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Analyse I – Corrigé de la Série 4

Exercice 1.

i) a) Pour n = n0 = 1 on a

1 =
1∑

k=1

k =
1(1 + 1)

2
= 1 ,

c.-à-d. P (1) est vraie.

b) Pour n ≥ n0 = 1 on a (on indique par
P (n)
= l’égalité où on utilise la propriété P (n)),

n+1∑
k=1

k =

(
n∑

k=1

k

)
+ (n + 1)

P (n)
=

n(n + 1)

2
+ (n + 1)

=
n(n + 1) + 2(n + 1)

2
=

(n + 1)(n + 2)

2
=

(n + 1)
(
(n + 1) + 1

)
2

,

et P (n) implique donc P (n + 1) pour n ≥ n0.

ii) a) Pour n = n0 = 1 on a

1 =
1∑

k=1

k2 =
1(1 + 1)(2 + 1)

6
= 1 ,

et P (1) est donc vraie.

b) Pour n ≥ n0 = 1 on a

n+1∑
k=1

k2 =

(
n∑

k=1

k2

)
+ (n + 1)2

P (n)
=

n(n + 1)(2n + 1)

6
+ (n + 1)2

=
n(n + 1)(2n + 1) + 6(n + 1)2

6
=

(n + 1)(2n2 + n + 6n + 6)

6

=
(n + 1)(2n2 + 7n + 6)

6
=

(n + 1)
(
(n + 2)(2n + 3)

)
6

=
(n + 1)

(
(n + 1) + 1

)(
2(n + 1) + 1

)
6

,

et P (n) implique donc P (n + 1) pour n ≥ n0.

iii) a) Pour n = n0 = 1 on a

1

2
=

1∑
k=1

1

k(k + 1)
=

1

1 + 1
=

1

2

c.-à-d. P (1) est vraie.
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b) Pour n ≥ n0 = 1 on a

n+1∑
k=1

1

k(k + 1)
=

n∑
k=1

1

k(k + 1)
+

1

(n + 1)(n + 2)

P (n)
=

n

n + 1
+

1

(n + 1)(n + 2)

=
n(n + 2) + 1

(n + 1)(n + 2)
=

n2 + 2n + 1

(n + 1)(n + 2)
=

(n + 1)2

(n + 1)(n + 2)
=

n + 1

n + 2

et P (n) implique donc P (n + 1) pour n ≥ n0.

iv) a) Pour n = n0 = 1 on a

1 =
1∑

k=1

k3 =

(
1

2
(1 + 1)

)2

= 1

c.-à-d. P (1) est vraie.

b) Pour n ≥ n0 = 1 d’une part on a

n+1∑
k=1

k3 =
n∑

k=1

k3 + (n + 1)3
P (n)
=

(
1

2
n (n + 1)

)2

+ (n + 1)3

= (n + 1)2
((

1

2
n

)2

+ (n + 1)

)
=

(
n + 1

2

)2 (
n2 + 4n + 4

)
=

(
1

2
(n + 1) (n + 2)

)2

et P (n) implique donc P (n + 1) pour n ≥ n0.

v) Pour calculer cette somme on utilise les résultats précédents en effectuant le changement
de variable l = k + 1. Il ne faut pas oublier de changer les indices de début et de fin de la
somme lors d’un changement d’indice. Ici : k = 0 ⇒ l = 1 et k = 1000 ⇒ l = 1001. On
obtient donc

1000∑
k=0

(k + 1)(3k + 2) =
1001∑
l=1

l(3l − 1) = 3
1001∑
l=1

l2 −
1001∑
l=1

l

= 3
1001 · 1002 · 2003

6
− 1001 · 1002

2

=
1001 · 1002

2
(2003− 1) = 10012 · 1002

= 1 004 005 002 .

vi) Pour calculer cette somme, nous pourrions utiliser la formule (a2− b2) = (a− b)(a+ b) et le
résultat de questions i) et faire comme pour la question précédente. Notamment, on peut
écrire en dénotant m = 476:

m∑
k=1

(k2 − (k − 1)2) =
m∑
k=1

(k − (k − 1))(k + (k − 1)) =
m∑
k=1

(2k − 1) = 2
m∑
k=1

k −
m∑
k=1

1 =

i)
= 2

m(m + 1)

2
−m = m2.

