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Analyse I – Corrigé de la Série 8

Exercice 1.

i) Posons ∀n ∈ N, un = (−1)n
n+ 1

2n+ 1
. On a (un)n∈N n’a pas de limite en +∞.

Ainsi, la série
∞∑
n=0

(−1)n
n+ 1

2n+ 1
diverge grossièrement.

ii) Posons ∀n ∈ N, un =

(
n+ 1

2n+ 1

)n

.

lim
n→+∞

(|un|)
1
n = lim

n→+∞

n+ 1

2n+ 1

= lim
n→+∞

1 +
1

n

2 +
1

n

=
1

2
< 1

Ainsi, d’après le critère de Cauchy, la série
∞∑
n=0

(
n+ 1

2n+ 1

)n

est absolument convergente.

iii) La série
∞∑
n=1

3
√
n

(n+ 1)
√
n

est une série à termes positifs. La suite de ses sommes partielles

est donc croissante.
∞∑
n=1

3
√
n

(n+ 1)
√
n

=
∞∑
n=1

n
1
3

(n+ 1)n
1
2

=
∞∑
n=1

1

(n+ 1)n
1
6

≤
∞∑
n=1

1

n
7
6

La série
∞∑
n=1

1

n
7
6

est convergente car toute série de la forme
∑∞

n=1

1

np
avec p > 1 est

convergente (voir Ex. 8, Série 7).

Ainsi, par le critère de comparaison, elle est donc convergente.

iv) Posons ∀n ∈ N∗, un =
n!

2n + 1
.

un ≥
n!

2n+1
≥ 3n−2

2n+1
∀n ≥ 3,

≥
(

3

2

)n−2
1

23
≥ 1

18

(
3

2

)n

1



Cette dernière est une série géométrique avec r =
3

2
> 1. Ainsi, par le critère de compa-

raison, la série
∞∑
n=1

n!

2n + 1
diverge grossièrement.

On pourrait aussi utiliser le critère de d’Alembert :∣∣∣∣un+1

un

∣∣∣∣ =
(n+ 1)!

2n+1 + 1
· 2n + 1

n!
= (n+ 1) · 2n + 1

2n+1 + 1
= (n+ 1) ·

1 + 1
2n

2 + 1
2n

→
n→∞

∞,

donc la série diverge.

v) Posons ∀n ∈ N∗, un =
3n−1

(n− 1)!
.

∣∣∣∣un+1

un

∣∣∣∣ =
3n

n!

(n− 1)!

3n−1

=
3

n
→

n→∞
0

Donc d’après le critère de d’Alembert, la série
∞∑
n=1

3n−1

(n− 1)!
converge absolument.

vi) Posons ∀n ∈ N∗, un =
(n!)2

nn
.

∣∣∣∣un+1

un

∣∣∣∣ =
((n+ 1)!)2

(n+ 1)n+1

nn

(n!)2
= (n+ 1)2

nn

(n+ 1)n+1

= (n+ 1) · nn

(n+ 1)n
=

n+ 1(
1 +

1

n

)n

→
n→+∞

+∞

En effet, nous avons déjà vu en Série 5 que lim
n→+∞

(
1 +

1

n

)n

= e.

Ainsi, d’après le critère de d’Alembert, la série
∞∑
n=1

(n!)2

nn
est grossièrement divergente.

vii) Soit p ∈ N∗. Posons ∀n ∈ N∗, un =
(n!)3

(pn)!
.

∣∣∣∣un+1

un

∣∣∣∣ =
((n+ 1)!)3

(p (n+ 1))!

(pn)!

(n!)3

=
(n+ 1)3

(pn+ p)× (pn+ (p− 1))× · · · × (pn+ 1)

3 cas se présentent :
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— p ∈ {1, 2} :

∣∣∣∣un+1

un

∣∣∣∣ →n→∞ +∞

— p = 3 :

∣∣∣∣un+1

un

∣∣∣∣ →n→∞ 1

33

— p > 3 :

∣∣∣∣un+1

un

∣∣∣∣ →n→∞ 0

Ainsi, d’après le critère de d’Alembert, la série
∞∑
n=1

(n!)3

(pn)!
converge absolument ⇔ p ≥ 3.

Exercice 2.

