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Analyse I – Série de révision
Questions Ouvertes

Question 1. (6 pts)

i) (1 pt) Donner la définition d’une fonction dérivable en un point.

ii) (2 pts) Démontrer, en utilisant la définition donnée en i), que la fonction

f(x) =

{ √
1− x, x ≤ 1√
x− 1, x > 1

n’est pas dérivable en x = 1. Justifier toutes les étapes de votre argument.

iii) (3 pts) Trouver toutes les valeurs de m ∈ Q, m 6= 0, telles que la fonction

f(x) =

{
(1− x)m, x ≤ 1
(x− 1)m, x > 1

soit dérivable en x = 1.

Corrigé.

i) Une fonction f(x) définie dans un intervalle ouvert contenant le point x = a est dérivable en
x = a si la limite

lim
x→a

f(x)− f(a)

x− a
existe. Cette limite est la dérivée de f en x = a.

ii) Ici la fonction est définie séparement à gauche et à droite du point x = 1. Pour que cette fonction

soit dérivable, il faut et il suffit que la dérivée à gauche lim
x→1−

f(x)−f(1)
x−1 existe, que la dérivée à

droite lim
x→1+

f(x)−f(1)
x−1 existe, et et qu’elles soient égales. On note que f(1) = 0. On commence

par le calcul de la dérivée à droite:

lim
x→1+

√
x− 1− 0

x− 1
= lim

x→1+

1√
x− 1

.

Cette limite n’existe pas et donc la fonction donnée n’est pas dérivable en x = 1.

iii) Soit m ∈ Q, m 6= 0. On calcul la dérivée à gauche:

lim
x→1−

(1− x)m − 0

x− 1
= − lim

x→1−
(1− x)m−1 =


0, m > 1,
−1, m = 1
n′existe pas, m < 1

On calcul la dérivée à droite:

lim
x→1+

(x− 1)m − 0

x− 1
= lim

x→1+
(x− 1)m−1 =


0, m > 1,
1, m = 1
n′existe pas, m < 1
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La dérivée de f(x) en x = 1 existe si et seulement si les dérivées à gauche et à droite existent et
sont égales. Par consequent, la fonction f(x) est dérivable en x = 1 si est seulement si m > 1.
Remarque. Si m = 1, on observe que la fonction s’écrit f(x) = |x− 1|. Cette fonction n’est pas
dérivable en x = 1.

Question 2. (5 pts)
Soit (an), n ∈ N∗ une suite de nombres naturels telle que :

a1 = 2, a2 = 3, an+2 = 3an+1 − 2an ∀n ∈ N∗.

Démontrer que pour tout n ∈ N∗ on a an = 2n−1 + 1.

Justifier toutes les étapes de votre argument.

Démonstration par récurrence:

• (1 pt) Soit n ∈ N∗ et an l’élément de la suite définie dans la question. On dénote par P (n) la
proposition suivante:

an = 2n−1 + 1.

On va démontrer que P (n) est vrai pour tout n ∈ N∗ par récurrence.

• (1 pt) Initialisation: P (1): a1 = 21−1 + 1 = 20 + 1 = 2 est vraie.
P (2) : a2 = 22−1 + 1 = 21 + 1 = 3 est vraie.

• (2 pts) Hérédité: Supposons que les propositions P (n) et P (n + 1) sont vraies, où n ∈ N∗.
Démontrons que cela implique la proposition P (n+ 2).

an+2 = 3an+1 − 2an = 3(2n + 1)− 2(2n−1 + 1) = 3 · 2n − 2n + 3− 2 = 2 · 2n + 1 = 2n+1 + 1.

Donc les propositions Pn et Pn+1 impliquent la proposition Pn+2.

• (1 pt) Puisque les propositions P (1), P (2) sont vraie, et pour tout n ∈ N∗, P (n) et P (n + 1)
impliquent P (n+ 2), alors par récurrence la proposition P (n) est vraie pour tout n ∈ N∗.

Question 3. (6 pts) Soit (xn)n≥0 la suite de Fibonacci:

x1 = x2 = 1, xn+2 = xn + xn+1.

Démontrer que

i) (3 pts) xn ≥ n− 1 pour tout n ∈ N∗ (par récurrence)

ii) (3 pts) lim
n→∞

xn
xn−1

= 1+
√
5

2

Justifier toutes les étapes de votre argument.
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Corrigé.

i) • Soit P (n) la proposition: xn ≥ n − 1, où (xn)n≥1 sont des nombres de Fibonacci. On va
démontrer que P (n) est vraie pour tout n ∈ N∗ par récurrence.

