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Analyse I — Corrigé de la Série 3

Exercice 1.

Q1l: FAUX.

Prendre par exemple A = [0, 1] U |1,2]. La proposition serait vraie pour un intervalle.

Q2: VRAL
Prenons un intervalle fermé et borné I = [a,b]. Alors a = inf I et b = sup I, ce qui est
facile a vérifier a partir de la définition de inf et sup d’un sous-ensemble de R (voir les
notes du cours). Donconaa=inf/ € [ et b=supl € I.

Q3: FAUX.
Prenons A = {£, n € N*}. On a bien A C R ainsi que sup A € A et inf A ¢ A mais A
n’est pas un intervalle semi-ouvert, c’est un ensemble de rationnels.

Q4: VRAL
Par définition des bornes inférieures et supérieures, A est non vide. De plus sup A et inf A
sont par définition respectivement un majorant et un minorant de A. Ainsi, en notant
M =supA=infAonaVere A M <z <M. On en déduit que A = {M} et donc que
A est un point.

Q5: FAUX.
Contre-exemple : A = {0}.

Q6: FAUX.
Contre-exemple : A = [0, 1].

Exercice 2.

Q1: FAUX.
e'2 =cos(—Z%) +isin(—-2%) =0+i(—1) = —i

Q2: VRAIL
e = cos(—7) +isin(—7) = -1+ (0) = —1
Q3: FAUX.
1 1 1= 1—i  _1—i _ 1 y s 1\ _ 1 __ ;1 _ \2 —i=
me i T amay = =3 ti(-g) =g —ip=Fe
Exercice 3.
On va utiliser que pour z =a+14b avec a,b € R, on a
‘ezl _ eRe(z) — %
i) et =el=e i) |em | =et=1 iii) |e7tY| =el=e

i) }e(i—50)’ — 50 v) ‘6(1—5()@‘)‘ —el—p



vi) |cos(m/5) + isin(mw/5)| =

‘ei%| =1
Exercice 4.

Les résultats ci-apres sont écrits sous la forme z=a+ib, et ona Re(z) =a et Im(z) =b.
i) z=(2—3i)(3+2i) = 12 — 5i. Et donc Re(z) = 12 et Im(z) = —5.

i) z = :Z),:ng = g;gz 32 — —i. Et donc Re(z) = 0 et Im(z) = —1.

Ny 1
i) z = (—) = —— = 1. Et donc Re(z) =0 et Im(2) = 1.

7 7;207;71

iv) On a que e 's = COS(%) — isin(%) = % — Z\/?g D’ou

= (1= V30" =21 (1 - Z\/j) =210 (7))

2 2
_ 9l0,—i15T _ 5102 _ _510,—iF _ 910 1 Z@
2 2 )7
et ainsi Re(z) = —2° = =512 et Im(z) = 512v/3.
V) 2=t om o s e s 24 18— 1 0 Bt donc Re(z) = 2 et Im(z) = —2.

vi) z = 4 {5 = (2=892=4) | (171)1(01731') = —2i. Et donc Re(z) =0 et Im(z) = —2.

5
vii) z = €93 = €83 = €%(cos(3) +isin(3)). Et donc Re(z) = €° cos(3) et Im(z) = €% sin(3).

viii) z = e* + €% = cos(2) + cos(3) + i(sin(2) + sin(3)). Et donc Re(z) = cos(2) + cos(3) et
Im(2) = sin(2) + sin(3).

iw) 2 = (e ({3;) = €' (cos(3) — isin(3)) (=)
= £ (—cos(3) + 2sin(3) +  (2cos(3) + sin(3))). Et done Re(z) = £ (2sin(3) — cos(3)) et Im(2) =

g_(Q cos(3) + sin(3)).

Exercice 5.

Les résultats ci-dessous sont écrits sous la forme z = pe’® et ona |2| =p et arg(z) = ¢,
défini a 2k pres avec k € Z.

) 2=2+2 =202 (L +idy) =2v2¢

i) 2= —e +iv3 = —cos(1) +i(v/3 —sin(l)) = p = \/COS2(1) + (V3 - Sin(l))2 et comme

Re(z) < 0 alors ¢ = 7w + arctan (Eﬁgi;) = 7 — arctan <%(T)(l)>

. . . 51n( ) . 1 S _ 1 —37 __ 1 2m—3)1
i) z = —1+itan(3) = -1+ c0s(3) — Jcos(3)] (cos(3) —isin(3)) = cos@3)] € T Teos(3)] =%

: _ 82124t 8i—2¢3 _ 8i+2i __ 10¢ 1+z 1 4,1

W) z =S = e = = 1 =100 =52 7T
-3

=527

v) z=e"""+1=¢"(—1)+1=1—¢€" (nombre réel négatif). Alors |z| = e™ —1 et arg(z) = 7.