Dans cet exercice, nous noterons D le domaine de définition de la fonction f .

i) Ici, le dénominateur de f ne s’annule jamais. Ainsi, D = R.

f(−x) =
(−x)4 cos(−3x)

1 + sin2(−x)
=

x4 cos(3x)

1 + sin2(x)
= f(x)

f est donc paire.

f étant par opérations usuelles algébriques, par la croissance de la fonction x 7→ x4, f
n’est pas bornée lorsque x tend vers l’infini. Par contre, elle est bornée sur tout intervalle
borné [a, b] ∈ R et donc, ne peut être périodique.

ii) f étant définie comme un produit de fonctions définies sur R, nous avons D = R.

f(−x) = 2 sin
(
−x

2

)
cos
(
−x

3

)
= −2 sin

(x
2

)
cos
(x

3

)
= −f(x)

Car la fonction x 7→ cos(x) est paire et la fonction x 7→ sin(x) est impaire. f est donc
impaire.

La fonction x 7→ sin
(x

2

)
est périodique de période 4π, la fonction x 7→ cos

(x
3

)
est

périodique de période 6π. f est donc périodique de période 12π car 12π est le plus petit
réel multiple de 4π et 6π.

iii) On a D = R car f est la composition de la somme de fonctions toutes définies sur R.

f

(
−1

4

)
=

(
−1

4
− (−1)

)2

=

(
3

4

)2

=
9

16

f

(
1

4

)
=

(
1

4
+ 0

)2

=
1

16

f n’a donc pas de parité.

On peut aisément vérifier que f est 1-périodique.

iv) f est définie comme produit et somme de fonctions définies sur R. Ainsi, D = R.

f(−x) = −x sin((−x)2) + (−x)2 sin(−x) = −x sin(x2)− x2 sin(x) = −f(x)

f est donc impaire.

Une fonction périodique et continue est bornée. f étant continue par opérations usuelles,
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montrons que f n’est pas majorée.

Soit M > 0. En posant x =
π

2
+ 2kπ, k ∈ Z, on a x sin (x2) + x2 sin(x) =

(π
2

+ 2kπ
)2

+(π
2

+ 2kπ
)

sin

((π
2

+ 2kπ
)2)

≥
(π

2
+ 2kπ

)(π
2

+ 2kπ − 1
)
≥
(π

2
+ 2kπ

)
· 2kπ. Ainsi,

en choisissant très grossièrement k = bMc + 1, on en déduit que f n’est pas majorée
lorsque x tend vers l’infini, en même temps elle est bornée sur tout intervalle borné, et
par conséquent pas périodique.

v) Afin que f soit définie, il faut d’une part que le terme sous la racine soit positif et d’autre
part que le dénominateur soit non nul. Cela correspond à x /∈]−

√
3,
√

3[ et |x| 6= 2. Ainsi,
D = R \ { ]−

√
3,
√

3[∪{−2} ∪ {2}}.

f(−x) =
2(−x)2 + 1

1−
√

(−x)2 − 3
=

2x2 + 1

1−
√
x2 − 3

= f(x)

f est donc paire.

f n’est pas périodique car elle tend vers ±∞ quand x→ ±2, et pas pour d’autres valeurs
de x.

Exercice 3.

i) Comme f et g sont croissantes, on a

x1 ≤ x2
f↑⇒ f(x1) ≤ f(x2)

g↑⇒ g(f(x1)) ≤ g(f(x2)),

c’est-à-dire g ◦ f est aussi croissante.

ii) Comme f et g sont décroissantes, on a

x1 ≤ x2
f↓⇒ f(x1) ≥ f(x2)

g↓⇒ g(f(x1)) ≤ g(f(x2)),

c’est-à-dire g ◦ f est croissante.

iii) Pour f croissante et g décroissante on a

x1 ≤ x2
f↑⇒ f(x1) ≤ f(x2)

g↓⇒ g(f(x1)) ≥ g(f(x2)),

c’est-à-dire g ◦ f est décroissante.
Pour la composée f ◦ g on a

x1 ≤ x2
g↓⇒ g(x1) ≥ g(x2)

f↑⇒ f(g(x1)) ≥ f(g(x2)),

c’est-à-dire f ◦ g est aussi décroissante. La composée de deux fonctions avec monotonies
opposées est donc toujours décroissante.

Exercice 4.

i) Montrons que f est injective et surjective :
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— Injectivité :

Soit x, x′ ∈ A2.

f(x) = f(x′)⇒ g ◦ f(x) = g ◦ f(x′)

⇒ x = x′

f est donc injective.

— Surjectivité :

Soit y ∈ B. Si on pose x = g(y), on a bien f(x) = y.

f est donc surjective.

f est donc bijective.