2



Cependant, il apparâıt très vite en écrivant les premiers termes de cette somme que nous
avons affaire à une somme télescopique. (c’était également le cas à la question iii) mais
pour la faire apparâıtre il fallait effectuer une décomposition en éléments simples que nous
n’avons pas encore vue en cours)
En effet, si l’on écrit les premiers termes de la somme, on obtient

12 − 02

+22 − 12

+32 − 22

+ . . .

Ainsi, on remarque que le premier terme de chaque indice s’annulera toujours avec le second
terme de l’indice suivant. Il ne restera plus qu’au final que le premier terme du dernier
indice et le second terme du premier indice et on obtient alors

T = 4762 − 02 = 4762 = 226 576

Exercice 2.

a) On a F0 = 2(20) + 1 = 21 + 1 = 3 , et F1 = 2(21) + 1 = 22 + 1 = 5 . Pour n = n0 = 1 on a

5 = F1 =
0∏

k=0

Fk + 2 = F0 + 2 = 3 + 2 = 5 ,

et P (1) est donc vraie.

b) Pour n ≥ n0 = 1 on a

Fn+1 = 2(2n+1) + 1 = 2(2·2n) + 1 =
(
2(2n)

)2
+ 1 =

(
2(2n)

) (
2(2n)

)
+ 1 = (Fn − 1)2 + 1

= Fn (Fn − 2) + 2
P (n)
= Fn

(
n−1∏
k=0

Fk

)
+ 2 =

n∏
k=0

Fk + 2 =

(n+1)−1∏
k=0

Fk + 2

et P (n) implique donc P (n + 1) pour n ≥ n0.

Exercice 3. Pour obtenir l’expression pour
∑n

k=0 a + kd on utilise les propriétés des sommes
des nombres réels et les resultats d’Ex.1. On écrit:

n∑
k=0

a + kd = a

n∑
k=0

1 + d

n∑
k=0

k = (n + 1)a + d

n∑
k=0

k
Ex.1 (i)

= (n + 1)a + d
n(n + 1)

2
.

Par souci d’exhaustivité, on ajoute ici la démonstration par récurrence de la formule obtenue:
∀(a, d) ∈ R2 et ∀n ∈ N∗ on a

n∑
k=0

a + kd = (n + 1)a + d
n (n + 1)

2
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a) Pour n = n0 = 1 on a

2a + d = a + (a + d) =
1∑

k=1

a + kd = (1 + 1) a + d
(1 + 1)

2
= 2a + d

c.-à-d. P (1) est vraie.

b) Pour n ≥ n0 = 1 on a

n+1∑
k=0

(a + kd) =
n∑

k=0

(a + kd) + a + (n + 1) d
P (n)
= (n + 1) a + d

n (n + 1)

2
+ a + (n + 1) d

= (n + 2) a + d
(n + 1) (n + 2)

2

et P (n) implique donc P (n + 1) pour n ≥ n0.

Exercice 4.

i) Par un calcul direct on a pour n ≥ k ≥ 1:(
n

k − 1

)
+

(
n

k

)
=

n!

(k − 1)!(n− k + 1)!
+

n!

k!(n− k)!

=
n!

(k − 1)!(n− k)!

(
1

n− k + 1
+

1

k

)
=

n!

(k − 1)!(n− k)!

k + n− k + 1

(n− k + 1)k

=
n!

