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Analyse I – Corrigé de la Série 2

Remarque générale :
Les Exercices 1, 4 et 8 sont des questions de type Vrai ou Faux (V/F) – ce type de ques-
tions réapparâıtra tout au long du semestre. Pour chaque question, répondre par VRAI si
l’affirmation est toujours vraie ou par FAUX si elle n’est pas toujours vraie.

Exercice 1.

Q1 : FAUX.
Prendre par exemple A = [0, 2] et B = [1, 3]. Dans ce cas on a

R \ (A ∩B) = R \ [1, 2]

et
(R \ A) ∩ (R \B) = (R \ [0, 2]) ∩ (R \ [1, 3]) = R \ [0, 3].

Q2 : VRAI.
⊂ : Soit x ∈ A∩ (B ∪C). Donc x ∈ A et x ∈ (B ∪C). Puisque x ∈ (B ∪C), alors x ∈ B
ou (au sens logique du terme) x ∈ C. Deux cas se présentent :

• x ∈ B :
Alors x ∈ (A ∩B) et a fortiori x ∈ (A ∩B) ∪ (A ∩ C).

• x ∈ C :
Alors x ∈ (A ∩ C) et a fortiori x ∈ (A ∩B) ∪ (A ∩ C).

⊃ : Soit x ∈ (A ∩ B) ∪ (A ∩ C). Alors x ∈ (A ∩ B) ou(au sens logique du terme)
x ∈ (A ∩ C). Ainsi, dans tous les cas, x ∈ A.
Puisque x ∈ A et que x ∈ (A ∩ B) ∪ (A ∩ C). Alors x ∈ B ou (toujours au sens logique
du terme) x ∈ C. Dans tous les cas on a x ∈ (B ∪ C) et donc x ∈ A ∩ (B ∪ C).
Nous venons de démontrer la distributivité de ∩ sur ∪.

Q3 : FAUX.
Prendre par exemple A = R, B = [1, 3] et C = [0, 2]. Dans ce cas on a

(A ∩B) \ C = [1, 3] \ [0, 2] =]2, 3]

et
A ∩ (C \B) = R ∩ [0, 1[= [0, 1[

Q4 : VRAI.
⊂ : Trivial car C ⊃ (B ∩ C).
⊃ : Si x ∈ (A∩B) \ (B ∩C), alors x ∈ A et x ∈ B. L’information x /∈ (B ∩C) se réduit
alors en x /∈ C. On obtient alors le résultat désiré.

Q5 : FAUX.
Prendre par exemple A = {0}, B = {0; 1; 2} et C = {0; 1; 3}. Dans ce cas on a

A ∩ (B ∪ C) = {0}

et
(A ∪B) ∩ (A ∪ C) = {0; 1}
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Exercice 2.

On raisonne par l’absurde. Supposons que
√

6 = p
q

avec p, q des entiers naturels tels que

pgcd(p, q) = 1. Il s’en suit que p2 = 6q2, c.-à-d. que p2 est donc un multiple de 6, ce qui n’est
possible que si p est un multiple de 6 (Supposons que p n’est pas multiple de 6. Alors p = 6k+r
où k ∈ N et r ∈ J1, 5K, donc p2 = 6(6k2 + 2kr) + r2 où r2 ne peut prendre qu’une valeur dans
{1, 4, 9, 16, 25}. Aucune de ces valeurs n’est divisible par 6, donc p2 n’est pas divisible par 6.
Absurde). On a donc p = 6a pour un entier naturel a. Par conséquent, 62a2 = 6q2 et donc
q2 = 6a2. Ainsi q2 est un multiple de 6, ce qui n’est possible que si q est un multiple de 6. Mais
ceci implique que le plus grand commun diviseur de p et de q n’est pas égal à 1, ce qui est en
contradiction avec l’hypothèse de départ. Donc

√
6 est irrationnel.

Exercice 3.

Q1 : On a
r2 = 7 +

√
17 ,

ou √
17 = r2 − 7 .

Si r est un nombre rationnel, il s’en suit que r2 − 7 en est aussi un et donc
√

17 aussi, ce
qui est une contradiction. (La preuve que

√
17 est un nombre irrationnel se fait comme

pour 2 ou 3 ou tout autre nombre premier, voir notes du cours). Donc r est irrationnel.

Q2 : On a (
r −
√

2
)3

= 3 ,

et donc
r3 − 3r2

√
2 + 3r · 2− 2

√
2− 3 = 0 ,

d’où on obtient √
2 =

r3 + 6r − 3

3r2 + 2
.

Cette égalité implique que
√

2 est un nombre rationnel si r est un nombre rationnel, ce
qui est une contradiction. Donc r est irrationnel.

Exercice 4.

Q1 : VRAI.
Par le théorème du cours, si A est majoré, alors il existe supA. ([DZ], Section 1.2.5).
Puisque supA n’existe pas, alors A n’est pas majoré et donc il n’est pas borné.

