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Analyse I – Série 13

Exercice 1. (Séries entières)

Objectif: Trouver les rayons et domains de convergence des séries entières.
Théorie nécessaire: Méthodes et exemples donnés aux cours 22, 23.
Trouver les rayons et domaines de convergence des séries entières suivantes :
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Exercice 2. (Théorème de la moyenne)

Objectif: Utiliser le théorème de la moyenne pour estimer la valeur de l’intégrale donnée.
Théorie nécessaire: Théorème de la moyenne vu au cours 24.
Vérifier les deux inégalités
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Exercice 3. (Primitives)

Objectif: Trouver les primitives des fonctions de base.
Théorie nécessaire: Formules et méthodes d’intégration données aux cours 24, 25.
Trouver des primitives pour les fonctions f suivantes :

i) f(x) = sin(x) ii) f(x) = cos(x) iii) f(x) = tan(x)

iv) f(x) = ex v) f(x) = sinh(x) vi) f(x) = cosh(x)

vii) f(x) = ln(x) viii) f(x) =
1

x
ix) f(x) = (ax + b)s (s 6= −1, a 6= 0)
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xv) f(x) = (axp + b)sxp−1
(s 6= −1,
a, p 6= 0)

Exercice 4. (Changement de variable, I)

Objectif: Calculer les intégrales données.
Théorie nécessaire: Méthodes de changement de variables, cours 24, 25.
Trouver des primitives pour les fonctions f en utilisant le changement de variable x = ϕ(u)
indiqué :
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Exercice 5. (Intégrales indéfinies)

Objectif: Calculer les intégrales données.
Théorie nécessaire: Méthodes d’intégration données aux cours 24, 25.
Calculer les intégrales suivantes :
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Exercice 6. (Changement de variable, II)

Objectif: Calculer les intégrales données.
Théorie nécessaire: Méthodes de changement de variables, cours 24, 25.
Calculer les intégrales définies suivantes :
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Exercice 7. (Intégrale définie)

Objectif: Calculer l’intégrale donnée.
Théorie nécessaire: Méthodes d’intégration données aux cours 24, 25.
Calculer l’intégrale ∫ π1/33

0

sin(sin(x33)) cos(x33)x32 dx .

Exercice 8 (V/F fonctions dérivables)

Objectif: Interprêter et évaluer les énoncés concernant les fonctions dérivables.
Théorie nécessaire: Etude des fonction, cours 21.

Soit a < b ∈ R, et soit f : [a, b]→ F une fonction de classe C∞(]a, b[, F ).

(Q1) Si f(x) n’est pas strictement croissante sur [a, b], alors il existe un point c ∈]a, b[ tel que
f ′(c) ≤ 0.

(Q2) S’il existe un point c ∈]a, b[ tel que f ′(c) ≤ 0, alors f(x) n’est pas strictement croissante
sur [a, b].

(Q3) Si la fonction f(x) change de monotonie dans ]a, b[, alors il existe un point c ∈]a, b[ tel
que f ′(c) = 0.

(Q4) Si f ′(c) = 0 et f ′′(c) > 0 pour un c ∈]a, b[, alors f(x) admet un minimum local en (c, f(c)).

(Q5) Si f ′(c) = 0 pour un c ∈]a, b[, et f admet un maximum local en (c, f(c)), alors f ′′(c) < 0.

(Q6) Si f ′(c) = 0 et f ′′(c) = 0 pour un c ∈]a, b[, alors (c, f(c)) est un point d’inflection de f .
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(Q7) Si (c, f(c)) est un point d’inflection pour un c ∈]a, b[ , alors f ′(c) = 0.

(Q8) Si f ′′(c) = ... = f (n−1)(c) = 0 et f (n)(c) 6= 0 pour un c ∈]a, b[ et un n impair, n > 1, alors
(c, f(c)) est un point d’inflection.

(Q9) Si (c, f(c)) est un point d’inflection de f pour un c ∈]a, b[, alors f ′′(c) = 0.

(Q10) Si f ′(x) est croissante sur ]a, b[, alors f(x) est convexe sur ]a, b[.

(Q11) Si f(x) est convexe sur ]a, b[, alors f ′′(x) > 0 pour tout x ∈]a, b[.
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