xnk . Indeed, we can always answer this question
affirmatively, as shown by the following celebrated result.

Theorem 4.72 (Bolzano-Weierstrass). Let (xn) be a bounded sequence. Then (xn) contains a
convergent subsequence.

Proof. We define nk by induction k ∈ N. We set n0 = 0 - this is the starting step of the
induction. So, let us assume nk−1 is defined. Let us then define sk := sup{xn|n > nk−1}. Then
there is a integer nk > nk−1 such that

xnk > sk −
1

k
.

We claim that (xnk) is convergent. Indeed, this follows from the squeeze principle, as we have

sk −
1

k
< xnk < sk,

if we can prove that (sk) converges. As sk := supxn | n > nk−1, then sk+1 ≤ sk, as the subset
of R of which we are taking the supremum gets smaller with k. Hence, (sk) is decreasing.
Moreover, (sk) is bounded, since inf{xn | n ∈ N} ≤ sk ≤ sup{xn | n ∈ N}. Hence, lim

k→∞
sk =

l ∈ R, and

l = lim
k→∞

sk = lim
k→∞

sk − lim
k→∞

1

k
= lim

k→∞
(sk −

1

k
),

so that also lim
k→∞

xnk = l.

Example 4.73. Sometimes, given a sequence (xn), it is possible to write down explicitly some
convergent subsequences.
For example, defining xn := sin

(
nπ
4

) (
1 + 1

n

)n
, then setting

(1) nk := 8k + 1, lim
k→∞

yk = lim
k→∞

xnk = 1√
2
e;

(2) nk := 8k + 2, then lim
k→∞

yk = lim
k→∞

xnk = e,

(3) nk = 8k + 5, then lim
k→∞

yk = lim
k→∞

xnk = − 1√
2
e.
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Example 4.74. Other times, given a sequence (xn), it is not quite possible to write down
explicitly converging subsequences. One example where this is not immediate is given for
example by the sequence xn := sinn – you can read here a discussion of how to obtain a
converging subsequence, and how “difficult” that should be.
In general, the Bolzano-Weierstrass Theorem 4.72 implies that some convergent subsequence
exists but it does not a priori indicate how to explicitly obtain one. [Try to write down a
converging subsequence of the sequence xn := sin (n)

(
1 + 1

n

)n
.]

Example 4.75. Let a > 0 be an integer. Then defining the sequence (xn)n≥1 by xn =:(
1 + a

n

)n
, we can consider the subsequence (yk)k≥1 defined by yk := xak, to obtain:

lim
k→∞

yk = lim
k→∞

xak = lim
k→∞

(
1 +

a

ak

)ak
= lim

k→∞

(
1 +

1

k

)ak
= lim

k→∞

((
1 +

1

k

)k)a
= ea.

It is not hard to show that xn is increasing and bounded for a > 0 – the proof is similar
to the case where a = 1, using binomial expansion. In particular, xn is convergent, as it is
bounded – again the proof of this is similar to the case a = 1. However, if (xn) is convergent
we may compute the limit lim

n→∞
xn by computing the limit of any of subsequence of (xn). Thus,

lim
n→∞

xn = ea.

4.9 Cauchy convergence

Definition 4.76. A sequence (xn) is a Cauchy sequence if for every ε ∈ R∗+ there exists nε ∈ N
such that for every integer n,m ≥ nε, |xn − xm| ≤ ε.

Let us start with a few examples of Cauchy sequences.

Example 4.77. Let (xn)n≥1 be the sequence defined by xn := 1− 1
n , then for all n,m ≥

[
2
ε

]
,

|xn − xm| =
∣∣∣∣1− 1

n
− 1 +

1

m

∣∣∣∣ =

∣∣∣∣ 1

m
− 1

n

∣∣∣∣ ≤ 1

m
+

1

n
<
ε

2
+
ε

2︸ ︷︷ ︸
n,m≥[ 2

ε ]⇒
1
n
, 1
m
< ε

2

= ε.

