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Analyse I – Corrigé de la Série 7

Exercice 1.

(a) : i) Pour la série géométrique, le critère de d’Alembert s’écrit (pour q 6= 0)

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣qn+1

qn

∣∣∣∣ = |q|.

Donc par le critère, la série géométrique converge (absolument) si |q| < 1 (la conver-
gence (absolue) pour q = 0 est triviale) et diverge si |q| > 1. Si |q| = 1, la série
diverge aussi, car lim

n→∞
an 6= 0.

ii) Le critère de Cauchy appliqué à la série géométrique s’écrit

lim
n→∞

n
√
|an| = lim

n→∞
n
√
|qn| = |q|.

Donc par le critère, la série converge (absolument) pour |q| < 1 et diverge pour
|q| > 1. Si |q| = 1, la série diverge aussi, car lim

n→∞
an 6= 0.

(b) : i) On a que ∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣∣2 + (−1)n+1

2n+1

2n

2 + (−1)n

∣∣∣∣∣ =

∣∣∣∣∣ 2 + (−1)n+1

2 (2 + (−1)n)

∣∣∣∣∣
Cette suite ne converge pas. Ainsi, on ne peut pas appliquer le critère de d’Alembert
ici.

ii) On a que

n
√
|an| = n

√∣∣∣∣2 + (−1)n

2n

∣∣∣∣ =
1

2
n

√
2 + (−1)n

Or l’on a toujours
1

2
≤ 1

2
n

√
2 + (−1)n ≤ 1

2
n
√

3

Les deux termes extérieurs tendant tous deux vers
1

2
, on a d’après le théorème des

gendarmes que

lim
n→∞

n
√
|an| =

1

2
< 1

Ainsi, d’après le critère de Cauchy, la série
∞∑
n=0

2 + (−1)n

2n
converge absolument.

Remarque : On aurait pu remarquer que
∞∑
n=0

2 + (−1)n

2n
= 2

∞∑
n=0

(
1

2

)n
+
∞∑
n=0

(
−1

2

)n
et donc que la série

∞∑
n=0

2 + (−1)n

2n
converge comme somme de deux séries géométriques

convergentes.
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Exercice 2.

i) Par le critère de Cauchy, la série converge (absolument), car

lim
n→∞

n
√
|an| = lim

n→∞

∣∣∣∣3n+ 2

4n+ 5

∣∣∣∣ = lim
n→∞

3n+ 2

4n+ 5
=

3

4
< 1.

Remarque. Puisque la série converge, on peut en déduire la limite de la suite :

lim
n→∞

an = lim
n→∞

(
3n+ 2

4n+ 5

)n
= 0 ,

ce qui est une condition nécessaire pour la convergence de la série. De cette manière on
réussit parfois à démontrer la convergence vers zéro des suites dont la limite n’est pas
autrement évidente.

ii) Par le critère de d’Alembert, la série converge (absolument), car

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(n+ 1)4

3n4

∣∣∣∣ = lim
n→∞

(n+ 1)4

3n4
=

1

3
< 1.

iii) Cette série converge par le critère de Leibniz. En effet, an =
(−1)n

3n− 2
satisfait les trois

conditions de ce critère :

— le signe de an change avec la parité de n,

— la suite des valeurs absolues |an| =
1

3n− 2
est décroissante,

— limn→∞ |an| = 0.

Notons encore que la série absolue
∞∑
n=1

|an| ne converge pas parce que
1

3n− 2
≥ 1

3n
et la

série
∞∑
n=1

1

n
diverge.

iv) On a
√
n2 + 7− n =

(√
n2 + 7− n

) (√
n2 + 7 + n

)
√
n2 + 7 + n

=
7√

n2 + 7 + n
.

Observons que pour n > 3, on a n2 + 7 < (n+ 1)2 et donc

7√
n2 + 7 + n

>
7√

(n+ 1)2 + n
>

7

3n
.

Comme la série
∞∑
n=1

7

3n
=

7

3

∞∑
n=1

1

n
diverge, la série initiale diverge aussi par le critère de

comparaison.

v) On a∣∣∣∣1− cos

(
π

n+ 1

)∣∣∣∣ (1)= 2 sin2

(
π

2(n+ 1)

)
(2)

≤ 2

(
π

2(n+ 1)

)2

=
π2

2(n+ 1)2
<
π2

2

1

n2
,

où on a utilisé la trigonométrie en (1) et l’inégalité sin x ≤ x pour x ≥ 0 en (2).

