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Analyse I – Corrigé de la Série 5

Exercice 1.

Q1 : FAUX : an = (−1)n est bornée mais ne converge pas.

Q2 : VRAI : ∀n ∈ N |an sin(n)| ≤ |an|. Or lim
n→∞

an = 0 donc lim
n→∞

|an| = 0 et a fortiori

lim
n→∞

|an sin(n)| = 0 puis lim
n→∞

an sin(n) = 0.

Q3 : FAUX : Prendre an = 1 pour tout n ∈ N.

Q4 : VRAI : Une suite convergente est bornée (voir les Notes du cours 7).
Par définition de la convergence d’une suite vers une limite l, ∀η > 0, ∃n0 ∈ N tel
que ∀n > n0 |an − l| ≤ η. En prenant ε = max(|l| + η,maxi∈J0, n0K{|ai|}). On a bien le
résultat attendu.

Q5 : VRAI : Prendre δ = ε+ |a| où ε correspond à celui de la question précédente.

Q6 : FAUX : Prendre an = n et bn = −n
3
.

Q7 : FAUX : Même contre-exemple que précédemment.

Q8 : FAUX : Prendre an = (n+ 1)2 et bn = 1
n+1

.

Q9 : VRAI : On a bn =
anbn
an

, où les deux suites (anbn) et (an) sont convergentes et lim
n→∞

an =

l 6= 0. Alors la suite (bn) converge.

Q10 : VRAI : Si (an) converge, alors la suite (|an|) converge aussi. Puis on utilise la linéarité
de la limite.

Q11 : FAUX : Prendre an = 1
(n+1)2

et bn = 1
n+1

.

Q12 : VRAI : Raisonnons par contraposée. Supposons que (bn)n∈N converge vers un réel non

nul et sachant que (an)n∈N converge, alors par opérations usuelles sur les limites,

(
an
bn

)
converge.

Q13 : FAUX : Prendre an = bn = n.

Exercice 2.

i) lim
n→∞

5n2 − 3n+ 2

3n2 + 7
= lim

n→∞

5− 3 1
n

+ 2
n2

3 + 7
n2

=
5− 3 lim

n→∞
1
n

+ 2 lim
n→∞

1
n2

3 + 7 · lim
n→∞

1
n2

=
5

3

ii) On a

lim
n→∞

∣∣∣∣(−1)n
4
√
n

3
√
n

∣∣∣∣ = lim
n→∞

n( 1
4
− 1

3) = lim
n→∞

1

n
1
12

= 0 ,

et donc

lim
n→∞

(−1)n
4
√
n

3
√
n

= 0 .
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iii) On a

1 ≤
√

1 +
2

n2
≤ 1 +

1

n2

[Th2G]
=⇒ lim

n→∞

√
1 +

2

n2
= 1 ,

où [Th2G] dénote � par le théorème des deux gendarmes �. Par conséquent

lim
n→∞

√
n2 + 2

2n
= lim

n→∞

1

2

√
1 +

2

n2
=

1

2
lim
n→∞

√
1 +

2

n2
=

1

2
.

Exercice 3.

Pour 0 < x < 1 < π
2

on a les inégalités suivantes :

0 ≤ sin(x) ≤ x ≤ tan(x) ⇒ 1 ≤ x

sin(x)
≤ 1

cos(x)
⇒ cos(x) ≤ sin(x)

x
≤ 1

⇒ cos(x)2 ≤
(

sin(x)

x

)2

≤ 1 ⇒ 1− sin(x)2 ≤
(

sin(x)

x

)2

≤ 1

⇒ 1− x2 ≤
(

sin(x)

x

)2

≤ 1 ⇒
√

1− x2 ≤ sin(x)

x
≤ 1 .

i) On a pour n ≥ 2 :

0 ≤ sin

(
1

n

)
≤ 1

n

[Th2G]
=⇒ lim

n→∞
sin

(
1

n

)
= 0 .

ii) On a d’abord pour n ≥ 1

1−
(

1

n

)2

≤

√
1−

(
1

n

)2

≤ 1− 1

2

(
1

n

)2
[Th2G]
=⇒ lim

n→∞

√
1−

(
1

n

)2

= 1 ,

et ensuite √
1−

(
1

n

)2

≤
sin
(
1
n

)(
1
n

) ≤ 1
[Th2G]
=⇒ lim

n→∞

sin
(
1
n

)(
1
n

) = 1 .

iii) Méthode 1 : Pour tout n ≥ 2 on a 0 < 2n+3
n3 < 1 et donc

0 < n sin

(
2n+ 3

n3

)
< n · 2n+ 3

n3
=

2n+ 3

n2
.

