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Analyse I – Corrigé de la Série 9

Exercice 1.

i) En observant que le dénominateur divise le numérateur, on a

lim
x→1

x3 + x2 − 2

x− 1
= lim

x→1

(x− 1) (x2 + 2x+ 2)

x− 1
= lim

x→1

(
x2 + 2x+ 2

)
.

Pour calculer cette limite, on utilise les propriétés algébriques :

lim
x→1

(
x2 + 2x+ 2

)
= lim

x→1
x2 + lim

x→1
2x+ 2 =

(
lim
x→1

x
)2

+ 2 lim
x→1

x+ 2 = 12 + 2 · 1 + 2 = 5.

ii) On utilise la formule a3 − b3 = (a − b)(a2 + ab + b2) avec a = 3
√
x+ 1 et b = 3

√
x pour

obtenir

lim
x→∞

(
3
√
x+ 1− 3

√
x
)

= lim
x→∞

(
(x+ 1)

1
3 − x 1

3

)(
(x+ 1)

2
3 + (x+ 1)

1
3x

1
3 + x

2
3

)
(x+ 1)

2
3 + (x+ 1)

1
3x

1
3 + x

2
3

= lim
x→∞

1

(x+ 1)
2
3 + (x+ 1)

1
3x

1
3 + x

2
3

= 0 .

iii) En utilisant que cos(2x) = cos2(x) − sin2(x) , on peut récrire le numérateur comme
cos2(x)− sin2(x)− 1 = −2 sin2(x) et la limite devient

lim
x→0

−2 sin2(x)

sin(x2)
= −2 · lim

x→0

(
sin2(x)

x2
· x2

sin(x2)

)
= −2 · lim

x→0

(
sin(x)

x

)2

· lim
x→0

x2

sin(x2)
= −2 · 12 · 1 = −2

car lim
x→0

sin(x)

x
= 1 (cf. cours).

iv) Comme 1 − x3 = (1 − x)(1 + x + x2), on peut simplifier la fraction en mettant au même
dénominateur pour calculer la limite :

lim
x→1

(
1

1− x
− 3

1− x3

)
= lim

x→1

1 + x+ x2 − 3

1− x3
= lim

x→1

x2 + x− 2

(1− x)(1 + x+ x2)

= lim
x→1

(x− 1)(x+ 2)

(1− x)(1 + x+ x2)
= − lim

x→1

x+ 2

x2 + x+ 1
= −3

3
= −1, .

où on utilise de nouveau les propriétés algébriques pour calculer la dernière limite.
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v) Avec une formule de trigonométrie on peut récrire le numérateur

lim
x→a

cos(x)− cos(a)

x− a
= lim

x→a

−2 · sin
(
x+a
2

)
· sin

(
x−a
2

)
x− a

= −
(

lim
x→a

sin

(
x+ a

2

))
·

(
lim
x→a

sin
(
x−a
2

)
x−a
2

)
= − sin(a)

car la deuxième limite vaut 1.

vi) On utilise la limite connue lim
x→0

ex − 1

x
= 1. Si a 6= 0 et b 6= 0, on a

lim
x→0

eax − ebx

x
= lim

x→0

(
eax − 1

ax
· a− ebx − 1

bx
· b
)

= a− b.

Si a 6= 0 et b = 0, on a lim
x→0

eax−1
ax
· a = a. Si a = 0 et b 6= 0, on a lim

x→0

1−ebx
bx
· b = −b. Si

a = b = 0, on a lim
x→0

1−1
x

= 0. Ainsi pour tout couple a, b ∈ R on a

lim
x→0

eax − ebx

x
= a− b.

