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Sections IN, SC 31 octobre 2024

Analyse I — Corrigé de la Série 7

Exercice 1.

(a) : i) Pour la série géométrique, le critere de d’Alembert s’écrit (pour ¢ # 0)
a n+1
lim |[—| = lim = |q.
n—o0 | QA n—00 qn

Donc par le critere, la série géométrique converge (absolument) si |g| < 1 (la conver-

gence (absolue) pour ¢ = 0 est triviale) et diverge si |¢| > 1. Si |q| = 1, la série
diverge aussi, car lim a, # 0.
n—oo

ii) Le critere de Cauchy appliqué a la série géométrique s’écrit
lim {/|a,| = lim {/|¢"| = |q|.
n—o0 n—oo

Donc par le critere, la série converge (absolument) pour |¢| < 1 et diverge pour
lg| > 1. Si |q| = 1, la série diverge aussi, car lim a, # 0.

(b) : i) On a que
B 2+(_1)n+1
2@+ (1))

Cette suite ne converge pas. Ainsi, on ne peut pas appliquer le critere de d’Alembert

il = 1 | = L oy

V3

Qp41
G

on+1 2+ (_1)"

i) On a que

Or l'on a toujours

< —y/2+(-1)" <

l\l)lr—l

1
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N | —

1
Les deux termes extérieurs tendant tous deux vers g ona d’apres le théoreme des

gendarmes que

o 1
5, Vel =5 <1
A N2t (D)
Ainsi, d’apres le critere de Cauchy, la série Z ———— converge absolument.
n=0
Remarque : On aurait pu remarquer que Z 2 + 22 ( ) i (_1>"
n=0 n=0 2
24 (1) A
et donc que la série Z ———— converge comme somme de deux séries géométriques

n=0
convergentes.



Exercice 2.

i)

i)

iii)

i)

Par le critere de Cauchy, la série converge (absolument), car

3n—+2 n+2 3
=-<1.

= 1m =
4n+5' nsoo4n +5 4

lim {/|a,| = lim
n—o0 n—o0

Remarque. Puisque la série converge, on peut en déduire la limite de la suite :

3n+2\"
li n = li =0,
Jin = i ()

ce qui est une condition nécessaire pour la convergence de la série. De cette maniere on
réussit parfois a démontrer la convergence vers zéro des suites dont la limite n’est pas
autrement évidente.

Par le critere de d’Alembert, la série converge (absolument), car

(n+D* . (n+1)* 1
3nt _nh—>nolo 3nt _§<1.

. Qp41
lim |[——

n—o0

= lim
n—oo

G

(=1)"
3n—2

Cette série converge par le critere de Leibniz. En effet, a, = satisfait les trois
conditions de ce critere :

— le signe de a,, change avec la parité de n,

— la suite des valeurs absolues |a,| = 3 5 est décroissante,
n —

— lim,, o |an| = 0.

= 1 1
> — et la
3n — 2 3n

Notons encore que la série absolue g |a,,| ne converge pas parce que

n=1
=1
» 1y ‘
série ; - iverge
On a
(Vn2+7—n)(Vn2+7+n) 7
V2 +T+n Vi T4n

Observons que pour n > 3, on a n? +7 < (n + 1)? et donc

n?4+7—-n=

7 7 7
> > — .
V2 +T7+n (n+1)2+n 3n
T T AR . s
Comme la série Z — == Z — diverge, la série initiale diverge aussi par le critere de
vt 3n 3 —n

comparaison.
On a

(

—
~—

. T 9 sin? m (i) 5 7r 2 s _ 1
— COS S — — = =07 —_—
n+1 2(n+1)) = \2(n+1) 2(n+1)2 = 2 n?

otl on a utilisé la trigonométrie en ) et 'inégalité sinz < z pour 2 > 0 en .

=1 - T
Comme la série Z — converge, la série Z (1 — cos( 1
n n

n=1 n=1
par le critere de comparaison.