On a bien f−1 = g car f(x) = y ⇔ g(y) = x.

ii) Supposons f impaire et bijective. Par définition d’une fonction réciproque on a ∀x ∈ R

−x = f−1 ◦ f(−x) = f−1(−f(x))

Car f est impaire. Enfin, nous pouvons écrire −x de la façon suivante

−x = −f−1 ◦ f(x)

Et donc
f−1(−f(x)) = −f−1(f(x))

f étant bijective, en posant y = f(x) on a que ∀y ∈ R, f−1(−y) = −f−1(y) ce qui
démontre que f−1 est impaire.

iii) La fonction f(x) est définie sur [−3, +∞[ et bijective sur son domaine : f(x1) = f(x2)
implique x1 = x2. En posant :

g : [−2, +∞[ → [−3, +∞[
x 7→ (x+ 2)2 − 3

Nous avons bien que ∀x ∈ [−2, +∞[, f ◦ g(x) = x et ∀x ∈ [−3, +∞[, g ◦ f(x) = x. Ainsi,
f−1 = g.

iv) Le plus grand domaine dans lequel x2+1 ∈ [0, π] sans que cos (x2 + 1) ne prenne plusieurs
fois la même valeur est [0,

√
π − 1] (on peut aussi choisir [−

√
π − 1, 0]).

Ainsi, en posant

f : [0,
√
π − 1] → [−1, cos(1)]
x 7→ cos(x2 + 1)

Nous pouvons facilement expliciter sa fonction réciproque

f−1 : [−1, cos(1)] → [0,
√
π − 1]

x 7→
√

arccos(x)− 1

(Si on choisit le domaine [−
√
π − 1, 0] pour f(x), la fonction réciproque serait

f−1(x) = −
√

arccos(x)− 1 .)
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Exercice 5.

-7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 11 12 x
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y � f H- xL y � f H2 xL y � f HxL y � f H0.5 x + 1L y � f Hx - 5L

Exercice 6. Pour calculer f ◦ g, il faut déterminer les valeurs de x pour lesquelles g(x) ≥ 0 et
g(x) < 0 respectivement et puis appliquer l’expression correspondante de f au résultat g(x).
On a x2 ≥ 0 pour tout x ∈ R et x+ 2 ≥ 0 pour x ≥ −2 . Ainsi g(x) ≥ 0 ⇔ x ≥ −2 et donc

(f ◦ g)(x) =

{
2g(x)− 3, x ≥ −2
g(x), x < −2

}
=


2x2 − 3, x ≥ 1

2x+ 1, −2 ≤ x < 1

x+ 2, x < −2

Le procédé pour g ◦ f est similaire. Comme 2x − 3 ≥ 1 pour x ≥ 2 et f(x) < 0 pour tout
x < 0, on a f(x) ≥ 1 ⇔ x ≥ 2 . Ainsi

(g ◦ f)(x) =

{
f(x)2, x ≥ 2
f(x) + 2, x < 2

}
=


(2x− 3)2, x ≥ 2

2x− 1, 0 ≤ x < 2

x+ 2, x < 0

Exercice 7.

Q1 : VRAI

La stricte monotonie de la fonction implique directement que

∀(x, y) ∈ R2, (x 6= y ⇒ f(x) 6= f(y)) .

Q2 : FAUX

Contre-exemple : Posons

g : R∗ → R∗

x 7→ 1

x

Puis f(x) = g(x) si x 6= 0, 0 sinon. f est injective mais pas monotone.
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Q3 : FAUX

Les fonctions f(x) = x et f−1(x) = x sont toutes deux croissantes.

Q4 : VRAI

Soit f une fonction bijective de réciproque décroissante et (x, x′) ∈ R2.

Posons y = f−1(x) et y′ = f−1(x′).

La fonction x 7→ f−1(x) étant décroissante on a

x ≥ x′ ⇔ f−1(x) ≤ f−1(x′)

Puis en remarquant que x = f(y) et x′ = f(y′)

f(y) ≥ f(y′)⇔ y ≤ y′

Q5 : FAUX

Contre-exemple : f(x) = −2x et g(x) = x.

Q6 : FAUX

Contre-exemple : f(x) = −x et g(x) = x2.

Exercice 8.

Q1 : (a) Tout d’abord, posons
f : R → R

x 7→ 1

2x2 + 1

Soit ε > 0.

Il nous faut trouver un δ > 0 tel que pour tout x tel que pour tout |x| ≤ δ, on ait
|f(x)− 1| ≤ ε.

On sait que ∣∣∣∣ 1

2x2 + 1
− 1

∣∣∣∣ =

∣∣∣∣ −2x2

2x2 + 1

∣∣∣∣ ≤ 2x2.

Donc en prenant δ =
1√
2

√
ε, on aura

|x| ≤ δ =⇒ |f(x)− 1| ≤ 2δ2 = 2 · 1

2
ε = ε.

