EPFL Anna Lachowska
Sections IN, SC 3 octobre 2024

Analyse I — Corrigé de la Série 4

Exercice 1.

i) a) Pourn=mny=1ona
1(1+1)

k= —1,
2

1
1=

k=1
c-a~d. P(1) est vraie.

b) Pour n > ng =1 on a (on indique par Fir) I'égalité ou on utilise la propriété P(n)),

:;k: (;l& +(n+1) @Jr(nﬂ)
_n(n+1)+2n+1) (n+1)(n+2) (n+1)((n+1)+1)

— - )

2 2 2
et P(n) implique donc P(n + 1) pour n > ny.

ii) a) Pourn=mny=1o0na

et P(1) est donc vraie.
b) Pour n >ng=1ona
§k2 = (é k:2> +(n+1)? n(n + 1>6(2n+ D) +(n+1)?
_ n(n+1)2n+1) +6(n+1)? _ (n+1)(2n* +n+ 6n+6)
6 6
_ (D)2’ +Tn+6)  (n+ 1)((n+2)(2n+3))
6 6

C(+)((n+ 1) +1)(2(n+1) + 1)
= ; 7

et P(n) implique donc P(n + 1) pour n > ny.

ii1) a) Pourn=mng=1ona
1 1 1 1
§_Zk(k+1)_1+1_§

1
k=1
c-a-d. P(1) est vraie.



b) Pour n >ng=1on a

n+1 n
1 B 1 . 1 P(n) n L 1
—k(k+1)  “Zk(k+1) (+D0+2)  n+l (n+1)(n+2)
nin+2)+1 n?+2n+1 (n+1)2 n+1

T+ )m+2) (n+D)n+2) m+Dn+2) n+2
et P(n) implique donc P(n + 1) pour n > ny.

iv) a) Pourn=ng=1ona

c-a-d. P(1) est vraie.

b) Pour n > ng =1 d’une part on a
Py (1 ?
Z Zk?’ (n+1) (§n<n+1>) 1)

— (n+1)* ((%n>2+ (n + 1)> = (n—2+-1>2 (n* +4n +4)

_ <%(n+1)(n+2))2

et P(n) implique donc P(n + 1) pour n > ny.

v) Pour calculer cette somme on utilise les résultats précédents en effectuant le changement
de variable [ = k£ + 1. Il ne faut pas oublier de changer les indices de début et de fin de la
somme lors d'un changement d’indice. Ici : k =0=1=1et k = 1000 = [ = 1001. On
obtient donc

1000 1001 1001 1001
> (k+1)(3Bk+2) = Zl 31 —1) _SZF Zz
k=0
1001 1002 2003 1001 - 1002
6 2
1001 - 1002
- (2003 — 1) = 1001* - 1002

= 1004005002 .

vi) Pour calculer cette somme, nous pourrions utiliser la formule (a? —b?) = (a —b)(a+b) et le
résultat de questions i) et faire comme pour la question précédente. Notamment, on peut
écrire en dénotant m = 476:

D= k=17 = (k—(k=1)(k+(k-1) =) 2k—-1)=2) k=) 1=

k=1 k=
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Cependant, il apparait tres vite en écrivant les premiers termes de cette somme que nous
avons affaire & une somme télescopique. (c’était également le cas a la question #ii) mais
pour la faire apparaitre il fallait effectuer une décomposition en éléments simples que nous
n’avons pas encore vue en cours)

En effet, si 'on écrit les premiers termes de la somme, on obtient

12 — 02
+22 — 12
+3%2 — 22

+...