)) converge (absolument)



4)(n—3 1
vi) Cette série diverge car 7}1_)120 n(?nj+)7in+ 5 ) == # 0 (critere nécessaire).

vii) On a pour tout n > 1

\/n+ 4 2
n W ddt ) P

VEERN

Par le critere de comparaison, la série E converge (absolument) car

n=1
[e.e] [e.e]
E —3j5 converge. Ceci se démontre comme pour le cas de la série E — : la suite
n n
n=1 n=1

n

des sommes partielles s,, = E = est croissante et bornée car
k=1

B 1 1 1 1
S, =1+ W—FW + MJFW + ...
1 1
<1+2(23/2+m+...)
<1 2 1 1 =1 1
>~ + == 23/2 + == 23/2 +. =1+ ESn

1 V2
— = .
-7 V2-1

: L. 1
Remarque. Exercice 8 montre que la série Y — converge pour tout p > 1.
n

et donc s, <

Exercice 3.

i) Posons Vn € N

S”:gi(ilﬂ) :z:;(%_z—il—l) - (1_%)+(%_%)+
1

n+1
Ainsi, on a

()
_.I_ —_ —
n n+1

> ——=1lm§, =1
nn—|—1 n—o00

n=1
- 1 1= /1 1
i) Posons Vn € N, S, =3 Iy (i-
i) Posons ¥n € N, £ i(i+3) 31-:1(2' H—B)
1 1 1 1 1 1
Soit S, = = (14 = + = — _ _ . Ainsi :
ot 3( ety T T na2 n+3) st



2i—1 - 1 1 1
iii) Posons Vn € N, S, = ZZ— (— ,—) =1-—.
2

n

(i — 1)

Ainsi :

Exercice 4.

1)

i)

iii)

i)

c

<l & =
1—c¢ ¢

) converge (absolument) < '

o0
La série géométrique E <
—c
n=1

ou bien

c—1

1 1 1
‘>1 s 1l——->1Toul—-<-1 & c<0oul<e< =

c c c 2

1
Alorson a:c < —.

Remarque : On pourrait aussi utiliser le critere de Cauchy et puis traiter le cas ou le
critere de Cauchy ne permet pas de conclure (limite = 1) séparément. En effet, quand
c

1 oo
=1 c= g-ona la série Z 1" qui diverge.
n=1
Pour ¢ = 0 la convergence vers 0 est évidente et on peut supposer que ¢ # 0. Alors

: n+1
= lim lel | = ¢l
n—0o00 n

ce qui nous permet de conclure, grace au critere de d’Alembert, que la série converge

(absolument) si |c¢| < 1 et qu’elle diverge si |¢| > 1. Si ¢ = £1, la série diverge.

Pour ¢ = 2k + 1 avec k € N, on a ‘(&n(%c))n

Ap+1
Qnp,

lim

n—o0

=1 pour tout n € N* et donc la série

diverge.
Pour ¢ # 2k + 1 avec k € N, on a par le critere de Cauchy

e
lim {/|a,| = Sin(—)’ <1,
n—o0 2
et donc la série converge (absolument) et sa somme vaut (série géométrique commengant
an=1)
. [TC
e ‘ Tc n SH]<??)
> (sn(3)) =t
1 1 >

n— — sin(—
2
Pour ¢ = 0, la série converge et est égale a zéro. Soit donc ¢ # 0. En utilisant le critere de

d’Alembert, on a
( n )"
c-
n+1

Ainsi la série converge (absolument) si |c¢| < e et elle diverge si |¢| > e (et on obtient
aucune information si |c| = e).

An+1) n"
(n+ 1)ntt  crnl

] ]

:1 _— e —
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Ap+1
Qn,

lim

n—oo

= lim
n—oo

= lim
n—oo




Si ¢ = +e, la suite des valeurs absolues (]a,|) est croissante :

e
|any1] = |an] - (1+ 1)n > |ay|
n
. n A . . .
car la suite b, = (1+ 1)" croit vers e. Comme |a;| = |¢| = e, il suit que T}Lngo an, # 0.
Le critere nécessaire pour la convergence d’une série n’est donc pas satisfait et la série
diverge.