(k − 1)!(n− k)!

n + 1

(n− k + 1)k

=
(n + 1)!

k!(n− k + 1)!
=

(
n + 1

k

)
.

ii) On démontre la formule du binôme de Newton par récurrence:

a) Pour n = n0 = 1 on a

1∑
k=0

(
1

k

)
xky1−k =

(
1

0

)
x0y1 +

(
1

1

)
x1y0 = x + y .

b) Pour n ≥ n0 on a

(x + y)n+1 = (x + y)(x + y)n

P (n)
= (x + y)

n∑
k=0

(
n

k

)
xkyn−k

=
n∑

k=0

(
n

k

)
xk+1yn−k +

n∑
k=0

(
n

k

)
xkyn−k+1

=
n+1∑
k=1

(
n

k − 1

)
xkyn−k+1 +

n∑
k=0

(
n

k

)
xkyn−k+1
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[décalage de +1 de l’indice de la première somme, voir le fichier “Changement d’Indice
de Sommation”]

=
n∑

k=1

(
n

k − 1

)
xkyn−k+1 +

n∑
k=1

(
n

k

)
xkyn−k+1 +

(
n

n

)
xn+1 +

(
n

0

)
yn+1

=
n∑

k=1

((
n

k − 1

)
+

(
n

k

))
xkyn−k+1 + yn+1 + xn+1

(i)
=

n∑
k=1

(
n + 1

k

)
xkyn−k+1 +

(
n + 1

0

)
x0yn−0+1 + xn+1

=
n∑

k=0

(
n + 1

k

)
xkyn−k+1 + xn+1

=
n∑

k=0

(
n + 1

k

)
xkyn+1−k +

(
n + 1

n + 1

)
xn+1y0

=
n+1∑
k=0

(
n + 1

k

)
xkyn+1−k ,

ce qui montre que P (n) implique P (n + 1) pour n ≥ n0.

Donc P (n) est vraie pour tout n ≥ n0.

iii) Finalement, si on pose x = y = 1 on trouve

2n = (1 + 1)n =
n∑

k=0

(
n

k

)
.

Exercice 5.

a) Pour n = n0 = 0 on a
0∑

k=0

(
0− k

k

)
=

(
0

0

)
== 1 = f1

Pour n = n1 = 1 on a

1∑
k=0

(
1− k

k

)
=

(
1

0

)
+

(
0

1

)
= 1 + 0 = 1 = f2

Ainsi, P (0) et P (1) sont vraies.

b) Pour n ≥ n0 = 0 on a

n+1∑
k=0

(
n + 1− k

k

)
=

n+1∑
k=0

(
n− k

k − 1

)
+

n+1∑
k=0

(
n− k

k

)
[ en utilisant la formule vue à l’Exercice 4 ]

=
n∑

k=1

(
n− k

k − 1

)
+

n∑
k=0

(
n− k

k

)
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[ les termes de rang n + 1 étant nuls ]

=
n−1∑
k=0

(
n− k − 1

k

)
+

n∑
k=0

(
n− k

k

)
[ décalage de −1 de l’indice la première somme ]

= fn + fn+1

et P (n) et P (n + 1) impliquent donc P (n + 2) pour n ≥ n0.

Exercice 6.

i) Afin de trouver inf an, il suffit de remarquer que la suite (an)n∈N est croissante. En effet,
∀n ∈ N on a

an+1 − an =
5 (n + 1)

2 (n + 1) + 1
− 5n

2n + 1
=

(5n + 5) (2n + 1)− 5n (2n + 3)

(2n + 1) (2n + 3)

=
5

(2n + 1) (2n + 3)
≥ 0

Ainsi, inf an = min an = a0 = 0.

ii) Afin de trouver supA, nous pouvons remarquer que

an =
5
2

(2n + 1)− 5
2

2n + 1
=

5

2
− 5

2 (2n + 1)
≤ 5

2
∀n ∈ N

et donc a = 5
2

est un majorant de (an)n∈N. Il reste à montrer que a = 5
2

est le plus petit
des majorants, c.-à.-d. ∀ ε > 0, il faut trouver n0 tel que an0 > a− ε. Donc il faut trouver
n0 tel que

5

2
− 5

2(2n0 + 1)
>

5

2
−ε ⇔ ε >

5

2(2n0 + 1)
⇔ 2

5
ε >

1

2n0 + 1
⇔ 2n0+1 >

5

2ε

⇔ n0 >
1

2

(
5

2ε
− 1

)
.