Puisque

lim
n→∞

2n+ 3

n2
= 0,

on trouve par le théorème des deux gendarmes

lim
n→∞

(
n sin

(
2n+ 3

n3

))
= 0.

Méthode 2, fastidieuse mais applicable dans le cas plus général :

lim
n→∞

p(n) sin (q(n)) ,
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où p(n), q(n) sont des fonctions rationnelles de n ∈ N et lim
n→∞

q(n) = 0.

On a pour n ≥ 2 √
1−

(
2n+ 3

n3

)2

≤
sin
(
2n+3
n3

)
2n+3
n3

≤ 1 .

Comme pour ii) on montre que

lim
n→∞

√
1−

(
2n+ 3

n3

)2

= 1 ,

d’où on trouve par le théorème des deux gendarmes

lim
n→∞

sin
(
2n+3
n3

)
2n+3
n3

= 1 .

Donc

lim
n→∞

(
n sin

(
2n+ 3

n3

))
= lim

n→∞

(
2n+ 3

n2
·

sin
(
2n+3
n3

)
2n+3
n3

)

=

(
lim
n→∞

2n+ 3

n2

)
·

(
lim
n→∞

sin
(
2n+3
n3

)
2n+3
n3

)
= 0 · 1 = 0 .

Exercice 4.

i) 0 ≤ an =
√
n+ 2−

√
n =

2

√
n

(√
1 +

2

n
+ 1

) ≤ 2√
n

.

On a donc d’après le théorèmes des gendarmes que lim
n→∞

an = 0.

ii) Rappelons d’abord que la valeur d’une limite ne dépend pas des premiers n0 termes avec
n0 ∈ N∗. Rappelons aussi que (cf. Ex. 4 de la Série 4)

(1 + 1)n =
n∑
k=0

(
n

k

)
.

Pour n ≥ 4 on a donc

2n ≥
(
n

3

)
,

ainsi que n− 1 ≥ n
2

et n− 2 ≥ n
2

, et on trouve

0 ≤ an =
n2

2n
≤ n2(

n
3

) =
n2

n(n−1)(n−2)
1·2·3

≤ n2

1
6
· n · 1

2
n · 1

2
n

=
24

n
,

d’où lim
n→∞

n2

2n
= 0 par le théorème des deux gendarmes.

iii) On a

0 ≤ an =
n!

nn
=

1 · 2 · 3 · · · · n
n · n · n · · · · n

=

(
1

n

)(
2

n

)(
3

n

)
· · ·
(n
n

)
≤ 1

n
,

d’où lim
n→∞

n!

nn
= 0 par le théorème des deux gendarmes.
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iv) Pour m ∈ N∗, m ≥ 2 on a
2

m
≤ 1 ,

et donc

0 ≤ an =
2n

n!
=

2

n
· 2

n− 1
· 2

n− 2
· · · 2

2
· 2

1
≤ 2

n
· 2 ,

d’où lim
n→∞

2n

n!
= 0 avec le théorème des deux gendarmes.

Exercice 5.

i) lim
n→∞

(
1 +

2

n

)n
= lim

n→∞

(
n+ 1

n

n+ 2

n+ 1

)n
= lim

n→∞

(
1 +

1

n

)n(
1 +

1

n+ 1

)n
=

= lim
n→∞

((
1 +

1

n

)n(
1 +

1

n+ 1

)n+1
n+ 1

n+ 2

)
= e2

ii) lim
n→∞

(
1− 1

n

)n
= lim

n→∞

((
n

n− 1

)n)−1
= lim

n→∞

((1 +
1

n− 1

)n−1)−1
n− 1

n

 = e−1 =

1

e

iii) lim
n→∞

(
1− 1

n2

)n
= lim

n→∞

(
1 +

1

n

)n(
1− 1

n

)n
= e

1

e
= 1

Exercice 6.

