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Analyse I – Corrigé de la Série 3

Exercice 1.

Q1 : FAUX.
Prendre par exemple A = [0, 1[ ∪ ]1, 2]. La proposition serait vraie pour un intervalle.

Q2 : VRAI.
Prenons un intervalle fermé et borné I = [a, b]. Alors a = inf I et b = sup I, ce qui est
facile a vérifier à partir de la définition de inf et sup d’un sous-ensemble de R (voir les
notes du cours). Donc on a a = inf I ∈ I et b = sup I ∈ I.

Q3 : FAUX.
Prenons A = { 1

n
, n ∈ N∗}. On a bien A ⊂ R ainsi que supA ∈ A et inf A /∈ A mais A

n’est pas un intervalle semi-ouvert, c’est un ensemble de rationnels.

Q4 : VRAI.
Par définition des bornes inférieures et supérieures, A est non vide. De plus supA et inf A
sont par définition respectivement un majorant et un minorant de A. Ainsi, en notant
M = supA = inf A on a ∀x ∈ A,M ≤ x ≤ M . On en déduit que A = {M} et donc que
A est un point.

Q5 : FAUX.
Contre-exemple : A = {0}.

Q6 : FAUX.
Contre-exemple : A = [0, 1[.

Exercice 2.

Q1 : FAUX.
e−i

π
2 = cos

(
−π

2

)
+ i sin

(
−π

2

)
= 0 + i (−1) = −i

Q2 : VRAI.
e−iπ = cos(−π) + i sin(−π) = −1 + i (0) = −1

Q3 : FAUX.
1

1+i
= 1

1+i
1−i
1−i = 1−i

(1+i)(1−i) = 1−i
2

= 1
2

+ i
(
−1

2

)
= 1

2
− i1

2
=
√
2
2
e−i

π
4

Exercice 3.

On va utiliser que pour z = a+ i b avec a, b ∈ R, on a

|ez| = eRe(z) = ea.

i) |ei+1| = e1 = e ii)
∣∣e−(i+1)

∣∣ = e−1 = 1
e

iii)
∣∣e−(i−1)∣∣ = e1 = e

iv)
∣∣e(i−50)∣∣ = e−50 v)

∣∣e(1−50i)∣∣ = e1 = e
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vi) |cos(π/5) + i sin(π/5)| =
∣∣eiπ5 ∣∣ = 1

Exercice 4.

Les résultats ci-après sont écrits sous la forme z = a+ i b , et on a Re(z) = a et Im(z) = b .
i) z = (2− 3i)(3 + 2i) = 12− 5i. Et donc Re(z) = 12 et Im(z) = −5.

ii) z = 2−3i
3+2i

= 2−3i
3+2i

3−2i
3−2i = −i. Et donc Re(z) = 0 et Im(z) = −1.

iii) z =

(
1

i

)19

=
1

i20i−1
= i. Et donc Re(z) = 0 et Im(z) = 1.

iv) On a que e−i
π
3 = cos

(
π
3

)
− i sin

(
π
3

)
= 1

2
− i

√
3
2

. D’où

z = (1−
√

3i)10 = 210

(
1

2
− i
√

3

2

)10

= 210
(
e−i

π
3

)10
= 210e−i

10π
3 = 210ei

2π
3 = −210e−i

π
3 = −210

(
1

2
− i
√

3

2

)
,

et ainsi Re(z) = −29 = −512 et Im(z) = 512
√

3 .

v) z = 1
1+i

+ 1
1+2i

+ 1
1+3i

= 1−i
2

+ 1−2i
5

+ 1−3i
10

= 4
5
− i 6

5
. Et donc Re(z) = 4

5
et Im(z) = −6

5
.

vi) z = 2−3i
2+i

+ 1−i
1+3i

= (2−3i)(2−i)
5

+ (1−i)(1−3i)
10

= −2i. Et donc Re(z) = 0 et Im(z) = −2.