• Initialisation: x1 = 1 > 0, x2 = 1 ≥ 1, x3 = 2 ≥ 2 donc P (0), P (1) et P (2) sont vraies.

• Hérédité: Supposons que P (n) et P (n + 1) sont vraies où n ∈ N∗. Démontrons que cela
implique P (n+ 2).

xn+2 = xn + xn+1 ≥ n− 1 + n = 2n− 1 ≥ n+ 1 ⇔ n ≥ 2.

Donc pour tout n ≥ 2, P (n) et P (n+ 1) impliquent P (n+ 2).

• Conclusion: puisque P (2) et P (3) sont vraies, et pour tout n naturel tel que n ≥ 2, les
propositions P (n) et P (n+1) impliquent P (n+2), alors par récurrence la proposition P (n)
est vraie pour tout n ≥ 2. Puisque P (1) est vraie aussi, on a que P (n) est vraie pour tout
n ∈ N∗.

ii) On dénote le quotient xn+1

xn
= an. En divisant la relation des nombres de Fibonacci par xn+1 6= 0,

on obtient

an+1 =
1

an
+ 1 n ∈ N∗.

Supposons que la suite (an)n∈N∗ est convergente. Alors sa limite l satisfait l’équation l = 1
l + 1.

Les racines de cette équation quadratique sont l1,2 = 1±
√
5

2 . Puisque xn ≥ n−1 pour tout n ∈ N∗

par la partie i), on peut conclure que si la limite existe, elle est positive et égale à 1+
√
5

2 .
Il nous reste à démontrer que la suite (an)n∈N∗ est convergente. On considère la valeur absolue
|an+1 − l|:

|an+1 − l| =
∣∣∣∣ 1

an
+ 1− l

∣∣∣∣ =

∣∣∣∣ 1

an
+ 1− 1

l
− 1

∣∣∣∣ =

∣∣∣∣ 1

an
− 1

l

∣∣∣∣ =
|l − an|
anl

≤ |an − l|
l

.

La dernière inégalité utilise la propriété an ≥ 1 pour tout n ∈ N∗. De façon similaire on trouve
|an − l| ≤ |an−1−l|

l pour n ≥ 2, et ainsi de suite. Finalement on trouve

|an+1 − l| ≤
|a1 − l|
ln

7→ 0 lorsque n→∞,

puisque lim
n→∞

1
ln = 0 pour tout l > 1. Alors on obtient lim

n→∞
an = l = 1+

√
5

2 .

Question 4. (6 pts) Soit f : [−2, 2]→ [−1, 1] une fonction continue.

i) (2 pts) Démontrer que l’équation 2f(x) = x possède au moins une solution sur [−2, 2]. Justifier
toutes les étapes de votre argument.

ii) (2 pts) Démontrer que l’équation f ◦f(x) = x possède au moins une solution sur [−2, 2]. Justifier
toutes les étapes de votre argument.

iii) (2 pts) Pour tout k ∈ N∗ donner un exemple d’une fonction continue fk : [−2, 2]→ [−1, 1] telle
que 2fk(x) 6= x pour tout x ∈ [−2, 2− 1

k ].

Corrigé.

i) Soit g : [−2, 2]→ R définie par g(x) = 2f(x)− x. Alors g est une fonction continue sur [−2, 2].
Puisque f(x) ∈ [−1, 1] pour x ∈ [−2, 2], on a

g(−2) = 2f(−2) + 2 ≥ 2 · (−1) + 2 = 0, g(2) = 2f(2)− 2 ≤ 2 · 1− 2 = 0.
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Si g(−2) = 0 ou g(2) = 0, alors on a trouvé une solution pour l’équation 2f(x) = x dans
[−2, 2]. Sinon, g(x) est une fonction continue sur [−2, 2] avec g(−2) > 0 et g(2) < 0. Alors par
le théorème de la valeur intermédiaire, il existe un point c ∈] − 2, 2[ tel que g(c) = 0, ce qui
implique 2f(c) = c.

ii) Soit h : [−2, 2]→ R définie par h(x) = f ◦f(x)−x. Alors h est une fonction continue sur [−2, 2].
Puisque f(x) ∈ [−1, 1] pour x ∈ [−2, 2], on a

h(−2) = f(f(−2)) + 2 ≥ (−1) + 2 = 1, h(2) = f ◦ f(2)− 2 ≤ 1− 2 = −1.

