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Analyse I — Corrigé de la Série 8

Exercice 1.
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Ainsi, d’apres le critere de Cauchy, la série Z < ) est absolument convergente.
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ii1) La série Z ———— est une série a termes positifs. La suite de ses sommes partielles
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est donc croissante.
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La série Z — est convergente car toute série de la forme > 7, — avec p > 1 est
n=1 ne n

convergente (voir Ex. 8, Série 7).

Ainsi, par le critere de comparaison, elle est donc convergente.
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iv) Posons Vn € N* u,, =
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Cette derniere est une série géométrique avec r = 5 > 1. Ainsi, par le critere de compa-

o0
raison, la série E 2n—+1 diverge grossierement.
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On pourrait aussi utiliser le critere de d’Alembert :
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donc la série diverge.
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Unpr| 3" (n—1)!
w, | n!l 3n1
3
T
— 0
n—oo

o n—1
Donc d’apres le critére de d’Alembert, la série Z W converge absolument.
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En effet, nous avons déja vu en Série 5 que lim <1 + —> =e.
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Ainsi, d’apres le critere de d’Alembert, la série Z est grossierement divergente.
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vii) Soit p € N*. Posons Vn € N*, u, = ——
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3 cas se présentent :
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Ainsi, d’apres le critere de d’Alembert, la série Z converge absolument < p > 3.
n=1

Exercice 2.

Dans cet exercice, nous noterons D le domaine de définition de la fonction f.

)

i)

iii)

iv)

Ici, le dénominateur de f ne s’annule jamais. Ainsi, D = R.

(—2)" cos(—3z)  a'cos(31)

T =5~ Tr )

= f(x)

f est donc paire.

f étant par opérations usuelles algébriques, par la croissance de la fonction x — a*, f
n’est pas bornée lorsque = tend vers I'infini. Par contre, elle est bornée sur tout intervalle
borné [a,b] € R et donc, ne peut étre périodique.

f étant définie comme un produit de fonctions définies sur R, nous avons D = R.

f(=z) =2sin <—g> Ccos (—g) = —2sin <§> Ccos <§> = —f(x)

Car la fonction x +— cos(z) est paire et la fonction z — sin(x) est impaire. f est donc
impaire.

x x
La fonction = +— sin (§> est périodique de période 4w, la fonction =z +— cos (—) est

périodique de période 67. f est donc périodique de période 127 car 127 est le plus petit
réel multiple de 47 et 67.

On a D = R car f est la composition de la somme de fonctions toutes définies sur R.

(- (e - (-3
ORI

On peut aisément vérifier que f est 1-périodique.

f n’a donc pas de parité.

f est définie comme produit et somme de fonctions définies sur R. Ainsi, D = R.
f(—=x) = —zsin((—2)?) + (—z)?sin(—2) = —wsin(z?) — 2?sin(z) = — f(z)

f est donc impaire.

Une fonction périodique et continue est bornée. f étant continue par opérations usuelles,



montrons que f n’est pas majorée.

2
Soit M > 0. En posant x = g + 2k, k € Z, on a xsin (2?) + 2?sin(x) = (E + 2k7r> -

2
2
<g + 2k:7r> sin ((g + 2k:7r> ) > (g + 2k:7r> (g + 2km — 1) > (g + 2k:7r) - 2km. Ainsi,
en choisissant tres grossierement &k = | M| + 1, on en déduit que f n’est pas majorée

lorsque = tend vers l'infini, en méme temps elle est bornée sur tout intervalle borné, et
par conséquent pas périodique.
Afin que f soit définie, il faut d’une part que le terme sous la racine soit positif et d’autre

part que le dénominateur soit non nul. Cela correspond & x ¢] —+/3, v/3] et |z| # 2. Ainsi,

D =R\{] - v3, v3[U{-2} U {2}}.

2(—z)?4+1 227 +1

S =17 (—2?-3 1-va2-3

= f(z)

f est donc paire.

f n’est pas périodique car elle tend vers +oo quand x — 42, et pas pour d’autres valeurs
de z.