2



vz’)ﬂz = sin(m/5) +icos(m/5) = cos(n/2 —m/5) +isin(m/2 — 7w /5) = cos(37/10) +isin(37/10) =

33T

e'10.

Exercice 6. i) On utilise que —1 = ¢ "*Y pour n € [0, 4]. Les solutions recherchées sont
donc z, = €'5@"™) avec n € [0, 4]. Ainsion a |z,| =1 et Arg(z,) = Z(2n+1). (voir Fig. 1a).

ii) Méthode 1: On a —3 — 3i = 3(—1 — i) = 3v/2e~ 1. Alors on considere I'équation
2 3\/56—%{z‘+27mi

oun =0,1. On obtient z; = 3\/56_3?” et 29 = 3\/565?”. (voir Fig. 1b).
Méthode 2, fastidieuse : En écrivant z = a+ib, ’équation donnée devient a? — b +2abi = —3 — 3i.
Puisque a et b sont réels, on doit résoudre le systeme d’équations

a?—v=-3
2ab=—3

La deuxieme équation implique que a et b sont non-nuls et donc b = —23—&. En insérant ceci dans la
premiere équation on obtient

2 3
—12 +12V/2 3(—1—
a2—<—> =-3 & 4d*+12:2-9=0 < a2:78 ‘f:{g( 1-v2)
2

Puisque a € R, seulement la seconde solution est possible; on a donc a = j:\/g V=142 et b=
i(_l)\/gﬁ . Ainsi les solutions de 1’équation initiale sont z; = \/g\/ —1+v2- z\/g
£ :—\ﬁ\/—1 2 '\ﬁé,l 2 ) bt Méthode 1.

et zo 5 V241 2 es mémes qu’on a obtenues par Méthode

-1
V-1+v2

i4i) L’argument du nombre w = 5 + 21/6i satisfait tan(p) = %6, ce qui n’est pas une valeur

de tangente d'un angle remarquable. On utilise donc la forme cartésienne de z = a + ib et on
cherche les nombres réels a,b. Comme dans i) on obtient le systéeme d’équations

a’?— b =5
2ab = 2/6

La deuxieme équation implique que a et b sont non-nuls et donc b = \/Tg' En insérant ceci dans
la premiere équation on obtient

6 5E7

a2——2—5:0 & a'-5-6=0 ©add="—.

a 2

Puisque a € R, seulement la solution avec le “+” est possible, donc on a = £v/6 et b = +1.

Ainsi les solutions de I’équation initiale sont z; = V6+i et zg = —v/6—i. On vérifie facilement
que z? = 22 = 5+ 21/6:.

Remarque: Exemple i) montre que pour calculer la racine carrée d’'un nombre complexe il est
parfois avantageux d’utiliser la forme cartésienne, surtout si 'argument ne s’exprime pas facile-
ment en fractions de m. Dans le cas iii) on a obtenu le résultat simple en forme cartésienne; par
contre la forme polaire contiendrait I’argument %arctan(%g). Cependant, en général, la forme
polaire exponentielle est préférable pour calculer les racines, en particulier pour les racines
d’ordre > 3.



iv) On utilise que —i = ¢l +2mm) pour n € [0, 3]. Les solutions recherchées sont donc

Zn4l = V2T avec n € [0, 3]. Ainsi on a |z,| = V2 et Arg(z,) = 2 4+ nZ. (voir
Fig. 1c).

v) Onaque —+v/3+i=2 (—‘/73 + %) = 9i(F +2m) pour n € [0, 2]. Les solutions recherchées

sont donc 2,11 = V255 avee n € [0, 2]. Ainsi on a |z,| = V/2 et Arg(z,) = 82 4 2m
(voir Fig. 1d).
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Figure 1:

Exercice 7.

i) On pose z =a+1b avec a,b € R qu'on met dans I’équation donnée:
(a+ib)? +6(a+ib)+12 —4i =0,
d’ou le systeme d’équations

a?—=b>+6a+12=0
2ab+6b—4=0.

De la premiere équation on obtient
a=—-3+vVb -3,

et donc |b| > /3 car a doit étre réel. On peut alors récrire la deuxieme équation du systeme
comme

et on trouve
d’ou

ou encore

(b*)? =36 —4 = (b —4)(b* + 1) = 0.



On a alors b = £2 car b doit étre réel. Les solutions de 1’équation initiale sont donc

21:—2+2Z
2y = —4 — 2.

i1) Posons X = 25.

I1 nous faut alors résoudre X2 +4X + 2 = 0. Ce qui conduit & X = 2 (—1 + \/7§>

e Méthode 1 : Courte et élégante
Ecrivons X = re® ot r = 2 (1 + ‘/7§> et 0 =m.
Nous cherchons alors & résoudre ’équation 2% = X.