Alinsi, on remarque que le premier terme de chaque indice s’annulera toujours avec le second
terme de l'indice suivant. Il ne restera plus qu’au final que le premier terme du dernier
indice et le second terme du premier indice et on obtient alors

T = 476% — 0% = 476 = 226576

Exercice 2.

a) On a Fp=2411=2'41=3,et 1=20041=92241=5.Powrn=nyg=1ona

0
b=F=[[F+2=FR+2=3+2=5,
k=0

et P(1) est donc vraie.

b) Pour n >ng=1on a

Fopr = 2" 11=2029 11 = (227)" 4 1= (289) (2@9) 41 = (F, —1)* + 1
n—1 n (
—F,(F,-2)+2™ p, (HFk> +2=[F+2=
k=0 k=0

et P(n) implique donc P(n + 1) pour n > ny.

n+1)—1
F,+2
k=0

Exercice 3. Pour obtenir expression pour ) ,_;a + kd on utilise les propriétés des sommes
des nombres réels et les resultats d’Ex.1. On écrit:

n

= = "L Exl () n(n+1)
kd = 1+d k= 1 d k= 1 d——-—=-.
,}O a+ a kgo + kgo (n+1)a+ kgo (n+1)a+ 5

Par souci d’exhaustivité, on ajoute ici la démonstration par récurrence de la formule obtenue:
V(a, d) € R* et Vn € N* on a
- n(n+1
> a+kd= (n#—l)a—l—dg
k=0



a) Pour n=ng=1ona

1
141
2a—|—d:a—|—(a—l—d):Za+kd:(1+1)a+d( er ):2a—|—d
c-a-d. P(1) est vraie.
b) Pour n >ng=1on a
- _ P n(n+1)
D (a+kd) =) (a+kd) +a+(n+1)d @ (n+Da+d———+a+(n+1)d
k=0 k=0

z(n+2)a+d(n+1>2(n+2)

et P(n) implique donc P(n + 1) pour n > ny.

Exercice 4.
i) Par un calcul direct on a pour n > k > 1:
n!

(k i 1) * (Z) T 1)!(:;!— KA K —R)

B (k—l)?(!n—k)! (n—z+1+%)

B n! k+n—k+1
S (k—=D!n—k)! (n—k+1)k
B n! n+1

S k=Dln—k)! (n—k+1)k
(n+1)! :<n+1).

El(n —k+1)! k

1) On démontre la formule du binome de Newton par récurrence:
a) Pourn=npg=1ona

Q- (v (e

k=0

b) Pour n > ng on a

(+y)" =@ +y)(z+y)"

n

T (@+y) Z(k> aky

k=0

£Q e E e
g (e

4



[décalage de +1 de 'indice de la premiere somme, voir le fichier “Changement d’Indice

de Sommation”|
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ce qui montre que P(n) implique P(n + 1) pour n > ny.
Donc P(n) est vraie pour tout n > ny.

ii1) Finalement, si on pose x =y = 1 on trouve

M= (1+1)" = :0 <Z> .

Exercice 5.

a) Pour n =ng=0on a

Pourn=n;=1ona

Ainsi, P(0) et P(1) sont vraies.
b) Pour n > ng =0 on a
n+1 n+1 n+1
n+1-—k n—=k n—k
> ()2
k=0 k=0 k=0

[ en utilisant la formule vue a I’'Exercice 4 |

" /n—k +n n—=k
k—1 k
k=1 k=0

(@4



[ les termes de rang n + 1 étant nuls |

_"i(n—k—1)+ - (n—k;)
B k k
k=0 k=0

[ décalage de —1 de l'indice la premiére somme ]

= fn + fn+l

et P(n) et P(n+ 1) impliquent donc P(n + 2) pour n > nyg.

Exercice 6.

i) Afin de trouver inf a,, il suffit de remarquer que la suite (a,)nen est croissante. En effet,

Vn € Non a
5(n+1) 5n (5n+5)(2n+1) —5n(2n + 3)
U1 — Ay = — =
“ 2(n+1)+1 2n+1 (2n+1) (2n+3)
5

S Dnty =

Ainsi, inf a,, = mina,, = ag = 0.
) n n 0
it) Afin de trouver sup A, nous pouvons remarquer que

2(@2n+1)-2

5 5
2n+1

2(2n +1)