Exercice 2.

i) En multipliant par le conjugué du numérateur et du dénominateur on obtient

√
2 + x−

√
4− x√

x− 1
=

[(2 + x)− (4− x)] (
√
x+ 1)

(x− 1)
(√

2 + x+
√

4− x
)

= 2
(
√
x+ 1)√

2 + x+
√

4− x

−→
x→1

2√
3

ii) Posons y = x− 2. Alors x→ 2 implique y → 0.

x2 − 4

sin
(
πx
2

) =
(y + 2)2 − 4

sin
(
πy
2

+ π
)

= − y
2 + 4y

sin
(
πy
2

) car sin (a+ π) = − sin (a) , ∀a

En utilisant la limite

lim
x→0

sin(x)

x
= 1,

on a

lim
y→0
− y

2 + 4y

sin
(
πy
2

) = lim
y→0
−

πy
2

sin
(
πy
2

) 2(y + 4)

π
= − 8

π
.
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iii) Tout d’abord, remarquons que

cos(3x) = cos(2x+ x) = cos(2x) cos(x)− sin(2x) sin(x)

=
(
1− 2 sin2(x)

)
cos(x)− 2 sin2(x) cos(x) = cos(x)− 4 sin2(x) cos(x)

= cos(x)
(
1− 4 sin2(x)

)
Ainsi,

cos(3x)− cosx

x2
= −4

cos(x) sin2(x)

x2
−→
x→0
−4

car lim
x→0

sin(x)

x
= 1

iv) En multipliant par le conjugué du numérateur au numérateur et au dénominateur, on
obtient

x

(√(
1 +

2

x

)(
1 +

3

x

)
− 1

)
= x

(
1 +

2

x

)(
1 +

3

x

)
− 1√(

1 +
2

x

)(
1 +

3

x

)
+ 1

=
2 + 3 +

6

x√(
1 +

2

x

)(
1 +

3

x

)
+ 1

−→
x→+∞

5

2

v) On observe que (e2x−2+e−2x) = (ex−e−x)2 et on utilise la limite connue lim
x→0

ex − 1

x
= 1 :

lim
x→0

(ex − e−x)2

3x2
= lim

x→0

1

3

(
ex − e−x

x

)2

= lim
x→0

1

3

(
ex − 1

x
+
e−x − 1

−x

)2

=
4

3
.

vi) En multipliant par 2x2 et par le conjugué du dénominateur au numérateur et au dénominateur,
on obtient

lim
x→0

1− e2x2

2x2
· 2x2(

√
1 + 5x2 + 1)

5x2
= −4

5
.
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Exercice 3.

i) Observons que lim
x→α

tan2(x− α)

(x− α)2
= lim

x→0

tan2(x)

x2
. Du cours on sait que lim

x→0

sin(x)

x
= 1.

Ainsi

lim
x→0

tan(x)

x
= lim

x→0

sin(x)

x · cos(x)
=

(
lim
x→0

sin(x)

x

)
·
(

lim
x→0

1

cos(x)

)
= 1

car les deux limites existent et valent 1. Il suit que

lim
x→0

tan2(x)

x2
=

(
lim
x→0

tan(x)

x

)2

= 12 = 1

et donc la limite donnée existe pour tout α ∈ R.

ii) Cette limite existe si et seulement si α est une racine double du polynôme au numérateur.
Evalué en α, celui-ci devient

α4 − 2α4 + 4α2 = α2(4− α2) = α2(2 + α)(2− α).

Les candidats sont donc les racines de ce polynôme-ci, c.-à-d. α ∈ {0,−2, 2}.
Pour α = 0, le polynôme est x4 + 4x2 = x2(x2 + 4) dont 0 est bien une racine double.

Pour α = ±2, on a

x4 ∓ 4x3 + 4x2 = x2(x2 ∓ 4x+ 4) = x2(x∓ 2)2

et donc 2 et −2 sont des racines doubles respectives.

Ainsi la limite existe si et seulement si α ∈ {−2, 0, 2}.
iii) On distingue trois cas pour β.

1) Si β = 0, la limite vaut

lim
x→0

x2 sin
(
1
x

)
+ α|x|

|x|
= lim

x→0

(
|x| sin

(
1
x

)
+ α

)
= α

car 0 ≤
∣∣x sin

(
1
x

)∣∣ ≤ |x| , d’où il suit par le théorème des deux gendarmes que
lim
x→0
|x| sin

(
1
x

)
= 0. La limite donnée existe donc pour tout α ∈ R si β = 0.