Q2 : FAUX.
Soit A =]0, 1[⊂ R. Alors on a supA = 1 (voir les notes du cours). Donc supA /∈ A, mais
A est borné.

Q3 : FAUX.
Le supremum de A est

√
4 = 2 qui appartient bien à Q.

2



Q4 : FAUX.
Soit A = {−2,−1, 0, 1, 2} et B = [−1, 1]. Alors inf A = −2 < inf B = −1 et supA = 2 >
supB = 1, mais B 6⊂ A.

Exercice 5.

i) A = ]−∞, 1 [ ii) A = ]−∞, 1 ]

iii) A = [−1,∞ [ iv) A =
[
−
√

2,
√

2
]

v) A =
]
−∞,−

√
2
]
∪
[√

2,∞
[

vi) A =
]
−∞,− 3

√
3
]

Exercice 6.

Q1 : Il suffit de s’apercevoir que la suite (un) telle que ∀n ∈ N∗, un = 1
n+3

est strictement

décroissante, de 1er terme 1
4

et tout les termes sont positifs. On en déduit donc que
E ⊂ [0, 1

4
] et donc que E est borné.

Q2 : • Prouvons que 0 est la borne inférieure de (un) :
D’une part, on a ∀n ∈ N∗, un > 0. D’autre part, prenons ε > 0, en prenant
n = max(b1

ε
c − 2, 1), nous avons un = 1

n+3
= 1
b 1
ε
c+1

< ε. (La notation bxc signifie

la partie entier du nombre réel positif x). Ainsi, il n’y a pas de minorant de (un)
supérieur à 0. La borne inférieure (infimum) est donc 0.

• Prouvons que 1
4

est la borne supérieure de (un) :
L’argument utilisé en Q1 suffit : (un) est strictement décroissante et de 1er terme 1

4
.

La borne supérieure est donc 1
4
.

Q3 : On a avec la suite définie précédemment u1 = 1
4

et donc supE ∈ E.
De plus, ∀n ∈ N∗, un > 0 et donc inf E /∈ E.

Exercice 7.

i) supA =
√

2 ∈ A, inf A = −1 /∈ A (voir les notes du cours).

ii)B n’est pas majoré dans R, inf B =
√

2 /∈ B.

iii) Soit x ∈ C, alors |2x− 1| ≤ 1, ce qui équivaut à −1 ≤ 2x− 1 ≤ 1, soit encore 0 ≤ x ≤ 1.
Par conséquent, 0 est le plus grand minorant de C, et 1 est le plus petit majorant de C.
supC = 1 ∈ C, inf C = 0 ∈ C.

iv) De la même manière qu’à la question précédente, |x2 − 2| < 1 équivaut à −1 < x2 − 2 < 1,
soit 1 < x2 < 3. Pour les solutions positives, on peut passer à la racine carrée (comme la
fonction racine carrée est croissante, l’ordre des inégalités est gardé) et obtenir 1 < x <

√
3.

Pour les solutions négatives (x < 0), le même raisonnement peut être appliqué à −x et conduit
à 1 < −x <

√
3, soit −

√
3 < x < −1. Par conséquent, D =

]
−
√

3,−1
[
∪
]
1,
√

3
[
, donc

supD =
√

3 /∈ D, inf D = −
√

3 /∈ D.

v) Cette question consiste essentiellement en l’étude de la suite (un) telle que ∀n ∈ N, un =
n

n+ 1
. On remarque que la suite est bornée:

∀n ∈ N, 0 ≤ un < 1.
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Comme u0 = 0 et ∀n ∈ N, 0 ≤ un, il est clair que inf E = 0 ∈ E. Démontrons que 1 est la
borne supérieure de E. Soit ε > 0, cherchons des éléments de E à une distance de moins de ε
de 1. |un − 1| < ε équivaut à 1− un < ε puisque un < 1. Si ε > 1, l’inégalité est satisfaite pour

tout n ∈ N. Soit ε < 1. On a donc |un − 1| < ε ⇔ 1 − n

n+ 1
< ε ⇔ 1

n+ 1
< ε ⇔ n >

1

ε
− 1.

En prenant n = b1
ε
c, nous avons donc bien |un − 1| < ε, donc la borne supérieure de E est 1.

supE = 1 /∈ E, inf E = 0 ∈ E.