Alors par le théorème de la valeur intermédiaire, il existe un point d ∈]− 2, 2[ tel que h(d) = 0,
ce qui implique f ◦ f(d) = d.

iii) Par exemple on a une fonction continue pour tout k ∈ N∗:

fk(x) =

{
1, −2 ≤ x < 2− 1

k
4k − 1− 2kx, 2− 1

k ≤ x ≤ 2

Alors 2fk(x) = 2 > x pour tout x ∈ [−2, 2− 1
k ].

Question 5. (5 pts) Soit f : R 7→ R donnée par la formule

f(x) = (x2 − 4x+ 6)ex − 2x.

i) (3 pts) Démontrer, en utilisant un résultat du cours, que pour tout a < b, a, b ∈ [−2, 1], on a

f(b)− f(a) ≤ (e− 2)(b− a).

Justifier toutes les étapes de votre argument.

ii) (2 pts) Démontrer, en utilisant un résultat du cours, que pour tout a < b, a, b ∈ [−2, 1], on a

f(b)− f(a) > 2(a− b).

Justifier toutes les étapes de votre argument.

Corrigé.

i) La fonction f est infiniment dérivable sur R. On calcule la première et deuxième dérivée de la
fonction donnée:

f ′(x) = (2x− 4)ex + (x2 − 4x+ 6)ex − 2 = (x2 − 2x+ 2)ex − 2.

f ′′(x) = (2x− 2)ex + (x2 − 2x+ 2)ex = x2ex.

Puisque f ′′(x) = x2ex ≥ 0 pour tout x ∈ [−2, 1], alors la fonction f ′(x) est croissante sur [−2, 1].
Donc f ′(−2) ≤ f ′(x) ≤ f ′(1) pour tout x ∈ [−2, 1], et alors 10e−2 − 2 ≤ f ′(x) ≤ e − 2. Par
le théorème des accroissements finis pour la fonction f , qui est continue sur [−2, 1] et dérivable
sur ] − 2, 1[, et pour tout a, b ∈ [−2, 1], tels que a < b, il existe un point c ∈] − 2, 1[ tel que

f ′(c) = f(b)−f(a)
b−a . Dans notre cas, puisque f ′(x) ≤ e − 2 pour tout x ∈ [−2, 1], on a pour tout

a, b ∈ [−2, 1], a < b:

f(b)− f(a)

b− a
≤ e− 2 ⇒ f(b)− f(a) ≤ (e− 2)(b− a).
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ii) Par le même argument, puisque f ′(x) ≥ 10e−2 − 2 > −2 pour tout x ∈ [−2, 1], on a pour tout
a, b ∈ [−2, 1], a < b:

f(b)− f(a)

b− a
> −2 ⇒ f(b)− f(a) > −2(b− a) = 2(a− b).

Question 6. (9 pts) Soit
∑∞

n=1 an une série convergente.

i) (2 pts) Démontrer que

lim
n→∞

sin(an)

an
= 1.

Justifier toutes les étapes de votre argument.

ii) (3 pts) Est-ce que la série
∑

n=1 a
2
n est nécessairement convergente? Si oui, justifiez votre réponse.

Si non, donnez un contre-exemple.

iii) (4 pts) Donner un exemple d’une suite (bn)n≥2 de nombres réels positifs, telle que lim
n→∞

bn = 0,

mais la série
∑∞

n=2(bn)p est divergente pour tout p ∈ N.

Corrigé.

i) Soit
∑∞

n=1 an une série convergente. Alors la condition nécessaire de convergence d’une série
numérique est satisfaite: lim

n→∞
an = 0. On utilise la limite bien connue de la fonction

lim
x→0

sinx

x
= 1.

Finalement, d’après le critère de la limite d’une fonction à partir des suites, pour toutes suite
(an)n≥1 convergente vers 0, on obtient

lim
n→∞

sin(an)

an
= 1.

ii) Soit
∑∞

n=1 an une série convergente. Cela n’implique pas que la série
∑∞

n=1 a
2
n converge. Contre-

exemple: soit an = (−1)n√
n

. Alors la série
∑∞

n=1
(−1)n√

n
est convergente par le critère de Leibnitz.