Hence, (xn)n≥1 is a Cauchy sequence. It is easy to compute that the sequence converge and it
has limit 1.

Cauchy sequences naturally appear when we try to approximate the decimal representation
of a real number, by means of rational numbers.

Example 4.78. Let x ∈ R be a real number. Let us think of x by means of a decimal
representation. We can define a sequence (xn)n∈N, in the following way:

◦ x0 = [x];

◦ for n ≥ 1, xn is defined as the truncation of the decimal representation of x at the n-th
decimal digit.

With this definition, we can verify that the sequence (xn)n∈N is Cauchy. In fact, for any
n,m ∈ N, n < m, then

|xm − xn| < 10−n.

Thus, for a given ε > 0, it suffices to take nε ∈ N such that 10−nε < ε – this is always possible
since lim

n→∞
10−n = 0 – and thus

∀n,m ≥ nε, |xn − xm| < 10−nε < ε.
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The important fact about Cauchy sequences is that they are always convergent.

Theorem 4.79. Let (xn) be a sequence. Then, the following two properties are equivalent:

(1) (xn) is convergent;

(2) (xn) is a Cauchy sequence.

In view of this theorem, we will indicate that a sequence (xn) is a Cauchy sequence (or,
simply, Cauchy) by saying that it is Cauchy convergent. Of course, by the above statement, all
converging sequences are Cauchy convergent, and viceversa.

Proof. (1) =⇒ (2). First we assume that (xn) is convergent, and then we show that it is Cauchy
convergent. Let x := lim

n→∞
xn and 0 < ε ∈ R arbitrary. Then there is an n ε

2
∈ N such that for

all integers n ≥ n ε
2
, we have |xn − x| ≤ ε

2 . Then, for any integers n,m ≥ n ε
2

we have

|xn − xm| = |(xn − x) + (x− xm)| ≤ ε

2
+
ε

2
= ε

(2) =⇒ (1). Let us assume that (xn) is Cauchy convergent. We divide this part of the proof
into three steps:

(1) We first claim that then (xn) is bounded. Indeed, there is an n1 ∈ N such that for all
integers n ≥ n1, |xn − xm| ≤ 1. Then, an upper bound for |xn| is

max{|x0|, . . . , |xn1−1|, |xn1 |+ 1}.

(2) As (xn) is bounded, then by Bolzano-Weierstrass, it contains a convergent subsequence
xnk converging to x ∈ R.

(3) We show that limn→∞ xn = x.
Fix then a 0 < ε ∈ R. As (xn) is Cauchy, there is an n ε

2
∈ N such that for all integers

n,m ≥ n ε
2
,

|xn − xm| <
ε

2
.

Now, there is a k such that nk ≥ n ε
2

and |xnk − x| ≤ ε
2 . For this value of k and any

integer n ≥ n ε
2

we have:

|xn − x| ≤ |(xn − xnk) + (xnk − x)| ≤ |xn − xnk |+ |xnk − x| ≤
ε

2
+
ε

2
= ε.
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5 SERIES

Let us start this section with the following motivating example.

Example 5.1 (Zeno’s paradox). Achilles races a tortoise. Achilles runs at 10 m/s, while the
tortoise moves at 0.1 m/s. Achilles gives the tortoise a head start of 100m.

Step 1 Achilles runs to the tortoise’s starting point, in 10s, while, at the same time, the tortoise
has walked 1m forward.

Step 2 Achilles advances to where the tortoise was at the end of Step 1, in 0.1s, while the tortoise
goes yet 0.001m further.

Step 3 Achilles advances to where the tortoise was at the end of Step 2, in 0.001s, while the
tortoise goes yet 0.00001m further.

Step n Achilles advances to where the tortoise was at the end of Step n − 1, in 10
100n−1 s, while

the tortoise goes yet 1
100n−1m further.