Remarque: Pour démontrer que 1 est le supremum du sous-ensemble E, il suffit de démontrer
que (1) 1 ≥ un pour tout un ∈ E, et (2) qu’il existe n ∈ N tel que pour tout ε > 0 on a
1 − un < ε. Il est souvent plus facile à démontrer l’existence que de trouver explicitement un
tel n. Par exemple, dans le cas donné cela revient à la proposition que pour tout ε > 0 il existe
n ∈ N tel que n > 1

ε
− 1, ce qui suit du fait que le sous-ensemble des nombres naturels n’est

pas borné dans R (voir les notes du cours).

vi) Pour cette question, il nous faut découper l’ensemble F en 3 sous-ensembles. Posons (un)

telle que ∀n ∈ N, un =
n(−1)n

n+ 1
et découpons F en {u0, u2n+2 et u2n+1} ∀n ∈ N. On remarque

que u0 = 0, ∀n ∈ N, u2n+2 > 0 et ∀n ∈ N, u2n+1 < 0. Chercher la borne supérieure de F revient
donc à chercher la borne supérieure de u2n+2 et de la même façon, chercher la borne inférieure
de F revient à chercher la borne inférieure de u2n+1.

• Prouvons que la borne inférieure de (u2n+1) est -1 :
On a ∀n ∈ N, u2n+1 = −1 + 1

2(n+1)
. -1 est un minorant de (u2n+1) car ∀n ∈ N, 1

2(n+1)
> 0.

Prenons ε > 0, alors il nous faut trouver n ∈ N tel que | − 1 + 1
2(n+1)

− (−1)| < ε ⇔
1

2(n+1)
< ε⇔ n > 1

2ε
− 1. En posant n = b 1

2ε
c, nous avons u2n+1 + 1 < ε. Ainsi, la borne

inférieure de F est donc -1.

• Prouvons que la borne supérieure de (u2n+2) est 1 :
On a ∀n ∈ N, u2n+2 = 1 − 1

2n+3
. 1 est un majorant de (u2n+2) car ∀n ∈ N, 1

2n+3
> 0.

Prenons ε > 0, en posant n = b 1
2ε
c, nous avons 1− u2n+2 < ε. Ainsi, la borne supérieure

de F est donc 1.

vii)G n’est ni majoré ni minoré puisqu’il contient l’ensemble des entiers relatifs.

viii) En plaçant les angles de valeur
1

n+ 1
sur un cercle trigonométrique, il est facile de voir

que la suite constituée de leurs sinus, un = sin

(
1

n+ 1

)
est décroissante. Ainsi, supH = u0 =

sin(1) ∈ H. Comme 0 <
1

n+ 1
≤ 1 et que le sinus est croissant sur

[
0,
π

2

]
, on a 0 < un ≤ sin(1).

Pour un quelconque réel positif x, sin(x) ≤ x. Ainsi, ∀n ∈ N, un ≤
1

n+ 1
. Or nous avons vu en

v) que pour ε > 0 et n = b1
ε
c, nous avions

1

n+ 1
< ε, et donc |un−0| < ε. Donc inf H = 0 /∈ H.

En conclusion, supH = sin(1) ∈ H et inf H = 0 /∈ H.

ix) sup I = 1 /∈ I, inf I = 0 /∈ I.
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Exercice 8.

Q1 : Axiome de la borne inférieure =⇒ la proposition donnée.
Soient A ⊂ R et B ⊂ R deux ensembles non vides tels que A ∪ B = R, A ∩ B = ∅ et
pour tout a ∈ A, b ∈ B on a a < b. Alors l’ensemble B est minoré par tout élément de
l’ensemble A. Donc l’axiome de la borne inférieure implique qu’il existe c = inf(B) (voir
les notes du cours). Par la définition de la borne inférieure, c ≤ b pour tout b ∈ B et
c ≥ a pour tout a ∈ A. (Supposons qu’il existe x ∈ A tel que c < x, et soit ε = (x− c)/2.
Alors c+ ε < x < b pour tout b ∈ B, ce qui contredit la définition de c = inf(B). )

Q2 : La proposition donnée =⇒ l’axiome de la borne inférieure.
Soit S ⊂ R∗+ un sous-ensemble non vide des nombres réels positifs. Soit A ⊂ R le sous-
ensemble des nombres a ∈ R : a < s pour tout s ∈ S. Alors 0 ∈ A et donc A n’est pas
vide. Soit B = R \ A, alors S ⊂ B et donc B n’est pas vide. Par la définition de B on a
de plus A ∪ B = R et A ∩ B = ∅. Alors par la proposition donnée, il existe un nombre
c ∈ R tel que a ≤ c pour tout a ∈ A et c ≤ b pour tout b ∈ B. Il est facile à voir que c
est la borne inférieure de S. On a déjà c ≤ b pour tout b ∈ B et donc c ≤ s pour tout
s ∈ S, car S ⊂ B. Soit ε > 0 tel que pour tout s ∈ S on a c+ ε < s. Alors x = c+ ε ∈ A
et donc c < x où x ∈ A, ce qui contredit la définition de c. Donc pour tout ε > 0 il existe
s ∈ S tel que c+ ε ≥ s, ce qui montre que c est effectivement la borne inférieure de S.
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