i) FAUX : Prendre an = (−1)n, l = 0, ε = 1, n0 = 0. La propriété i) est bien respectée
mais (an)n∈N ne converge pas. Le problème est que ”pour tout ε > 0” dans la définition
de la limite est remplacé par ”il existe ε > 0”. Supposons que la suite (an) est bornée,
|an| ≤ M . Alors il existe ε = M > 0 tel que pour tout n ≥ 0, on a |an| < ε. Donc toute
suite bornée satisfait la condition i) avec l = 0 et n0 = 0.

ii) FAUX : Prendre an = (−1)n et l = 1. Alors pour tout ξ > 0 et n0 = 0, pour tout n = 2k
naturels pairs, on a |a2k− l| = |1− 1| = 0 < ξ, mail la suite ne converge pas. Le problème
est que ”pour tout n ≥ n0” dans la définition de la limite est remplacé par ”il existe
une infinité des nombres naturels n ≥ n0”. Alors la propriété ii) nous dit qu’il existe un
nombre infini d’éléments de la suite après n0 qui sont ε-proche de l. Mais il peut également
exister un nombre infini d’éléments de la suite après n0 qui sont arbitrairement loin de l.
La propriété ii) ne demande pas que tous les éléments de la suite après n0 soient ε-proche
de l, et donc ne demande pas la convergence de la suite vers l, ce qui nous montre le
contre-exemple mentionné.

iii) VRAI : Il s’agit exactement de la définition de la limite d’une suite si l’on pose ε = 2x.

iv) FAUX : Prendre a0 = 1, an =
3

n
∀n ≥ 1 et ε = 2. On a |a1 − 0| = 3 > ε. La suite an

converge vers 0, mais la propriété iv) n’est pas respectée. Un autre exemple : prendre

a0 = 1, an =
1√
n
∀n ≥ 1. La suite (an) converge vers 0. Mais si on prend ε =

1

3
, alors on

a 4 >
1

ε
et |a4 − 0| =

1

2
> ε. En général, la propriété n’est pas respectée pour les suites

qui convergent moins vite que
1

n
. Par contre, propriété iv) implique que lim

n→∞
an = l. En

effet, la propriété iv) nous dit que pour tout ε > 0 il existe n0 = b1
ε
c+ 1 tel que pour tout

n ≥ n0, on a |an − l| ≤ ε. Donc la définition de la limite est satisfaite ; mais de plus, la
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propriété iv) demande que n0 dépend de ε de façon précise : n0 = b1
ε
c+1. Cette propriété

n’est pas satisfaite par des suites qui convergent lentement, comme par exemple la suite
an = 1√

n
.

Exercice 7.

i) xn+1 − xn =
1

n+ 1
(xn − l) + l − xn = (xn − l)

(
1

n+ 1
− 1

)
= (l − xn)

(
n

n+ 1

)
.

Plusieurs cas apparaissent :

(a) x0 < l :
Par récurrence immédiate on a que x0 < l implique xn < l pour tout n ∈ N, donc
(xn)n∈N est majorée par l. La suite est donc strictement croissante et majorée (elle
est aussi minorée par x0). Par propriété, (xn)n∈N est donc convergente.

(b) x0 = l :
La suite est ici constante égale à x0.

(c) x0 > l :
Par récurrence immédiate on a que x0 > l implique xn > l pour tout n ∈ N, et donc
(xn)n∈N est minorée par l. La suite est ici strictement décroissante et minorée (elle
est aussi majorée par x0). Par propriété, (xn)n∈N est donc convergente.

On peut démontrer que lim
n→∞

xn = l. Notamment, on a

xn+1 − l =
1

n+ 1
(xn − l) =

1

n+ 1

1

n
(xn−1 − l) = . . . =

1

(n+ 1)!
(x0 − l) .

Par les propriété des limites on a lim
n→∞

1
(n+1)!

(x0− l) = (x0− l) lim
n→∞

1
(n+1)!

= (x0− l) ·0 = 0,

puisque 0 < 1
n!
≤ 1

n
implique lim

n→∞
1
n!

= 0. Donc lim
n→∞

(xn+1 − l) = 0.

ii) Comme pour la question précédente, on a :

xn+1 − xn = (l − xn)(1− an)

Par définition de la suite (an)n∈N, on a toujours comme précédemment (1− an) > 0. Dès
lors, nous sommes sous les mêmes hypothèses que précédemment. Nous pouvons donc
tirer les mêmes conclusions, notamment, que la suite (xn) est convergente. Par contre, il
ne suit pas nécessairement que lim

n→∞
xn = l.
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