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Analyse I — Série 13

Exercice 1. (Séries entieres)

Objectif: Trouver les rayons et domains de convergence des séries entieres.
Théorie nécessaire: Méthodes et exemples donnés aux cours 22, 23.
Trouver les rayons et domaines de convergence des séries entieres suivantes :
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Exercice 2. (Théoréeme de la moyenne)

Objectif: Utiliser le théoreme de la moyenne pour estimer la valeur de I'intégrale donnée.
Théorie nécessaire: Théoreme de la moyenne vu au cours 24.
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Exercice 3. (Primitives)

Objectif: Trouver les primitives des fonctions de base.
Théorie nécessaire: Formules et méthodes d’intégration données aux cours 24, 25.
Trouver des primitives pour les fonctions f suivantes:
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Exercice 4. (Changement de variable, I)

Objectif: Calculer les intégrales données.

Théorie nécessaire: Méthodes de changement de variables, cours 24, 25.

Trouver des primitives pour les fonctions f en utilisant le changement de variable x = p(u)
indiqué :



i) f(x)= Nier x = sin(u) ii) f(z) = T x = tan(u)
i) f(x) = exlﬂ 2= W) f@)=avi =1, a=£+41

Exercice 5. (Intégrales indéfinies)

Objectif: Calculer les intégrales données.
Théorie nécessaire: Méthodes d’'intégration données aux cours 24, 25.
Calculer les intégrales suivantes :
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Exercice 6. (Changement de variable, II)

Objectif: Calculer les intégrales données.
Théorie nécessaire: Méthodes de changement de variables, cours 24, 25.
Calculer les intégrales définies suivantes :
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Exercice 7. (Intégrale définie)

Objectif: Calculer I'intégrale donnée.
Théorie nécessaire: Méthodes d’intégration données aux cours 24, 25.

Calculer I'intégrale
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Exercice 8 (V/F fonctions dérivables)

Objectif: Interpréter et évaluer les énoncés concernant les fonctions dérivables.
Théorie nécessaire: Etude des fonction, cours 21.

Soit a < b € R, et soit f : [a,b] — F une fonction de classe C*(Ja,b], F).

( 1) Si f ( ) n’est pas strictement croissante sur [a, b], alors il existe un point ¢ €]a, b[ tel que
7(0) <0

(Q2) S'il existe un point ¢ €]a, b] tel que f'(c) < 0, alors f(x) n’est pas strictement croissante

sur [a, b].

(Q3) Si la fonction f(z) change de monotonie dans |a, b[, alors il existe un point ¢ €]a, b[ tel

que f(c) = 0.

(Q4) Si f'(¢c) =0et f’(c) > 0 pour un ¢ €la, b, alors f(x) admet un minimum local en (¢, f(c)).
(Q5) Si f'(c) = 0 pour un ¢ €la, b, et f admet un maximum local en (¢, f(c)), alors f”(c) < 0.
(Q6) Si f'(¢c) =0et f’(c) =0 pour un ¢ €la, b], alors (¢, f(c)) est un point d’inflection de f.
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Q7) Si (¢, f(c)) est un point d’inflection pour un ¢ €|a, b , alors f’(¢) = 0.

(

(Q8) Si f"(c) = ... = f™V(c) =0 et f™(c) # 0 pour un ¢ €a, b[ et un n impair, n > 1, alors
(¢, f(c)) est un point d’inflection.
(
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Q9) Si (¢, f(c)) est un point d’inflection de f pour un ¢ €]a, b[, alors f”(c) = 0.
Q10) Si f'(x) est croissante sur |a, b[, alors f(x) est convexe sur |a, b|.

Q11) Si f(z) est convexe sur |a,b[, alors f”(x) > 0 pour tout = €]a, b.