Comme la série
∞∑
n=1

1

n2
converge, la série

∞∑
n=1

(
1− cos

(
π

n+ 1

))
converge (absolument)

par le critère de comparaison.
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vi) Cette série diverge car lim
n→∞

n(n+ 4)(n− 3)

7n3 + n+ 2
=

1

7
6= 0 (critère nécessaire).

vii) On a pour tout n ≥ 1

0 <

√
n+ 4−

√
n

n
=

4

n(
√
n+ 4 +

√
n)

<
2

n3/2
.

Par le critère de comparaison, la série
∞∑
n=1

√
n+ 4−

√
n

n
converge (absolument) car

∞∑
n=1

1

n3/2
converge. Ceci se démontre comme pour le cas de la série

∞∑
n=1

1

n2
: la suite

des sommes partielles sn =
n∑
k=1

1

k3/2
est croissante et bornée car

sn = 1 +

(
1

23/2
+

1

33/2

)
+

(
1

43/2
+

1

53/2

)
+ . . .

≤ 1 + 2

(
1

23/2
+

1

43/2
+ . . .

)
≤ 1 +

2

23/2

(
1 +

1

23/2
+ . . .

)
= 1 +

1√
2
sn

et donc sn ≤
1

1− 1√
2

=

√
2√

2− 1
.

Remarque. Exercice 8 montre que la série
∑∞

n=1

1

np
converge pour tout p > 1.

Exercice 3.

i) Posons ∀n ∈ N

Sn =
n∑
i=1

1

i (i+ 1)
=

n∑
i=1

(
1

i
− 1

i+ 1

)
=

(
1− 1

2

)
+

(
1

2
− 1

3

)
+ . . . +

(
1

n
− 1

n+ 1

)
=

1− 1

n+ 1
.

Ainsi, on a
∞∑
n=1

1

n(n+ 1)
= lim

n→∞
Sn = 1

ii) Posons ∀n ∈ N, Sn =
n∑
i=1

1

i(i+ 3)
=

1

3

n∑
i=1

(
1

i
− 1

i+ 3

)

Soit Sn =
1

3

(
1 +

1

2
+

1

3
− 1

n+ 1
− 1

n+ 2
− 1

n+ 3

)
. Ainsi :

∞∑
n=1

1

n(n+ 3)
= lim

n→∞
Sn =

1

3

(
1 +

1

2
+

1

3

)
=

11

18
.
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iii) Posons ∀n ∈ N, Sn =
n∑
i=2

2i− 1

i2(i− 1)2
=

n∑
i=2

(
1

(i− 1)2
− 1

i2

)
= 1− 1

n2
.

Ainsi :
∞∑
n=2

2n− 1

n2(n− 1)2
= lim

n→∞
Sn = 1

Exercice 4.

i) La série géométrique
∞∑
n=1

(
c

1− c

)n
converge (absolument) ⇔

∣∣∣∣ c

1− c

∣∣∣∣ < 1 ⇔ c = 0

ou bien ∣∣∣∣c− 1

c

∣∣∣∣ > 1 ⇔ 1− 1

c
> 1 ou 1− 1

c
< −1 ⇔ c < 0 ou 0 < c <

1

2

Alors on a : c <
1

2
.

Remarque : On pourrait aussi utiliser le critère de Cauchy et puis traiter le cas où le
critère de Cauchy ne permet pas de conclure (limite = 1) séparément. En effet, quand∣∣∣∣ c

1− c

∣∣∣∣ = 1 ⇔ c =
1

2
, on a la série

∞∑
n=1

1n qui diverge.

ii) Pour c = 0 la convergence vers 0 est évidente et on peut supposer que c 6= 0. Alors

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(
n+ 1

n
|c|
)

= |c|,

ce qui nous permet de conclure, grâce au critère de d’Alembert, que la série converge
(absolument) si |c| < 1 et qu’elle diverge si |c| > 1. Si c = ±1, la série diverge.

iii) Pour c = 2k + 1 avec k ∈ N, on a
∣∣∣(sin

(πc
2

))n∣∣∣ = 1 pour tout n ∈ N∗ et donc la série

diverge.
Pour c 6= 2k + 1 avec k ∈ N, on a par le critère de Cauchy

lim
n→∞

n
√
|an| =

∣∣∣sin(πc
2

)∣∣∣ < 1,

et donc la série converge (absolument) et sa somme vaut (série géométrique commençant
à n = 1)

∞∑
n=1

(
sin
(πc

2

))n
=

sin
(πc

2

)
1− sin

(πc
2

) .

iv) Pour c = 0, la série converge et est égale à zéro. Soit donc c 6= 0. En utilisant le critère de
d’Alembert, on a

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣cn+1(n+ 1)!

(n+ 1)n+1
· n

n

cnn!

∣∣∣∣ = lim
n→∞

∣∣∣∣c · ( n

n+ 1

)n∣∣∣∣ = lim
n→∞

|c|(
1 + 1

n

)n =
|c|
e
.