Puisque le sous-ensemble des nombres naturels n’est pas majoré, on peut toujours trouver
un tel n0 ∈ N. Par exemple, on peut choisir

n0 = max

{
0,

⌊
1

2

(
5

2ε
− 1

)⌋
+ 1

}
.

Alors pour tout n > n0 on a l’inégalité an > a− ε, ce qui montre que

sup an =
5

2
.
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Exercice 7.

i) On a an = (n− 2)2 − 3 . Calculons les premiers termes de la suite :

a0 = 1, a1 = −2, a2 = −3, a3 = −2, ...

La suite n’est donc pas monotone car par exemple a1 > a2 et a2 < a3. Pour n ≥ 2, on a
par contre

an = (n− 2)2 − 3 ≤ (n− 1)2 − 3 = an+1 ,

c.-à.-d. la suite est croissante pour n ≥ 2.
Donc on a

inf an = min an = −3 .

Pour n ≥ 2 on a
an+1 − an = (n− 1)2 − (n− 2)2 > 1,

alors la suite {an} crôıt plus vite que les nombres naturels, et donc {an} n’est pas majoré.
Ainsi sup (an) et a fortiori max (an) n’existent pas.

ii) On a

an =
n

3n− 1
=

1
3

(3n− 1) + 1
3

3n− 1
=

1

3
+

1

3 (3n− 1)

On procède ensuite comme dans l’exercice précédent pour montrer que la suite et décroissante:

an+1 − an =
1

3 (3 (n + 1)− 1)
− 1

3 (3n− 1)
=

1

3

(
3n− 1− (3n + 2)

(3n + 2) (3n− 1)

)
= − 1

(3n + 2) (3n− 1)
< 0 ∀n ∈ N∗ .

Il s’en suit que sup an = max an = a1 = 1
2
. De plus on a vu que

an =
1

3
+

1

3 (3n− 1)
,

donc (an) est minorée par a = 1
3
. Pour montrer que a est le plus grand minorant de (an), il

faut montrer que pour tout ε > 0, il existe n0 ∈ N∗ tel que an0 < a + ε, où a = 1
3
. On écrit

an0 <
1

3
+ ε ⇔ 1

3
+

1

3(3n0 − 1)
<

1

3
+ ε ⇔ 3n0 − 1 >

1

3ε
⇔ n0 >

1

9ε
+

1

3
.

En prenant n0 entier tel que

n0 >
1

9ε
+

1

3
,

on a

an0 <
1

3
+

1

3
(
3
(

1
9ε

+ 1
3

)
− 1
) <

1

3
+

1

3
(

1
3ε

) =
1

3
+

1
1
ε

=
1

3
+ ε

et donc

inf an =
1

3
.

Notons encore que min (an)n∈N∗ n’existe pas.
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iii) Même question qu’en ii) sauf que l’on étudie ici {a0 ∪ (an)n∈N∗}.
Comme a0 = 0, on a min (an)n∈N = 0 = inf (an)n∈N.
De plus, la suite (an) perd sa monotonie puisque a0 < a1 et a1 > a2.
Enfin, l’on a toujours sup an = max an = a1 = 1

2
.

Exercice 8.

i) En réalisant une rapide étude comme dans l’Exercice 6., nous trouvons que cette suite est
strictement croissante et admet 3 comme borne supérieure.

Démontrons que 3 est la limite de la suite. Soit ε > 0. Puisque 3 est le supremum de
l’ensemble {an}n∈N, il existe n0 ∈ N tel que

0 ≤ 3− an0 ≤ ε.

Puisque la suite est croissante, on a pour tout n ∈ N : n ≥ n0,

0 ≤ 3− an ≤ 3− an0 ≤ ε,

ce qui démontre que lim
n→∞

an = 3. (On va voir plus tard dans le cours que toute suite

croissante et majorée converge vers sa borne supérieure.)

ii) Puisque lim
n→∞

an = 3 6= 0, par les propriétés algébriques des limites on obtient

lim
n→∞

1
an

= 1
lim

n→∞
an

= 1
3
.

iii) lim
n→∞

(
3
an

+ an
3

)
= 3

lim
n→∞

an
+

lim
n→∞

an

3
= 2.
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