0/ 7z . . .o .
En posant z = 7' €. En opérant comme dans I'exercice 6.1), 6.iii) ou 6.iv), on trouve que

=2 (1) et 0 € {3,7, 5},

e Méthode 2 : fastidieuse :

Résolvons maintenant 23 = 2 (—1 + @) :

En posant z = a + ib ol (a, b) € R?, on obtient z* = a® — 3ab® + i (3a%b — b?).
Cela nous mene directement au systeme d’équations suivant :

{ o = 30k =2 (~1+ 2)

b(3a% — ) =0
b=0:
Alors a = — ¢/2 (1 + @) Ce qui nous fait 2 solutions pour ce cas.
b? = 3a? :

Alors —8a? = 2 (—1 + @) et donc a = {/ i + %. Notons que les nombres %j: % sont positifs.

Finalement b = ++/3% i + %. Ce qui nous fait 4 solutions pour ce cas.

Nous avons bien trouvé nos 6 solutions.

Exercice 8.

.
Comme €e'2 =1, on a

1+V3e'? = 1+iV3,

qu’on récrit sous forme polaire :
1+iV3=2¢5.

Ainsi I’équation devient
;TN 8 ; 81 ;2m
22:(2613) =283 =28¢'% |

Afin de résoudre cette équation, on écrit

i(2x
22— 986i(% +27m>, avecn =0, 1,



car une équation polynomiale du deuxieme degré a deux solutions. Ces solutions sont donc

. 1 3
2 =25 =16 <§+i£) =8+i8/3,

2
x 1 3
g =2 =16 —= —i£ = -8-i8/3
2 2
Les quantités recherchées sont alors
Re(z1) =8, Im(z;) = 8V'3, |21] = 16, arg(z1) = %,
Re(z) = =8, Im(z) = —8V/3, 25| = 16, arg(zy) = 4
Exercice 9.
Il nous faut ici trouver les racines du polynéme 2% = —8.

Posons z = r . Puisque —8 = 8¢, alors 7 = v/S et § = (1 +2n) oun € [0, 5].

Ainsi, 2648 = (2 — V86§ ) (2 — /Be™15) (2 — /8¢ ) (2 — /8™ 6 ) (2 — v/8e! € ) (2 — ¥/Be i %).
Afin de décomposer ce polynome en produit de facteurs irréductibles réels, il suffit de regrouper
deux & deux les racines complexes conjuguées. En remarquant que (z — 7¢e?)(z — re %) =
2% — 2r cos(6)z + 12, on trouve que

P48 = (22— V62 +2)(22 +2)(22 + V62 +2)

Exercice 10.

Pour caractériser 1’ensemble {z eC: z#0, z+% € ]R}, on pose z = pe avec p > 0 et
¢ € [0,27[. La condition devient alors

peil 4+ e eR
P

ou
Im (,0 e + % e_i‘z’) = psin(¢) — %sin(@ =0.

Cette condition est satisfaite pour ¢ = 0, ¢ = 7, ou p = 1 et ¢ arbitraire, donc pour les

nombres de forme z = p, z = —p et les nombres complexes de module égal a 1. L’ensemble

{z€C: z#0et Im(z) =0, ou |z| =1} contient non seulement les nombres complexes z de

module 1, mais aussi les nombres réels non-nuls qui correspondent aux nombres de la forme

z=pet z=—pavecp>0.

Exercice 11.

Q1: VRAL
Noter que 2?2 +1 = (2 —4)(z +4). Comme ®+3i* +i* —1=-14+3-1-1=0,
z — i divise le polynome donné. Puisque ce dernier est a coefficients réels, il suit que
i = —i en est aussi une racine et donc z + i le divise aussi. Ainsi on conclut que
2>+ 1= (2 —1)(z +1) divise ce polynéme donné.
Sinon, on peut aussi faire une division polynomiale pour obtenir que 25 +32* +22 -1 =
(22 4+ 1)(2* + 222 — 1).



Q2:

Q3:

VRAL

Comme 2z, ..., z, sont racines du polynome, on a
-1
Mt an12" T+ tar=(2—21)(z—2) - (2 — 2zp).

En comparant les termes de degré zéro des deux cotés de I'expression, on trouve la
formule de 1’énoncé.

VRAL

L’astuce ici est de factoriser le terme dans la parenthese par 4.

On trouve alors que (2 4 2i1/3)" = 227 <% + Z\?) . On reconnait alors les cosinus et
sinus de Z. Ainsi, on a (2 + 2iv/3)" = 22"e™5. Cette expression est réelle < "X = kr
ou k € Z et donc pour tout n = 3k. (2+ 21\/§)” est donc réel pour par exemple n = 3.