vii) z = e6+3i = e6e3i = e6(cos(3) + i sin(3)). Et donc Re(z) = e6 cos(3) et Im(z) = e6 sin(3).

viii) z = e2i + e3i = cos(2) + cos(3) + i(sin(2) + sin(3)). Et donc Re(z) = cos(2) + cos(3) et
Im(z) = sin(2) + sin(3).

ix) z = (e1−3i)
(

1+i
1−3i

)
= e1(cos(3)− i sin(3))

(−1+2i
5

)
= e

5
(− cos(3) + 2 sin(3) + i (2 cos(3) + sin(3))). Et donc Re(z) = e

5
(2 sin(3)− cos(3)) et Im(z) =

e
5

(2 cos(3) + sin(3)).

Exercice 5.

Les résultats ci-dessous sont écrits sous la forme z = ρ eiφ , et on a |z| = ρ et arg(z) = φ ,
défini à 2kπ près avec k ∈ Z.

i) z = 2 + 2i = 2
√

2
(

1√
2

+ i 1√
2

)
= 2
√

2 ei
π
4

ii) z = −ei + i
√

3 = − cos(1) + i(
√

3 − sin(1)) ⇒ ρ =

√
cos2(1) +

(√
3− sin(1)

)2
et comme

Re(z) < 0 alors φ = π + arctan
(

Im(z)
Re(z)

)
= π − arctan

(√
3−sin(1)
cos(1)

)

iii) z = −1 + i tan(3) = −1 + i sin(3)
cos(3)

= 1
|cos(3)| (cos(3)− i sin(3)) = 1

|cos(3)| e
−3i = 1

|cos(3)| e
(2π−3)i

iv) z = 8i21−2i11
1−i = 8i−2i3

1−i =8i+2i
1−i = 10i

1−i = 10i 1+i
2

= 5
√

2
(
− 1√

2
+ i 1√

2

)
= 5
√

2 ei
3π
4

v) z = eπ+iπ + 1 = eπ(−1) + 1 = 1− eπ (nombre réel négatif). Alors |z| = eπ − 1 et arg(z) = π.
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vi) z = sin(π/5)+ i cos(π/5) = cos(π/2−π/5)+ i sin(π/2−π/5) = cos(3π/10)+ i sin(3π/10) =

ei
3π
10 .

Exercice 6. i) On utilise que −1 = eiπ(2n+1) pour n ∈ J0, 4K. Les solutions recherchées sont
donc zn = ei

π
5
(2n+1) avec n ∈ J0, 4K. Ainsi on a |zn| = 1 et Arg(zn) = π

5
(2n+1). (voir Fig. 1a).

ii) Méthode 1: On a −3− 3i = 3(−1− i) = 3
√

2e−
3π
4
i. Alors on considère l’équation

z2 = 3
√

2e−
3π
4
i+2πni

où n = 0, 1. On obtient z1 =
√

3
√

2e−
3π
8
i et z2 =

√
3
√

2e
5π
8
i. (voir Fig. 1b).

Méthode 2, fastidieuse : En écrivant z = a+ i b , l’équation donnée devient a2− b2 + 2ab i = −3− 3i .
Puisque a et b sont réels, on doit résoudre le système d’équations{

a2 − b2 =−3
2ab =−3

La deuxième équation implique que a et b sont non-nuls et donc b = − 3
2a . En insérant ceci dans la

première équation on obtient

a2 −
(
− 3

2a

)2

= −3 ⇔ 4a4 + 12a2 − 9 = 0 ⇔ a2 =
−12± 12

√
2

8
=

{
3
2(−1−

√
2)

3
2(−1 +

√
2)

Puisque a ∈ R, seulement la seconde solution est possible; on a donc a = ±
√

3
2

√
−1 +

√
2 et b =

±(−1)
√

3
2

1√
−1+

√
2

. Ainsi les solutions de l’équation initiale sont z1 =
√

3
2

√
−1 +

√
2− i

√
3
2

1√
−1+

√
2

et z2 = −
√

3
2

√
−1 +

√
2 + i

√
3
2

1√
−1+

√
2

, les mêmes qu’on a obtenues par Méthode 1.

