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Analyse I – Exercices à rendre

Exercice 3.
Soit f : R→ R une fonction C∞ telle que f (0) = f (1) = f ′ (0) = f ′ (1) = 0.

i) Montrez, en utilisant un ou des résultats du cours, que l’équation f ′′(x) = 0 a au moins
deux solutions sur ]0, 1[ .

ii) Donnez un exemple explicite d’une fonction f satisfaisant les propriétés ci-dessus où
l’équation f ′′ (x) = 0 a exactement deux solutions sur ]0, 1[ .

Solution 3. Soit f : R→ R une fonction C∞ telle que f (0) = f (1) = f ′ (0) = f ′ (1) = 0.

i) Montrons que l’équation f ′′(x) = 0 a au moins deux solutions sur ]0, 1[ . Rappelons
d’abord le théorème de Rolle:
Theorème: Soient a < b, f une fonction continue sur [a, b] et dérivable sur ]a, b[ telle
que f(a) = f(b). Alors, il existe un c ∈]a, b[ tel que f ′(c) = 0.

Comme f est C∞ et puisque f(0) = f(1) = 0, on peut appliquer le théorème de Rolle
pour montrer qu’il existe c ∈]0, 1[ tel que f(c) = 0. On applique à nouveau le théorème
de Rolle à la fonction f ′ (qui est aussi C∞) sur les deux tronçons [0, c] et [c, 1]. Puisque
f ′(0) = f ′(c) = 0, il existe a ∈]0, c[ tel que f ′′(a) = 0. De même, comme f ′(c) = f ′(1) = 0,
il existe b ∈]c, 1[ tel que f ′′(b) = 0. Comme a < c < b, on a bien trouvé a 6= b sur ]0, 1[
avec f ′′(a) = f ′′(b) = 0.

ii) Pour donner un exemple explicite d’une fonction f satisfaisant les propriétés ci-dessus et
où l’équation f ′′ (x) = 0 a exactement deux solutions sur ]0, 1[ , on cherche une fonction
qui a deux minimums locaux (respectivement maximum locaux) en 0 et 1 et un maximum
local (respectivement minimum local) entre les deux.

Par exemple, la fonction f(x) = sin(2πx− π
2
) + 1 satisfait ces conditions.
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La deuxième dérivée de sin(2πx− π
2
)+1 est 4 cos(2πx), qui vaut 0 lorsque x = n

2
− 1

4
, n ∈ Z.

Sur [0, 1], on a exactement deux zéros, 1
4

et 3
4
.
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Exercice 4.
Soit la fonction f : [0, 2] → R définie par f(x) = sin(2πx) + x. Soient pi(x), i = 0, .., 3 les
polynômes de Taylor d’ordre 1 de f , en x0 = 0, x1 = 1

2
, x2 = 1 et x3 = 3

2
, respectivement et

P (x) la fonction définie par morceaux :

P (x) =


p0(x) x ∈

[
0, 1

2

[
p1(x) x ∈

[
1
2
, 1
[

p2(x) x ∈
[
1, 3

2

[
p3(x) x ∈

[
3
2
, 2
]

1) Donner les polynômes pi(x), i = 0, .., 3.

2) La fonction P est-elle continue sur [0, 2] ? Si non, trouver les points de discontinuité de P .

3) Démontrer que
∣∣f(x)− P (x)

∣∣ ≤ π2

2
pout tout x ∈ [0, 2].

Solution 4.
Soit la fonction f : [0, 2] → R définie par f(x) = sin(2πx) + x. Soient pi(x), i = 0, .., 3 les
polynômes de Taylor d’ordre 1 de f , en x0 = 0, x1 = 1

2
, x2 = 1 et x3 = 3

2
, respectivement et

P (x) la fonction définie par morceaux :

P (x) =


p0(x) x ∈

[
0, 1

2

[
p1(x) x ∈

[
1
2
, 1
[

p2(x) x ∈
[
1, 3

2

[
p3(x) x ∈

[
3
2
, 2
]

Rappel: Pour f : D −→ R une fonction continue en xi ∈ D, le polynôme de Taylor d’ordre n
en xi est

fn(x) =
n∑
n=0

f (n)(xi)(x− xi)n.

i) On donne explicitement les polynômes pi(x), i = 0, .., 3. Le polynôme de Taylor pi(x)
d’ordre 1 de f(x) = sin(2πx) + x en xi est

pi(x) =
1∑

n=0

f ′(xi)(x− xi)1

= f(xi) + f ′(xi)(x− xi)
= sin(2πxi) + xi + (2π cos(2πxi) + 1)(x− xi).

(a) En x0 = 0:

p0(x) = sin(0) + 0 + (2π cos(0) + 1)(x− 0) = (2π + 1)x

(b) En x1 = 1
2
:

p1(x) = sin(π) +
1

2
+ (2π cos(π) + 1)(x− 1

2
)

=
1

2
+ (1− 2π)(x− 1

2
)
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(c) En x2 = 1:

p2(x) = sin(2π) + 1 + (2π cos(2π) + 1)(x− 1)

= 1 + (1 + 2π)(x− 1)

(d) En x3 = 3
2
:

p3(x) = sin(3π) +
3

2
+ (2π cos(3π) + 1)(x− 3

2
)

=
3

2
+ (1− 2π)(x− 3

2
)

ii) On remplace les polynômes du point 1 dans la définition de P :

P (x) =


(2π + 1)x si x ∈ [0, 1

2
[

1
2

+ (1− 2π)(x− 1
2
) si x ∈ [1

2
, 1[

1 + (1 + 2π)(x− 1) si x ∈ [1, 3
2
[

3
2

+ (1− 2π)(x− 3
2
) si x ∈ [1

2
, 2]

La fonction P est continue par morceaux (puisque chaque morceau est un polynôme). Il
faut donc vérifier la continuité aux points xi pour i = 1, 2, 3.

(a) En x1 = 1
2
:

lim
x→ 1

2

−
P (x) =

2π + 1

2
6= 1

2
= lim

x→ 1
2

+
P (x)

Donc P est discontinue en x1 = 1
2
.

(b) En x2 = 1:

lim
x→1−

P (x) =
1

2
+

1− 2π

2
6= 1 = lim

x→1+
P (x)

Donc P est discontinue en x2 = 1.

(c) En x3 = 3
2
:

lim
x→ 3

2

−
P (x) = 1 +

2π + 1

2
6= 3

2
= lim

x→ 3
2

+
P (x)

Donc P est discontinue en x3 = 3
2
.

Le graphique ci-dessous représente P en bleu, et f en noir. On peut voir les 3 points de
discontinuité en x1, x2, x3.
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iii) Démontrons que
∣∣f(x) − P (x)

∣∣ ≤ π2

2
pout tout x ∈ [0, 2]. Par un résultat du cours, on

sait que

|f(x)− pi(x)| ≤ max
y∈[xi,x]

|f
′′(y)

2
(x− xi)2|

= max
y∈[xi,x]

| − 2π2 sin(2πy)(x− xi)2|

≤ 2π2(x− xi)2

car | − 2π2 sin(2πy)| est borné par 2π2.

De plus, sur chaque morceau de P , on a |x− xi| ≤ 1
2
. On obtient donc bien

|f(x)− P (x)| ≤ 2π2
(1

2

)2
=
π2

2
.
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