2) Si β < 0, x2 + β
∣∣cos

(
1
x

)∣∣ prend des valeurs négatives au voisinage de x = 0. En effet,
pour xn = 1

2nπ
avec n ∈ N∗ on a

lim
n→∞

(
x2n + β

∣∣∣cos
(

1
xn

)∣∣∣) = lim
n→∞

((
1

2nπ

)2
+ β | cos(2nπ)|

)
= β < 0.

Ainsi l’expression n’est pas définie et donc la limite n’existe pas.

3) Si β > 0, il faut encore distinguer si α est nul ou pas.

Si α = 0, on a pour tout x ∈ R∗

0 ≤
x2
∣∣sin( 1

x

)∣∣√
x2 + β

∣∣cos
(
1
x

)∣∣ =
|x|
∣∣sin( 1

x

)∣∣√
1 + β

x2

∣∣cos
(
1
x

)∣∣ ≤ |x|
et donc

lim
x→0

x2
∣∣sin( 1

x

)∣∣√
x2 + β

∣∣cos
(
1
x

)∣∣ = 0
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pour tout β > 0.

Si α 6= 0, la limite n’existe pas. En effet, en prenant les suites xn = 1
2nπ

et yn = 1
π
2
+2nπ

avec n ∈ N∗, on a

lim
n→∞

x2n sin
(

1
xn

)
+ α|xn|√

x2n + β
∣∣∣cos

(
1
xn

)∣∣∣ = lim
n→∞

(
1

2nπ

)2
sin(2nπ) + α

2nπ√(
1

2nπ

)2
+ β |cos(2nπ)|

= lim
n→∞

α
2nπ√(
1

2nπ

)2
+ β

= 0

et

lim
n→∞

y2n sin
(

1
yn

)
+ α|yn|√

y2n + β
∣∣∣cos

(
1
yn

)∣∣∣ = lim
n→∞

|yn| sin
(

1
yn

)
+ α√

1 + β
y2n

∣∣∣cos
(

1
yn

)∣∣∣
= lim

n→∞

(
π
2

+ 2nπ
)−1

sin
(
π
2

+ 2nπ
)

+ α√
1 + β

(
π
2

+ 2nπ
)2 ∣∣cos

(
π
2

+ 2nπ
)∣∣

= lim
n→∞

(
1

π
2

+ 2nπ
+ α

)
= α

car cos
(
π
2

+ 2nπ
)

= 0 pour tout n ∈ N∗. La limite n’existe donc pas (car α 6= 0).

Pour résumer, la limite existe si et seulement si β = 0 et α ∈ R ou si β > 0 et α = 0.

Exercice 4.

Les limites à gauche et à droite de f en x0 = 3 sont respectivement

`− : = lim
x→x−0

f(x) = lim
x→3−

(βx− 4) = 3β − 4

`+ : = lim
x→x+0

f(x) = lim
x→3+

3x2 − 10x+ 3

x2 − 2x− 3
= lim

x→3+

(3x− 1)(x− 3)

(x+ 1)(x− 3)
= lim

x→3+

3x− 1

x+ 1
=

8

4
= 2

Comme f(x0) = α, la fonction f est continue à gauche en x0 ⇔ `− = α , et continue à droite
en x0 ⇔ `+ = α. Si, en plus, `− = `+ = α , alors f est continue en x0.

i) Avec α = 1, `− = −5
2

et `+ = 2, f n’est ni continue à gauche ni continue à droite.

ii) Avec α = 1, `− = 1 et `+ = 2, f est continue à gauche mais pas continue à droite.

iii) Avec α = 2, `− = 1 et `+ = 2, f n’est pas continue à gauche mais continue à droite.

iv) Avec α = 1, `− = 2 et `+ = 2, on a bien `− = `+, mais f n’est quand-même ni continue
à gauche ni continue à droite parce que les limites ne sont pas égales à f(x0).

v) Avec α = 2, `− = 2 et `+ = 2, f est continue.

Comme illustration, les graphes sont tracés à la Fig. 1.