Ainsi la série converge (absolument) si |c| < e et elle diverge si |c| > e (et on obtient
aucune information si |c| = e).
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Si c = ±e, la suite des valeurs absolues (|an|) est croissante :

|an+1| = |an| ·
e(

1 + 1
n

)n > |an|
car la suite bn =

(
1 + 1

n

)n
crôıt vers e. Comme |a1| = |c| = e, il suit que lim

n→∞
an 6= 0 .

Le critère nécessaire pour la convergence d’une série n’est donc pas satisfait et la série
diverge.

Exercice 5.

i) On calcule

cSn − Sn = c(1 + 2c+ 3c2 + · · ·+ ncn−1)− (1 + 2c+ 3c2 + · · ·+ ncn−1)

= −(1 + c+ c2 + · · ·+ cn−1) + ncn = −1− cn

1− c
+ ncn.

ii) En utilisant le résultat de i) on a d’une part pour tout n ≥ 1 :

n∑
k=1

kck−1 = Sn =
1

c− 1

(
−1− cn

1− c
+ ncn

)
=

1− cn

(1− c)2
+

ncn

c− 1
. (1)

Dans l’Ex. 4 ii) on a montré que la série
∞∑
n=1

ncn converge pour |c| < 1, donc en particulier

pour 0 < c < 1. Ainsi par le critère nécessaire de la convergence d’une série, lim
n→∞

ncn = 0 .

En laissant n→∞ dans (1), on obtient alors

∞∑
n=1

ncn−1 = lim
n→∞

Sn = lim
n→∞

(
1− cn

(1− c)2
+

ncn

c− 1

)
=

1

(1− c)2
.

Exercice 6.

On distingue pour chacun des deux critères les cas de convergence et de divergence.

Critère de Cauchy - cas convergent.

Le but est de trouver une suite (bn) de la forme bn = Cqn avec |q| < 1 et C > 0 telle que il
existe n0 ∈ N tel que |an| ≤ bn pour tout n ≥ n0.
Soit lim

n→∞
n
√
|an| = ρ < 1. On choisit q tel que ρ < q < 1 (par exemple q = 1+ρ

2
, mais la valeur

précise n’a pas d’importance ici). Puisque la limite lim
n→∞

n
√
|an| existe, on peut trouver un entier

naturel n0 ≥ 1 tel que n
√
|an| < q pour tout n ≥ n0 (en effet, écrire la définition de la limite de

n
√
|an| pour ε = q − ρ > 0). Par conséquent on a

0 ≤ |an| ≤ qn pour tout n ≥ n0.

ce qui implique la convergence de la série
∑∞

n=0 |an|, car
∑∞

k=0 q
k =

1

1− q
.
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Critère de Cauchy - cas divergent.
Dans ce cas on veut trouver (bn) avec |q| > 1 telle que |an| ≥ bn pour tout n ∈ N.
Soit lim

n→∞
n
√
|an| = ρ > 1. On choisit q tel que ρ > q > 1. Il existe un entier naturel n0 tel

que n
√
|an| > q pour tout n ≥ n0 (écrire la définition de la limite pour ε = ρ − q > 0). Par

conséquent on a
|an| ≥ qn ≥ 1 pour tout n ≥ n0. (2)

et donc la série
∑∞

n=0 |an| diverge parce que
∑∞

k=0 q
k =∞.

Remarque : Pour montrer la divergence de la série sans passer par le critère de comparaison, il
suffit de constater à partir de (2) que lim

n→∞
an 6= 0. Ainsi la série

∑∞
n=0 |an| diverge parce que le

critère nécessaire pour la convergence n’est pas satisfait.

Critère de d’Alembert - cas convergent.
La stratégie est la même que pour le cas convergent du critère de Cauchy.
Si lim

n→∞

∣∣an+1

an

∣∣ = ρ < 1, choisir q tel que ρ < q < 1. Il existe un entier naturel n0 tel que∣∣an+1

an

∣∣ < q pour tout n ≥ n0 (poser ε = q − ρ). Par conséquent on a pour tout n ≥ n0

|an| ≤ |an−1| q ≤ |an−2| q2 ≤ · · · ≤ |an0| qn−n0 =
|an0|
qn0

qn = Cqn,

où on pose C =
|an0 |
qno . Ainsi

0 ≤ |an| ≤ bn := Cqn pour tout n ≥ n0.

Ceci implique la convergence de la série
∞∑
n=0

|an|.