Ay —

_5_
)

et donc a = g est un majorant de (ay), oy 1l reste a montrer que a = g est le plus petit
des majorants, c.-a.-d. V ¢ > 0, il faut trouver ny tel que a,, > a —e. Donc il faut trouver

ng tel que

> > > > e & &> > & 25 > ! & 2np+1 > >
S — _— _— — n —_—
2 22ng+1) " 2 2(2n0 + 1) 5 7 2ng+1 0 2%

= >1 0 1
"0~ 5\ 2 ’

Puisque le sous-ensemble des nombres naturels n’est pas majoré, on peut toujours trouver
un tel ny € N. Par exemple, on peut choisir

oo 320 1}

Alors pour tout n > ng on a I'inégalité a,, > a — €, ce qui montre que

sup a _0
Pn—2-



Exercice 7.

)

i)

On a a, = (n—2)? — 3. Calculons les premiers termes de la suite :
ag = 1, a; = —2, A9 = —3, az — —2,

La suite n’est donc pas monotone car par exemple a; > as et as < az. Pour n > 2, on a

par contre
an=M—-27-3<(n—17°-3=a,.,

c.-a.-d. la suite est croissante pour n > 2.
Donc on a
inf @,, = mina, = —3 .

Pourn>2on a
g1 —an = (n—1)* = (n = 2)* > 1,

alors la suite {a,} croit plus vite que les nombres naturels, et donc {a,} n’est pas majoré.
Ainsi sup (a,) et a fortiori max (a,) n’existent pas.

On a
n @n-1)+3 1 1

fd — — + -
3n—1 3n—1 3 3Bn-1)
On procede ensuite comme dans I’exercice précédent pour montrer que la suite et décroissante:

1 1 1<3n—1—(3n+2))

G T T 3B 1) 3Bn-1) 3\ (Bn+2)(3n-1)

1
=— 0¥n € N* .
Gni2)@n-1 "€

Qn

) : _ _ _ 1
Il s’en suit que sup a, = maxa, = a; = 3. De plus on a vu que

"3 3Bn-1)"

donc (a,,) est minorée par a = . Pour montrer que a est le plus grand minorant de (a,), il
faut montrer que pour tout € > 0, il existe ny € N* tel que a,, < a+¢, ot a = % On écrit

<1+ < 1+ ! <1+ & 3 1>1 & >1+1
Upy < =+ € -t < -+ ng — — ng > — + —.
© "3 3 3Bno—1) 3 0 3¢ 79 "3
En prenant n, entier tel que
1 1
> =+,
793
on a
L 1 <1+ 1 1+1 1+
ng < 3 T 1 2 iy -3 T1TT37TE
3 3(B(x+3)-1) 3 3(x) 3 ¢ 3
et donc
infa, = =

Notons encore que min (ay,), .. n'existe pas.



i1) Méme question qu’en 74) sauf que I'on étudie ici {ag U (an,),,cn- }-
Comme ag = 0, on a min (a,), .y = 0 = inf (ay), -

De plus, la suite (a,) perd sa monotonie puisque ag < a; et a; > as.

Enfin, 'on a toujours sup a,, = maxa, = a; = %

Exercice 8.

i) En réalisant une rapide étude comme dans I’Exercice 6., nous trouvons que cette suite est
strictement croissante et admet 3 comme borne supérieure.

Démontrons que 3 est la limite de la suite. Soit € > 0. Puisque 3 est le supremum de
I'ensemble {a, }nen, il existe ng € N tel que

0<3—ap, <e.
Puisque la suite est croissante, on a pour tout n € N : n > ng,
0<3—a, <3—ay <k¢,

ce qui démontre que lim a, = 3. (On va voir plus tard dans le cours que toute suite
n—oo

croissante et majorée converge vers sa borne supérieure.)

i1) Puisque lim a, = 3 # 0, par les propriétés algébriques des limites on obtient
n—0o0

: 1 1 _ 1
TLILOO an  lim a, = 3°
n— o0
3 a 3 lim ap
1 - = e n—o0 e
ZZZ) nhﬁrgo (an + 3 > lim an + 3 2.

n—oo