Notamment, les trois conditions du critère de Leibnitz sont satisfaites: (1) lim
n→∞

(−1)n√
n

= 0, (2)

la suite des valeurs absolues est strictement décroissante: 1√
n+1

= |an+1| < |an| = 1√
n

pour tout

n ≥ 1, (3) la suite est altérnée: an+1an < 0 pour tout n ≥ 1. Mais la série
∑∞

n=1 a
2
n =

∑∞
n=1

1
n

est divergente.
Remarque. Si on avait la condition supplémentaire an ≥ 0, la convergence de la série

∑∞
n=1 an

impliquerait la convergence de la série
∑∞

n=1 a
2
n. En effet, la limite lim

n→∞
an = 0 implique 0 ≤

an < 1 pour tout n ≥ k pour un certain k ∈ N, et donc 0 ≤ a2n < an pour tout n ≥ k. Alors la
série

∑∞
n=1 a

2
n converge par le critère de comparaison.

iii) Un exemple est donné par la suite bn = 1
logn . Clairement, lim

n→∞
1

logn = 0. Mais la série∑∞
n=2 b

p
n =

∑∞
n=2

1
(logn)p est divergente pour tout p ∈ N par le critère de comparaison avec

la série harmonique divergente. En effet, soit p ∈ N fixé, et considérons la limite

lim
x→∞

1
x
1

(log x)p
= lim

x→∞

(log x)p

x

x=ey
= lim

y→∞

yp

ey
BL
= lim

y→∞

p!

ey
= 0,
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où la dernière égalité suit par la règle de Bernoulli-L’Hospital appliquée p fois. Alors il existe
k ∈ N tel que

1
n
1

(logn)p
< 1 ⇔ pour tout n ≥ k

Alors 1
(logn)p > 1

n pour tout n ≥ k. Puisque la série harmonique
∑∞

n=k
1
n diverge, la série∑∞

n=k
1

(logn)p diverge aussi. De même, la série
∑∞

n=2
1

(logn)p diverge.

Question 7. (2 pts)
Donner un exemple d’un nombre complexe z tel que les deux conditions sont simultanément satisfaites:

i) Im(z) 6= 0,

ii) ez ∈ R.

Exemple: z = iπ et ez = eiπ = −1 ∈ R.

Question 8. (2 pts)
Donner un exemple d’une suite des nombres réels (an)n∈N telle que les trois conditions sont simul-
tanément satisfaites:

i) la suite (an) est bornée,

ii) la suite (an) est divergente,

iii) an > 0 pour tout n ∈ N.

Exemple: an = 2 + (−1)n.

Question 9. (1 pt)
Donner un exemple de fonction continue f : ]1,+∞[→ R qui a une asymptote verticale, mais pas
d’asymptote horizontale. La réponse doit être une expression.

Exemple: f(x) = ex

(x−1) .

Question 10. (1 pt)

Donner un exemple de fonction continue f : ]0, 1]→ R telle que l’intégrale généralisée

∫ 1

0+
f(x) dx est

divergente. La réponse doit être une expression.

Exemple: f(x) = 1
x .

Question 11. (8pts)
Soit f : R→ R donnée par la formule f(x) =

√
1 + 2 cos2(x).

i) (2 pt) La fonction f est-elle périodique? Si oui, trouver la plus petite période de f .

ii) (2 pt) Calculer la dérivée f ′(x) et trouver son domaine de définition.
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iii) (4pts) Trouver les points critiques de f(x) dans R et determiner leur nature. Justifier votre
réponse.

Corrigé.

i) La fonction racine carrée est bijective R+ → R+ et continue, et donc monotone. Alors f(x+T ) =
f(x) si et seulement si 1 + 2 cos2(x + T ) = 1 + 2 cos2(x). On note que 2 cos2(x) = 1 + cos(2x),
donc on a l’équation 2+cos(2(x+T )) = 2+cos(2x). Puisque cos(x) est 2π-périodique, on trouve
que f(x) est périodique avec la plus petite période T = π.

ii) La dérivée de f(x) est donnée par la formule

f ′(x) =
1

2
√

1 + 2 cos2(x)
· (4 cos(x)(− sin(x))) =

−2 sin(x) cos(x)√
1 + 2 cos2(x)

=
− sin(2x)√
2 + cos 2x

.