Critère de d’Alembert - cas divergent.
Même stratégie que pour le critère de Cauchy.
Soit lim

n→∞

∣∣an+1

an

∣∣ = ρ > 1. On choisit q tel que ρ > q > 1. Il existe un entier naturel n0 tel que∣∣an+1

an

∣∣ > q pour tout n ≥ n0 (poser ε = ρ− q > 0). Par conséquent on a pour tout n ≥ n0

|an| ≥ |an−1| q ≥ |an−2| q2 ≥ · · · ≥ |an0| qn−n0 =
|an0|
qn0

qn.

où on pose C =
|an0 |
qn0

. Ainsi

|an| ≥ Cqn pour tout n ≥ 0

et donc la série
∑∞

n=0 |an| diverge comme pour le critère de Cauchy.

Exercice 7.

i) Posons an = qnnb. Si q = 0, la série converge vers 0. Sinon, on peut caluler :

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣qn+1 (n+ 1)b

qnnb

∣∣∣∣∣ = lim
n→∞

|q|
(

1 +
1

n

)b
= |q|.

Puisque |q| 6= 1, alors d’après le critère de d’Alembert, la série
∞∑
n=1

qnnb converge⇔ |q| < 1

sinon elle diverge grossièrement.
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ii) Posons ∀n ∈ N, Sn =
n∑
k=1

2

k
8
7

. Nous allons utiliser la même technique que pour la question

vii) de l’exercice 2. La suite des (Sn) est croissante, nous voulons démontrer qu’elle est
bornée.

Sn = 2

(
1 +

(
1

2
8
7

+
1

3
8
7

)
+

(
1

4
8
7

+
1

5
8
7

)
+ . . .

)
≤ 2

(
1 + 2

(
1

2
8
7

+
1

4
8
7

+ . . .

))
= 2

(
1 +

2

2
8
7

(
1 +

1

2
8
7

+ . . .

))
= 2

(
1 +
Sn
2

8
7

)
Et ainsi

Sn ≤
2

1− 1

2
1
7

Ce qui prouve que
∞∑
n=1

2

n
8
7

converge.

Remarque. Exercice 8 montre que la série
∑∞

n=1

1

np
converge pour tout p > 1.

iii)
∞∑
n=1

1

n
5
3 + n

3
5

≤
∞∑
n=1

1

n
5
3

.

À partir de cette expression du majorant, on peut aisément appliquer la même méthode

que pour la question précédente car
5

3
> 1 et ainsi conclure que la série

∞∑
n=1

1

n
5
3 + n

3
5

converge.

iv) — Si a ≥ 1, le terme général ne tend pas vers 0 et la série
∞∑
n=1

an
p

diverge grossièrement.

— Si p ∈ N∗ et si a < 1, alors par le critère de Cauchy on a lim
n→∞

n
√
anp = lim

n→∞
an

p−1
.

Cette limite vaut 0 si p ≥ 2 et a si p = 1. Dans tous les deux cas, la série converge
absolument.

v) Posons ∀n ∈ N, an =
P (n)

n!
. Nous avons que ∀n ≥ n0,

∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣P (n+ 1)

(n+ 1)!

n!

P (n)

∣∣∣∣ =∣∣∣∣ P (n+ 1)

(n+ 1)P (n)

∣∣∣∣.
Or, deg(P (n + 1)) < deg((n + 1)P (n)) donc lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 0 et donc d’après le critère

de d’Alembert,
∞∑

n=n0

P (n)

n!
converge absolument. Cela implique que la série

∞∑
n=1

P (n)

n!
converge.
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Exercice 8.

La suite (an)n∈N étant décroissante, nous obtenons en regroupant les termes en paquets de 2k

termes :

∞∑
n=1

an = a1 + (a2 + a3) + (a4 + a5 + a6 + a7) + · · · ≤ a1 + 2a2 + 4a4 + · · · =
∞∑
n=0

2na2n

Toujours en utilisant l’argument de la décroissance de la suite (an)n∈N et en regroupant les
termes par paquets de 2k :

2
∞∑
n=1

an = a1 + (a1 + a2) + (a2 + a3 + a3 + a4) + · · · ≥ a1 + 2a2 + 4a4 + · · · =
∞∑
n=0

2na2n

Nous obtenons donc les inégalités suivantes pour les séries à termes positifs :

∞∑
n=1

an ≤
∞∑
n=0

2na2n = a1 +
∞∑
n=1

2na2n ≤ 2
∞∑
n=1

an

Ce qui est un argument suffisant pour conclure que les séries
∞∑
n=1

an et
∞∑
n=1

2na2n ont la même

nature.

Ainsi, la série
∞∑
n=1

1

np
a la même nature que la série

∞∑
n=1

2n

(2n)p
=
∞∑
n=1

(
1

2p−1

)n
. On reconnâıt ici

une série géométrique qui converge ⇔ 1

2p−1
< 1⇔ p > 1.
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