Et donc

lim
x→0

1

2x2 + 1
= 1

(b) Soit (an) une suite de nombres réels convergente vers 0. On va démontrer que la

suite
1

2(an)2 + 1
converge vers 1. D’après le théorème sur les opérations algébriques

sur les limites on a :

lim
n→∞

an = 0 =⇒ lim
n→∞

(an)2 = 0 =⇒ lim
n→∞

(2(an)2 + 1) = 1.

=⇒ lim
n→∞

1

2(an)2 + 1
= 1.
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Q2 : (a) Posons
f : R → R

x 7→ x3

Deux cas se présentent :

(1) Soit a = 0. On va démontrer que lim
x→0

x3 = 0.

Soit ε > 0. Il nous faut trouver δ > 0 tel que pour tout x tel que |x| ≤ δ, on ait
|x3| ≤ ε. Il est facile à voir que l’on peut prendre δ = 3

√
ε.

(2) Soit a 6= 0. On va démontrer que lim
x→a

x3 = a3.

Soit ε > 0. Il nous faut trouver δ > 0 tel que pour tout x tel que |x− a| ≤ δ, on ait
|x3 − a3| ≤ ε.

On sait que

|x3 − a3| = |x− a| |x2 + ax+ a2| ≤ |x− a|
(
|x2|+ |ax|+ |a2|

)
.

Si on prend |x− a| ≤ |a|, alors |x| ≤ 2|a|. On a donc

|x3 − a3| ≤ |x− a|(4a2 + 2a2 + a2) = 7a2 · |x− a|.

En posant δ = min{|a|, ε/7a2}, on obtient finalement

|x3 − a3| ≤ 7a2δ ≤ ε.

Et donc
lim
x→a

x3 = a3

(b) Soit (an) une suite de nombres réels convergente vers a ∈ R. On va considérer la
suite (bn = an − a). Alors on a (an = a + bn) et lim

n→∞
bn = 0. On va démontrer que

lim
n→∞

(an)3 = a3. D’après le théorème sur les opérations algébriques sur les limites on
a :

lim
n→∞

(a+ bn)3 = lim
n→∞

(a3 + 3a2bn + 3a(bn)2 + (bn)3) = a3,

puisque lim
n→∞

(bn)2 = lim
n→∞

(bn)3 = 0.

Q3 : (a) Posons
f : R+ → R+

x 7→
√
x

Soit ε > 0.

Il nous faut trouver δ > 0 tel que pour tout x tel que |x−a| ≤ δ, on ait |f(x)−
√
a| ≤

ε. On a

|
√
x−
√
a| =

∣∣∣∣ x− a√
x+
√
a

∣∣∣∣ ≤ |x− a|√
a

car
√
x ≥ 0

Alors si on prend δ = ε ·
√
a, on obtient

|
√
x−
√
a| ≤ |x− a|√

a
≤ δ√

a
= ε.

Ce qui démontre que
lim
x→a

√
x =
√
a
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(b) Soit (an) une suite de nombres réels positifs convergente vers a > 0. On va considérer
la suite (bn = an− a). Alors on a (an = a+ bn) et lim

n→∞
bn = 0. On va démontrer que

lim
n→∞

√
an =

√
a. On a pour tout n ∈ N :

√
a+ bn =

√
a

√
1 +

bn
a
.

Puisque lim
n→∞

bn = 0, il existe m ∈ N tel que pour tout n ≥ m, |bn| ≤ a, et donc

0 ≤
∣∣∣∣bna
∣∣∣∣ ≤ 1. Alors pour n ≥ m on peut écrire

√
1−

∣∣∣∣bna
∣∣∣∣ ≤

√
1 +

bn
a
≤

√
1 +

∣∣∣∣bna
∣∣∣∣.

Par l’Intermezzo dans la Série 5 on sait que 1 ≤
√

1 + x ≤ 1 +
1

2
x pour tout x ≥ 0

et 1 + y ≤
√

1 + y ≤ 1 +
1

2
y pour tout −1 ≤ y ≤ 0. Alors on a pour tout n ≥ m

1−
∣∣∣∣bna
∣∣∣∣ ≤

√
1 +

bn
a
≤ 1 +

1

2

∣∣∣∣bna
∣∣∣∣ .

Puisque lim
n→∞

|bn| = 0, on a

lim
n→∞

(
1−

∣∣∣∣bna
∣∣∣∣) = lim

n→∞

(
1 +

1

2

∣∣∣∣bna
∣∣∣∣) = 1

et d’après le théorème de deux gendarmes, lim
n→∞

√
1 +

bn
a

= 1 et

lim
n→∞

√
a

√
1 +

bn
a

=
√
a.
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