Exercice 5.

i) On calcule

¢Sy =Sy =c(14+2c+3+-+nc" ") —(1+2c+3c*+---+nc")

1—-c"

:—(1+c+c2+---+c”*1)+nc":—1 + nc".

—c
ii) En utilisant le résultat de ¢) on a d’une part pour tout n > 1 :

'

“ 1 1—-¢c" 1—c" nc
k’k*l:Sn: — ") = . 1
; ¢ c—1 1_C—|—nc (l—c)2+c—1 (1)

o0

Dans I'Ex. 44i) on a montré que la série E nc" converge pour |¢| < 1, donc en particulier
n=1

pour 0 < ¢ < 1. Ainsi par le critere nécessaire de la convergence d’une série, lim nc" =0.
n—oo

En laissant n — oo dans (1), on obtient alors

> 1—-c7 nc” 1
"= lim S, = i = .
;”C i = M\ —er Temt) T —ep

Exercice 6.

On distingue pour chacun des deux criteres les cas de convergence et de divergence.

Critere de Cauchy - cas convergent.

Le but est de trouver une suite (b,) de la forme b, = Cq¢"™ avec |g| < 1 et C' > 0 telle que il
existe ng € N tel que |a,| < b, pour tout n > ng.

Soit nh_)rgo {/|an| = p < 1. On choisit g tel que p < ¢ < 1 (par exemple ¢ = %, mais la valeur

précise n’a pas d’'importance ici). Puisque la limite lim {/|a,| existe, on peut trouver un entier
n—o0

naturel ng > 1 tel que {/|a,| < ¢ pour tout n > ng (en effet, écrire la définition de la limite de
V/|an| pour € =q— p > 0). Par conséquent on a

0 <la,| <¢" pour tout n > ny.

1
ce qui implique la convergence de la série > |a,|, car > oo ¢~ = T
—q



Critére de Cauchy - cas divergent.

Dans ce cas on veut trouver (b,) avec |q| > 1 telle que |a,| > b, pour tout n € N.

Soit lim {/|a,| = p > 1. On choisit g tel que p > ¢ > 1. Il existe un entier naturel n, tel
n—oo

que {/|a,| > ¢ pour tout n > ng (écrire la définition de la limite pour ¢ = p — ¢ > 0). Par
conséquent on a
la,| > ¢" > 1 pour tout n > ny. (2)

et donc la série Y~ |a,| diverge parce que Zzo 0 q" = 0.

Remarque : Pour montrer la divergence de la série sans passer par le critere de comparaison, il

suffit de constater a partir de (2) que lim @, # 0. Ainsi la série Y~ |a,| diverge parce que le
n—oo

critere nécessaire pour la convergence n’est pas satisfait.

Critére de d’Alembert - cas convergent.
La stratégie est la méme que pour le cas convergent du critere de Cauchy.

Si lim |a“"“| = p < 1, choisir ¢ tel que p < ¢ < 1. Il existe un entier naturel ny tel que
n—oo

|a"+1 | < g pour tout n > ng (poser € = ¢ — p). Par conséquent on a pour tout n > ny

an] < Jana]q < [an sl g? < -+ < Jang| "0 = 13m0l 0 — g

no

a . .
| nol . Ainsi
q o

ol on pose C' =

0 < |a,| <b,:=Cq" pour tout n > ny.