The philosopher Zeno doubted that Achilles could ever overtake the tortoise, since however
many steps Achilles would ever complete, the tortoise would remain ahead of him.
It should be intuitively clear, though, that the more steps Achilles and the tortoise take, the
closer they get. So, if they could run for infinitely many steps of the above observations of the
run, Achilles would reach the tortoise.
So, the question is whether by taking infinitely many steps of the above observations the time
that has passed since the start of the run is going to infinity or it is bounded.
After the n-th step, the amount of time sn that has passed since the start of the race is
(10 + 0.1 + 0.001 + 0.00001 + · · ·+ 10

100n−1 )s. We can rewrite this as

sn =
n−1∑
i=0

10

100i
.

Hence, to understand whether Achilles ever reaches the tortoise, we need to understand the
convergence of the sequence (sn).

To understand how to solve the problem above, we now introduce the concept of series.

Definition 5.2. Let (xn)n≥l be a sequence. The series associated to (xn)n≥l is the sequence
(sn)n≥l defined by the formula

sn :=
n∑
i=l

xi.

Given a sequence (xn) and the associated series (sn) defined above, we will refer to the

sequence (sn) as the sequence of the truncated sums of (xn). We will also use the symbol
∞∑
i=0

xi

to refer to the sequence (sn). Depending on the context, we will also use the symbol

∞∑
i=0

xi to

denote the limit of the series, that is,

∞∑
i=0

xi := lim
n→∞

sn, provided that such limit exists.

Example 5.3. The following are a few examples of sequences (xn) and of their sequences of
truncated sums (sn).
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(1) (Geometric series) Taking xk := 1
2k

, then sn =
n∑
k=0

1

2k
=

1− 1
2n+1

1− 1
2

= 2

(
1− 1

2n+1

)
; in

general, for q ∈ R, we can define xn = qn then sn =
n∑
k=0

qk.

(2) (Harmonic series) Taking xk := 1
k , then sn =

n∑
k=1

1

k
;

(3) Taking xk := (−1)k 1
k , then sn =

n∑
k=1

(−1)k
1

k
;

(4) Taking xk := 1
k2 , then sn =

n∑
k=1

1

k2
;

(5) Taking xk := 1
ks , for a fixed s ∈ Q∗+, then sn =

n∑
k=1

1

ks
, see. Definition 5.13;

(6) (Another definition of e) Taking xk := 1
k! , then sn =

n∑
k=0

1

k!
. We shall show in ??, that∑∞

k=0
1
k! = e.

In the case of the first example one has an explicit expression for sn without involving sums.
However, in the other cases, we are not able to provide such formulas. So, one just has to take
it as it is, so as a sequence obtained by adding the first n elements of the given other sequence.

We can define a notion of convergence for series, using the notion of convergence already
introduced for sequences.

Definition 5.4. Let (xn)n≥l be a sequence.

(1) The series (sn)n≥l, sn :=
∑n

k=l xk associated to (xn) is convergent if (sn)n≥l converges to
a finite limit.

(2) The series (sn)n≥l, sn :=
∑n

k=l xk associated to (xn) approaches +∞ (resp. −∞) if
lim
n→∞

sn = +∞ (resp. lim
n→∞

sn = −∞).

Notation 5.5. Given a sequence (xn)n≥l, such that the series (sn)n≥l associated to (xn)n≥l is
convergent with lim

n→∞
sn = y, we will write

∞∑
k=0

xk = y.

to denote .

In the course of this section we will discover several techniques to determine when a series
converges (or not).

A first natural condition from convergence stems from the following simple observation:
when a sequence (xn) has values in the positive real numbers R+, then the series (sn) is
increasing, hence it converges if and only if it is bounded.
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Example 5.6. Let (xn)n∈N be the sequence defined by xn := 1
2n . Then

sn :=

n∑
k=0

1

2k
= 2

(
1− 1

2n+1

)
.

This identity implies that

lim
n→∞

sn = lim
n→∞

2

(
1− 1

2n+1

)
= 2 =:

∞∑
k=0

1

2k
.