Le domaine de définition de f ′(x) est R, parce que l’expression (1 + 2 cos2(x)) est toujours
strictement positive.

iii) La dérivée f ′(x) est bien définie pour tout x réels. On cherche les point où f ′(x) = 0, qui sont les
zéros du numérateur. On a sin(x) cos(x) = 0 si et seulement si soit sin(x) = 0, soit cos(x) = 0,
et donc pour x = kπ, k ∈ Z et pour x = π/2 + kπ, k ∈ Z. Pour déterminer la nature des
points critiques on considère le changement de signe de la dérivée. Le dénominateur est toujours
positif. Le numérateur − sin(x) cos(x) change le signe de + en − à x = kπ, et de − en + à
x = π/2 + kπ. Donc x = kπ, k ∈ Z sont les points de maximum local, et x = π/2 + kπ, k ∈ Z –
les points de minimum local.

Question 12. (2pts) Soient a < b ∈ R et c < d ∈ R. Soit f : [a, b] → [c, d] une fonction bijective et
continue. Quelles sont les valeurs possibles de f(a) ∈ [c, d]? Justifier votre réponse.
Corrigé. Comme la fonction f est bijective et continue, elle est strictement monotone. Donc elle
atteint son minimum et maximum aux bornes de l’intervalle de définition. Alors les valeurs possible
pour f(a) sont f(a) = c ou f(a) = d.

Question 13. (6pts)
Soit f : R→ R donnée par la formule f(x) =

√
1 + 2 cos2(x).

i) (2 pt) Trouver le plus grand intervalle [a, b] ⊂ R tel que π
4 ∈ [a, b] et f : [a, b]→ R est injective.

ii) (2 pt) Soit [a, b] l’intervalle trouvé dans la partie 1 de cette question. Trouver la fonction
réciproque f−1 de f(x) sur [a, b] et son domaine de définition.

iii) (2 pt) Soit f−1(x) la fonction réciproque de f : [a, b] → R trouvée dans la partie 2 de cette
question. Trouver t dans le domaine de définition de f−1 tel que

(f−1)′(t) =
1

f ′(π4 )
.

Corrigé.

i) Puisque la fonction est continue partout, elle doit être monotone sur un intervalle où elle est
bijective. Le plus grand intervalle contenant x = π

4 où la fonction est monotone est entre son
maximum local et son minimum local, donc [0, π2 ].
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ii) L’équation y =
√

1 + 2 cos2(x) et la condition cos(x) > 0 sur [0, π2 ] impliquent cos(x) =
√

y2−1
2

et

x = Arccos

(√
y2 − 1

2

)
.

Donc f−1(x) = Arccos

(√
x2−1
2

)
. Pour trouver son domain de définition, on calcule f(0) =

√
1 + 2 =

√
3, f(π/2) = 1. Alors le domaine de f−1(x) est [1,

√
3].

Remarque: si on utilise la formule y =
√

2 + cos(2x), on obtient la fonction résiproque f−1(x) =
1
2Arccos

(
x2 − 2

)
sur le même domaine. En effet les deux fonctions sont égales sur l’intervalle

[1,
√

3].

iii) On utilise l’équation du cours (f−1)′(t) = 1
f ′(f−1(t))

. Alors il faut trouver t ∈ [1,
√

3] tel que

f−1(t) = π
4 , ce qui est equivalent à t = f

(
π
4

)
=

√
1 + 2

(
1√
2

)2
=
√

2. Donc t =
√

2.

Question 14. (7pts)
Soit la fonction f : R→ R définie par f(x) = (x+ 1)2ex.

i) Trouver tous les points d’extremums locaux de f et déterminer leur nature.

ii) Déterminer les intervalles de monotonicité de f .

iii) Trouver tous les points d’inflextion de f .

iv) Déterminer les intervalles de convexité de f .

v) Déterminer l’ensemble image de f .

Justifier vos réponses.

Corrigé.

i) La fonction f(x) est un produit d’un polynôme et une fonction exponentielle, par consequence
elle est indéfiniment dérivable. Donc si x = a est un point d’extremum local de f sur R, on a
f ′(a) = 0. La dérivée de la fonction est

f ′(x) = 2(x+ 1)ex + (x+ 1)2ex = ex(x+ 1)(x+ 3).