Exercice 3.

i)

i)

i)

Comme f et g sont croissantes, on a

n<e, B fle) < fl) L g(f(m) < g(f(a)),

c’est-a~dire g o f est aussi croissante.
Comme f et g sont décroissantes, on a

n<z B fla)> ) Z g(fe) < g(f(x),

c’est-a~dire g o f est croissante.
Pour f croissante et g décroissante on a

n<e, B f@)<fl) B g(f(m) > g(f(w)),

c’est-a~dire g o f est décroissante.
Pour la composée fogon a

n<r B ogr)>g(@) L flo(e) > flg(e),

c’est-a~dire f o g est aussi décroissante. La composée de deux fonctions avec monotonies
opposées est donc toujours décroissante.

Exercice 4.

)

Montrons que f est injective et surjective :

4



i)

iii)

iv)

— Injectivité :

Soit z, 2’ € A2

f est donc injective.
— Surjectivité :
Soit y € B. Si on pose x = ¢(y), on a bien f(x) =y.
f est donc surjective.
f est donc bijective.
On a bien f~! =g car f(z) =y & g(y) = z.

Supposons f impaire et bijective. Par définition d’une fonction réciproque on a Vo € R

—z = ftof(—z)=f~f(z))

Car f est impaire. Enfin, nous pouvons écrire —z de la fagon suivante

—z=—f""o f(x)
Et donc
FH=F (@) = =1 (f(2))
=f

f étant bijective, en posant y (r) on a que Vy € R, f~1(—y) = —f}(y) ce qui

démontre que f~! est impaire.
La fonction f(z) est définie sur [—3, +00| et bijective sur son domaine : f(x;) = f(x3)

implique x7 = x5. En posant :

g : [-2, 0] = [-3, +o0f
T = (z+2)2-3

Nous avons bien que Va € [-2, +00|, fog(z) =z et Yz € [-3, +00[, go f(x) = x. Ainsi,
ft=y.

Le plus grand domaine dans lequel 2241 € [0, 7] sans que cos (2 + 1) ne prenne plusieurs
fois la méme valeur est [0, v/7 — 1] (on peut aussi choisir [—v/7 — 1,0]).

Ainsi, en posant

f oo [0,vm—1 — [-1, cos(1)]

x —  cos(z? + 1)
Nous pouvons facilement expliciter sa fonction réciproque

7t [=1, cos(1)] — [0, vV —1]

x — y/arccos(z) — 1

(Si on choisit le domaine [—/7m — 1,0] pour f(x), la fonction réciproque serait

f~Hz) = —y/arccos(z) — 1 .)



Exercice 5.
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Exercice 6. Pour calculer f o g, il faut déterminer les valeurs de = pour lesquelles g(z) > 0 et
g(z) < 0 respectivement et puis appliquer 1'expression correspondante de f au résultat g(z).

(o)) = {

Ona 22 >0 pourtout x € Ret z+2 >0 pour x > —2. Ainsi g(x) >0 & x> —2 et donc
2g(x) —3, z> -2

202 -3, x>1
= —2<
g(x), $<_2} 2z + 1, 2<z<1
x4+ 2, r< =2
Le procédé pour g o f est similaire. Comme 2x — 3 > 1 pour x > 2 et f(z) < 0 pour tout
r<0,ona f(zr)>1 & x>2. Ainsi

2x — 3)2,
ooy [
()+2, <2 [

x> 2
2z — 1, 0<xr<?2
T+ 2, <0
Exercice 7.
Q1 : VRAI
La stricte monotonie de la fonction implique directement que
Q2 : FAUX

V(z,y) eR® (z#£y = f(z) # f(y)).

Contre-exemple : Posons

g : R*

— R*
1

A —
xr

Puis f(z) = g(z) si x # 0, 0 sinon. f est injective mais pas monotone



Q3 : FAUX

Les fonctions f(z) = x et f~!(x) = x sont toutes deux croissantes.
Q4 : VRAI

Soit f une fonction bijective de réciproque décroissante et (z, z’) € R2.
Posons y = f~(z) et v/ = f~1(2').
La fonction x — f~!(z) étant décroissante on a

r>2 < fHx) < )

Puis en remarquant que z = f(y) et ' = f(v/)

fy)>fy)ey<y

Q5 : FAUX

Contre-exemple : f(x) = =2z et g(z) = .
Q6 : FAUX

Contre-exemple : f(z) = —z et g(x) = 22

Exercice 8.