Similarly, taking xn := qn, for q ∈ R, then

sn :=
n∑
k=0

qk =
1− qn+1

1− q
,

cf. (1.6.f). If |q| < 1, then we showed already that lim
n→∞

qn = 0. Thus,

lim
n→∞

sn =
1

1− q
=:

∞∑
k=0

qk

The above observation can be naturally extended to yield the following proposition.

Proposition 5.7. Let (xn)n≥l be a sequence. Assume that there exists n0 ∈ N such that
∀n ≥ n0, xn ≥ 0. Then,

∞∑
k=l

xk =

{
y ∈ R if and only if (sn)n≥l, sn :=

∑n
k=l xk is a bounded sequence

+∞ if and only if (sn)n≥l is not bounded.

Proof. As ∀n ≥ n0, xn ≥ 0, then (sn)n≥n0 is increasing starting from n0. Thus, we can conclude
by Theorem 4.63.

Using Cauchy’s convergence criterion for sequences, see Theorem 4.79, we have the following
basic convergence criterion for series.

Proposition 5.8. Let (xn)n≥l be a sequence. Then, the following conditions are equivalent:

(1)
∞∑
k=l

xk is convergent;

(2) (sn)n≥l is a Cauchy sequence;

(3) for every ε ∈ R, ε > 0, there is an nε ∈ N such that for all integers m,n ≥ nε, with
m > n, ∣∣∣∣∣

m∑
k=n+1

xk

∣∣∣∣∣ < ε.

Example 5.9. Let (xn)n≥1 be sequence defined by xn := 1
n . We show that

∞∑
k=1

1

k
= +∞.

Since ∀k ≥ 1, 1
k > 0, then we know that either

∞∑
k=1

1
k either converges to a finite limit y ∈

R or
∞∑
k=1

1
k = +∞. Thus, let us assume, by contradiction, that

∞∑
k=1

1
k = y ∈ R. Hence,
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by Proposition 5.8, for ε = 1
4 , Cauchy’s condition for the convergence of series is satisfied.

That is, there exists some index n 1
4
∈ N such that for all n,m ≥ n 1

4
, with m > n, then∣∣∣∣∣

m∑
i=n+1

1

i

∣∣∣∣∣ < 1

4
.

In particular, the above inequality must hold for n := n 1
4

and m = 2n, in which case,

1

4
>

∣∣∣∣∣
2n∑

k=n+1

1

k

∣∣∣∣∣ =
2n∑

k=n+1

1

k
≥

2n∑
k=n+1

1

2n︸ ︷︷ ︸
k≤2n⇒ 1

k
≥12n

=
1

2

which provides the sought contradiction.

An immediate consequence of Proposition 5.8 is the following necessary condition for con-
vergence of a series.

Proposition 5.10. Let (xn)n≥l be a sequence. If

∞∑
k=l

xn is convergent, then lim
n→∞

xn = 0.

Proof. Indeed, by Proposition 5.8, for every 0 < ε ∈ R, there is an nε ∈ N such that for all
integers m,n ≥ nε with m > n, ∣∣∣∣∣

m∑
k=n+1

xk

∣∣∣∣∣ ≤ ε.
In particular, if we choose n := m− 1, then we obtain that ∀m ≥ nε + 1,

ε ≥

∣∣∣∣∣
m∑

k=m−1

xk

∣∣∣∣∣ = |xm|.

This implies that lim
n→∞

xn = 0.

Figure 9: To check that cos(x) is increasing, by using periodicity, it suffices to check that the
same holds over the inverval [−π

2 , 0].

Example 5.11. The series
∞∑
k=0

cos(n) is not convergent. By Proposition 5.10, it suffices

to show that xn := cos(n) does not converge to 0. Let us assume by contradiction that
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instead it does. Then, so do all its subsequences. However, consider the subsequence given by
nk := b2kπc. Thus,

xnk = cos(b2kπc) ≥ cos(2kπ − 1) = cos(−1) > 0,

where the inequality follows from the fact that cos(x) is an increasing function in the interval
2kπ − π

2 ≤ x ≤ 2kπ, and moreover, as π
2 > 1, 2kπ − 1 is in this interval.