On a f ′(x) = 0 pour x = −1 et x = −3. On voit que la dérivée change de signe au points x = −1
et x = −3, notamment f ′(x) > 0, x < −3, f ′(x) < 0,−3 < x < −1, et f ′(x) > 0, x > −1. Alors
le point x = −3 est un maximum local et x = −1 un minimum local de f(x). On a f(−3) = 4e−3

et f(−1) = 0.

ii) Selon le résultat du (i), les intervalles de monotonicité de f sont

]−∞,−3[, f ′(x) > 0 f croissante
]− 3,−1[, f ′(x) < 0 f decroinssante
]− 1,∞[, f ′(x) > 0 f croissante

iii) Pour trouver les points d’inflexion de f on trouve les intervalles de monotonicité de f ′. Con-
sidérons la dérivée seconde de f :

f ′′(x) = ex(x+ 1)(x+ 3) + ex(x+ 3) + ex(x+ 1) = ex(x2 + 6x+ 7).

On a f ′′(x) = 0 pour x = −3 ±
√

2, et f ′′(x) = ex(x + 3 +
√

2)(x + 3 −
√

2). Alors la dérivée
seconde change de signe au points x = −3−

√
2 et x = −3 +

√
2.
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iv) Selon le résultat du (iii), les intervalles de convexité de f sont

]−∞,−3−
√

2[, f ′′(x) > 0 f convexe

]− 3−
√

2,−3 +
√

2[, f ′′(x) < 0 f concave

]− 3 +
√

2,∞[, f ′′(x) > 0 f convexe

v) La fonction ex est positive, croissante et non-bornée, et (x+ 1)2 est nonnegative et non-bornée.
On a aussi f(−1) = 0. Donc f(R) = [0,+∞[.

Question 15. (7pts)
Soit f : R→ R une fonction de classe C2(R).

i) Citer le théorème des accroissements finis.

ii) Supposons que |f ′(x)| ≤ 1 pour tout x ∈ R. Démontrer, en utilisant le théorème des accroisse-
ments finis, que |f(b)− f(a)| ≤ |b− a| pour tout a, b ∈ R, tels que a < b.

iii) Supposons que f(0) = 0, f(5) = 1 et f(10) = 2. Démontrer qu’il existe un point c ∈]0, 10[ tel
que f ′′(c) = 0. Montrer toutes les étapes de votre raisonnement.

Corrigé.

i) Soient a < b deux nombres réels et f : [a, b] → R une fonction qui est continue sur [a, b] et

dérivable sur ]a, b[. Alors il existe au moins un point c ∈]a, b[ tel que f ′(c) = f(b)−f(a)
b−a .

ii) Soient a < b deux nombres réels. Puisque f ∈ C2(R), le théorème des accroissement finis

s’applique à la fonction f sur [a, b]. Alors il existe un point c ∈]a, b[ tel que f ′(c) = f(b)−f(a)
b−a .

On a ∣∣∣∣f(b)− f(a)

b− a

∣∣∣∣ = |f ′(c)|.

Puisque |f ′(x)| ≤ 1 pour tout x ∈ R, on a |f ′(c)| ≤ 1. Alors∣∣∣∣f(b)− f(a)

b− a

∣∣∣∣ = |f ′(c)| ≤ 1 =⇒ |f(b)− f(a)| ≤ |b− a|.

iii) On applique le théorème des accroissement finis à la fonction f ∈ C2(R) sur l’intervalle [0, 5].
Alors il existe un point c1 ∈]0, 5[ tel que

f ′(c1) =
f(5)− f(0)

5− 0
=

1− 0

5− 0
=

1

5
.

Maintenant on applique le théorème des accroissement finis à la fonction f ∈ C2(R) sur l’intervalle
[5, 10]. Alors il existe un point c2 ∈]5, 10[ tel que

f ′(c2) =
f(10)− f(5)

10− 5
=

2− 1

10− 5
=

1

5
.

Alors on obtient deux points c1 < c2 et la fonction f ′(x) qui est continue sur l’intervalle [c1, c2]
et dérivable sur ]c1, c2[, parce que f est de classe C2(R). Donc le théorème des accroissements
finis est applicable à la fonction f ′ sur ]c1, c2[, et on obtient un point c ∈]c1, c2[ tel que

f ′′(c) =
f ′(c2)− f ′(c1)

c2 − c1
=

1
5 −

1
5

c2 − c1
= 0.

Alors on a trouvé un point c ∈]0, 10[ tel que f ′′(c) = 0.
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