Ceci implique la convergence de la série Z |an]|.
n=0
Critere de d’Alembert - cas divergent.
Meéme stratégie que pour le critere de Cauchy.
Soit lim “”+1| = p > 1. On choisit ¢q tel que p > ¢ > 1. Il existe un entier naturel ny tel que

n—0o0

|a"+1 | > ¢ pour tout n > ng (poser € = p — ¢ > 0). Par conséquent on a pour tout n > ng

n—no M n

|a'n‘ Z ’an—lyq Z ’an—2’q2 2 Z |an0|q = qno

ol on pose C' = | Z’°|.
la,| > Cq™ pour tout n > 0

et donc la série ) ° . |a,| diverge comme pour le critere de Cauchy.

Exercice 7.

i) Posons a, = ¢"n’. Si ¢ = 0, la série converge vers 0. Sinon, on peut caluler :

1 b
= lim |q| (1 + —) = |q|.
n—oo n

Puisque |q| # 1, alors d’apres le critere de d’Alembert, la série Z q"n’ converge & |q| < 1

Ap+1
Qnp,

qn+1 (n + 1)1)

lim oy

n—00

= lim

n—o0

n=1
sinon elle diverge grossierement.



n

2
i1) Posons Vn € N; S, = Z —5 - Nous allons utiliser la méme technique que pour la question
7

k=1
vii) de l'exercice 2. La suite des (S,) est croissante, nous voulons démontrer qu’elle est

bornée.
1 1 1 1
S, =21+ | —=+— — 1+ —= |+
( (2? 3?> <4? 5?) )
1 1
g2<1+2(—8+—8+...>>
27 47
2 1
=2(1+—=(1+—5+...
27 27
S,
:2(1—1——8)
27
Et ainsi
2
O
27
. = 2
Ce qui prouve que Z — converge.
n:ln7

. , . 1
Remarque. Exercice 8 montre que la série fo:l — converge pour tout p > 1.
n

> 1 =1
117 E < E S
) n=1 ns + n% B n=1 n%

A partir de cette expression du majorant, on peut aisément appliquer la méme méthode
[o.¢]

. L ) o - 1
que pour la question précédente car = > 1 et ainsi conclure que la série g —_—
3 = n3+ns
converge.
oo
. . , , ,o. p . [N
iv) — Sia > 1, le terme général ne tend pas vers 0 et la série g a™ diverge grossierement.
n=1

— Sip € N* et si a < 1, alors par le critere de Cauchy on a lim va™ = lim a7

n—0o0 n—oo

Cette limite vaut 0 si p > 2 et a si p = 1. Dans tous les deux cas, la série converge
absolument.
P " P 1 !
v) Posons Vn € N, a, = ﬂ Nous avons que Vn > nyg, i1} _ (nt1) n =
n! an (n+1)! P(n)
P(n+1)
(n+1)P(n)|
Or, deg(P(n + 1)) < deg((n + 1)P(n)) donc lim ntll — 0 et donc d’apres le critere
n—oo an
de d’Alembert, Z (n) converge absolument. Cela implique que la série Zﬂ
n! 1 n!
n=ngo n=

converge.



Exercice 8.

La suite (a,)nen étant décroissante, nous obtenons en regroupant les termes en paquets de 2F
termes :

Zan:a1+(a2+a3)+(a4+a5+a6+a7)+---§a1+2a2+4a4+...zz2na2n
n=1 n=0

Toujours en utilisant 'argument de la décroissance de la suite (a,)nen et en regroupant les
termes par paquets de 2F :

QZan:a1+(a1+ag)+(a2+a3—|—a3+a4)+---2a1+2a2+4a4+...222”a2n
n=0

n=1

Nous obtenons donc les inégalités suivantes pour les séries a termes positifs :

o0 o oo o0
a, < ZQ”agn = q +22”a2n < QZan
n=1 n=0 n=1 n=1
o oo
Ce qui est un argument suffisant pour conclure que les séries Z a, et Z 2"aqon ont la méme
n=1 n=1
nature.
Ainsi, la série Z B la méme nature que la série Z 2y = Z (2p1) . On reconnait ici
n=1 n=1 n=1
une série géométrique qui converge <& — < 1 < p > 1.

2p-1

]