As xnk ≥ cos(−1) > 0, ∀nk, then (xnk) cannot converge to 0; but this is in contradiction with
the the assumption that xn converge to 0.

One can use Proposition 5.8 to give a version of the Squeeze Theorem for series.

Theorem 5.12 (Squeeze theorem for series). Let (xn)n≥l, (yn)n≥l be sequences. Assume there
exists n0 ∈ N such that for every integer n ≥ n0, 0 ≤ xn ≤ yn.

(1) If
∞∑
k=l

yk is convergent, then
∞∑
k=l

xk is also convergent.

(2) If

∞∑
k=l

xk = +∞, then also

∞∑
k=l

yk = +∞.

Proof. For every n,m ≥ n0 with m > n

0 ≤

∣∣∣∣∣
m∑

k=n+1

xk

∣∣∣∣∣ =
m∑

k=n+1

xk ≤
m∑

k=n+1

yk =

∣∣∣∣∣
m∑

k=n+1

yk

∣∣∣∣∣ .
So, if the property in Proposition 5.8.3 is verified for yk then it must also holds for xk. On the
other hand, if the property in Proposition 5.8.3 is not satisfied for the sequence of truncated
sums of (xn)n≥l, then it must also fail for the sequence of truncated sums of (yn)n≥l.

Definition 5.13. If 0 < s is a rational number, say s = a
b then we define ns := b

√
na for all

n ∈ N.

Example 5.14. 2
2
3 = 3
√

4 and this is the only positive real solution to the equation X3−4 = 0.

Remark 5.15. The above definition does not depend on the representation of s as a
b . That is,

if we replace a
b by ca

cb (where c ∈ N), then:

cb
√
nca =

b

√
c
√
nca = b

√
na.

Moreover, any x, y ∈ R+, and s, t ∈ Q, then:

(1) x0 = 1;

(2) if x > y, s > 0, then xs > ys;

(3) if x > y, s < 0, then xs < ys;

(4) if x > 1 and s > t, then xs > xt;

(5) if x < 1 and s > t, then xs < xt.
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Example 5.16. If 0 < s = a
b < 1 is a rational number, then

∑∞
k=1

1
ks is divergent.

In fact, with the assumption 0 < s ≤ 1, we can use the Squeeze Theorem 5.12: indeed, for each
n ≥ 1,

1

ns
=

1

( b
√
n)
a ≥

1

( b
√
n)
b︸ ︷︷ ︸

b>a and b√n≥1⇒( b
√
n)a<( b

√
n)b

=
1

n
,

and since
∞∑
k=1

1
k = +∞, then the Squeeze Theorem for series implies that for all 0 < s < 1, s ∈ Q

also
∞∑
k=1

1
ks = +∞.

Example 5.17. If s > 1 be a rational number, then
∑∞

k=1
1
ks is convergent.

Indeed, when s > 1,

sn :=

n∑
k=1

1

ks
≤

2n+1∑
k=1

1

ks
= 1 +

n∑
k=1

1

(2k)s
+

n∑
k=1

1

(2k + 1)s︸ ︷︷ ︸
2k+1>2k

≤1 +

n∑
k=1

1

(2k)s︸ ︷︷ ︸
= 1

2s
sn

+

n∑
k=1

1

(2k)s
= 1 +

2

2s
sn = 1 +

1

2s−1
sn

By taking the two ends of this chain of inequalities,

sn ≤ 1 + 21−ssn or, equivalently, sn ≤
1

1− 21−s .

Hence, sn is bounded from above. As it is also increasing, since we are summing positive terms,
then (sn) is convergent by Theorem 4.63.

Remark 5.18. We will show later on in the course that

(1) ∀s ∈ (0, 1],
∞∑
k=1

1
ks = +∞; and,

(2) ∀s ∈ (1,+∞),

∞∑
k=1

1
ks converges.
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