Exercice 5.

i) On calcule les limites de f(x) lorsque x→ 0 des deux côtés en introduisant une nouvelle
variable u tel que x = 1

u
:

lim
x→0−

f(x) = lim
u→−∞

f
(
1
u

)
= lim

u→−∞

1

1 + 2u
= 1 = f(0),

lim
x→0+

f(x) = lim
u→∞

f
(
1
u

)
= lim

u→∞

1

1 + 2u
= 0 6= f(0).
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Figure 1 – Graphes des fonctions f(x) de l’Ex. 5.

Donc f n’est pas continue mais seulement continue à gauche en x = 0 (Fig. 2).

ii) Notons que f est paire parce que les fonctions cos(x) et x2 sont paires. Ainsi il suffit de
considérer la limite à droite (ou celle à gauche). On a

lim
x→0+

1− cos(x)2

x2
(
1 + cos(x)

) = lim
x→0+

(
sin(x)

x

)2

· lim
x→0+

1

1 + cos(x)

= 12 · 1

2
=

1

2
= f(0),

où on a utilisé que lim
x→0

sin(x)
x

= 1
(

= lim
x→0

sin(x)
x

)
(cf. cours) et la décomposition en produit

de deux limites est valable parce que les deux limites existent. Ainsi f est continue en
x = 0.

iii) Considérons les suites (xn) et (yn) définies respectivement par xn = 1
2nπ

et yn = 1
π
2
+2nπ

.

Ces suites satisfont lim
n→∞

xn = 0 = lim
n→∞

yn mais

lim
n→∞

f(xn) = lim
n→∞

cos(2nπ) = 1 et lim
n→∞

f(yn) = lim
n→∞

cos
(
π
2

+ 2nπ
)

= 0.

Ainsi lim
x→0

f(x) n’existe pas et f n’est pas continue en x = 0 (Fig. 3).

iv) Comme la fonction sinus prend des valeurs dans [−1, 1], on a

−|x| ≤ x · sin
(

1

x

)
≤ |x|.

Par le théorème des deux gendarmes, puisque lim
x→0
|x| = 0, on a

lim
x→0

(
x · sin

(
1

x

))
= 0 = f(0).

Ainsi f est continue en x = 0 (Fig. 4).
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Figure 2 – Ex. 6(i)
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Figure 3 – Ex. 6(iii)
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Figure 4 – Ex. 6(iv)

Exercice 6.

i) Posons
f : R → R

x 7→ ex−1 − x− 1

Par opérations usuelles, f est continue sur R. De plus,

f(0) =
1

e
− 1 < 0 et f(3) = e2 − 4 > 0

Ainsi, d’après le théorème des valeurs intermédiaires

∃α ∈ [0, 3] tel que f(α) = 0

f a donc bien au moins 1 racine.

ii) Posons
f : R∗+ → R

x 7→ x2 − 1

x
− 1

Par opérations usuelles, f est continue sur R∗+. De plus,

f(1) = −1 < 0 et f(2) =
5

2
> 0

Ainsi, d’après le théorème des valeurs intermédiaires

∃α ∈ [1, 2] tel que f(α) = 0

f a donc bien au moins 1 racine.

iii) Posons
f : R → R

x 7→ (x− 2) cos(x)− sin(x)

Par opérations usuelles, f est continue sur R. De plus,

f(0) = −2 < 0 , f(−π) = 2 + π > 0 et f(2π) = 2(π − 1) > 0

Ainsi, d’après le théorème des valeurs intermédiaires

∃α ∈]− π, 0[ tel que f(α) = 0 et ∃β ∈]0, 2π[ tel que f(β) = 0

f a donc bien au moins 2 racines.
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iv) Posons
f : R → R

x 7→ xex − x5 − 1

Par opérations usuelles, f est continue sur R. De plus,

f(0) = −1 < 0 , f(−2) = − 2

e2
− 1 + 25 > 0 et f(1) = e− 2 > 0

Ainsi, d’après le théorème des valeurs intermédiaires

∃α ∈]− 2, 0[ tel que f(α) = 0 et ∃β ∈]0, 1[ tel que f(β) = 0

f a donc bien au moins 2 racines.
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