Q1 : (a) Tout d’abord, posons
f:R - R

1
x
222+ 1

Soit ¢ > 0.
I nous faut trouver un § > 0 tel que pour tout z tel que pour tout |z| < §, on ait
[f(z) 1] <e.
On sait que

9.2

1 — 1| = 2 < 222,
212 + 1 202 + 1| —
1

Donc en prenant § = —./z, on aura

V2
1
7] <6 = |f(x)—1|§262:2-§5:s.

Et donc
1

lim =
z—0 21‘2 —+ 1

(b) Soit (a,) une suite de nombres réels convergente vers 0. On va démontrer que la

suite m converge vers 1. D’apres le théoreme sur les opérations algébriques
Qp

sur les limites on a :
lima,=0 = lim(a,)’=0 = lim(2(a,)*+1)=1.

n—oo n—o0 n—00

1
— lim ———— = 1.
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Q2 :

Q3 :

(a) Posons

— R
— 3

f R
x x

Deux cas se présentent :

(1) Soit @ = 0. On va démontrer que liIT(l] 3 = 0.
T

Soit € > 0. Il nous faut trouver § > 0 tel que pour tout x tel que |z| < ¢, on ait

|z3| < e. Il est facile & voir que I'on peut prendre § = /z.

(2) Soit @ # 0. On va démontrer que lim z* = a®.

Tr—a
Soit € > 0. Il nous faut trouver § > 0 tel que pour tout z tel que |z — a| < §, on ait
|23 — a®| < e.

On sait que
2° — @®| = |z — a |2® + az + @®| < |z — a| (|2°] + |az| + |a?]) -
Si on prend |z — a| < |al, alors |z| < 2|a|. On a donc
|2* — a®| < |z — al(4a® + 2a* + a*) = Ta* - |x — al.
En posant § = min{|a|,e/7a*}, on obtient finalement
|2° — a®| < 7a%6 < e.

Et donc
lim 2° = o®
T—ra
Soit (a,) une suite de nombres réels convergente vers a € R. On va considérer la

suite (b, = a, — a). Alors on a (a, = a+b,) et lim b, = 0. On va démontrer que
n—o0

lim (a,)? = a®. D’apres le théoréme sur les opérations algébriques sur les limites on
n—oo
a:
lim (a + b,)* = lim (a® + 3a®b,, + 3a(b,)® + (b,)?) = a®,
n—oo n—oo
puisque lim (b,)? = lim (b,)% = 0.
n—oo n—o0
Posons
f : R+ — R+
r = T

Soit € > 0.

Il nous faut trouver § > 0 tel que pour tout x tel que [z —a| < §, on ait | f(x) —+v/a] <
€. On a

r—a |z — al
— = < >0
[V —a ‘ﬁ+ﬁ_ﬁcar\/5_
Alors si on prend ¢ = € - y/a, on obtient
|z — al J
— < < — ==
[V —Val < e S

Ce qui démontre que

lim vz = a

T—a



(b) Soit (a,) une suite de nombres réels positifs convergente vers a > 0. On va considérer
la suite (b, = a, —a). Alors on a (a, = a+b,) et lim b, = 0. On va démontrer que

n—oo
lim /a, = /a. On a pour tout n € N :

n—oo
[{ Do
Va+b, =+ay/1+ =
a

Puisque lim b, = 0, il existe m € N tel que pour tout n > m, |b,| < a, et donc
n—oo

0< < 1. Alors pour n > m on peut écrire

e

Par I'Intermezzo dans la Série 5 on sait que 1 < /142 <1+ 2x pour tout x > 0

-
a

1—

1
et 1—|—y§\/1+y§1+§y pour tout —1 <y < 0. Alors on a pour tout n > m

1
Ll ity
a a 21 a
Puisque lim |b,| =0, on a
n—00
b, L (by
lim (1——>:lim (1—1———)21
n—o0 a n—o0 2 a

et d’apres le théoreme de deux gendarmes, lim {/1+ —= =1 et
n—oo a

lim va 1+— Va.
n—o0