iii) L’argument du nombre w = 5 + 2
√

6i satisfait tan(ϕ) = 2
√
6

5
, ce qui n’est pas une valeur

de tangente d’un angle remarquable. On utilise donc la forme cartésienne de z = a + ib et on
cherche les nombres réels a, b. Comme dans ii) on obtient le système d’équations{

a2 − b2 = 5

2ab= 2
√

6

La deuxième équation implique que a et b sont non-nuls et donc b =
√
6
a

. En insérant ceci dans
la première équation on obtient

a2 − 6

a2
− 5 = 0 ⇔ a4 − 5a2 − 6 = 0 ⇔ a2 =

5± 7

2
.

Puisque a ∈ R, seulement la solution avec le “+” est possible, donc on a = ±
√

6 et b = ±1.
Ainsi les solutions de l’équation initiale sont z1 =

√
6+ i et z2 = −

√
6− i. On vérifie facilement

que z21 = z22 = 5 + 2
√

6i.

Remarque: Exemple iii) montre que pour calculer la racine carrée d’un nombre complexe il est
parfois avantageux d’utiliser la forme cartésienne, surtout si l’argument ne s’exprime pas facile-
ment en fractions de π. Dans le cas iii) on a obtenu le résultat simple en forme cartésienne; par

contre la forme polaire contiendrait l’argument 1
2
arctan(2

√
6

5
). Cependant, en général, la forme

polaire exponentielle est préférable pour calculer les racines, en particulier pour les racines
d’ordre ≥ 3.

3



iv) On utilise que −i = ei(
3π
2
+2πn) pour n ∈ J0, 3K. Les solutions recherchées sont donc

zn+1 = 4
√

2 ei(
3π
8
+π

2
n) avec n ∈ J0, 3K. Ainsi on a |zn| = 4

√
2 et Arg(zn) = 3π

8
+ nπ

2
. (voir

Fig. 1c).

v) On a que −
√

3+ i = 2
(
−
√
3
2

+ i
2

)
= 2 ei(

5π
6
+2πn) pour n ∈ J0, 2K. Les solutions recherchées

sont donc zn+1 = 3
√

2 ei(
5π
18

+ 2π
3
n) avec n ∈ J0, 2K. Ainsi on a |zn| = 3

√
2 et Arg(zn) = 5π

18
+ 2nπ

3
.

(voir Fig. 1d).

(a) (b) (c) (d)

Figure 1:

Exercice 7.

i) On pose z = a+ i b avec a, b ∈ R qu’on met dans l’équation donnée :

(a+ i b)2 + 6(a+ i b) + 12− 4i = 0,

d’où le système d’équations {
a2 − b2 + 6a+ 12 = 0

2ab+ 6b− 4 = 0 .

De la première équation on obtient

a = −3±
√
b2 − 3 ,

et donc |b| ≥
√

3 car a doit être réel. On peut alors récrire la deuxième équation du système
comme

a =
2

b
− 3

et on trouve

−3±
√
b2 − 3 =

2

b
− 3 ⇔ ±

√
b2 − 3 =

2

b
,

d’où

b2 − 3 =
4

b2
,

ou encore
(b2)2 − 3b2 − 4 = (b2 − 4)(b2 + 1) = 0.
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On a alors b = ±2 car b doit être réel. Les solutions de l’équation initiale sont donc

z1 = −2 + 2i

z2 = −4− 2i.

ii) Posons X = z3.

Il nous faut alors résoudre X2 + 4X + 2 = 0. Ce qui conduit à X = 2
(
−1±

√
2
2

)
.

• Méthode 1 : Courte et élégante

Écrivons X = r eiθ où r = 2
(

1±
√
2
2

)
et θ = π.

Nous cherchons alors à résoudre l’équation z3 = X.
En posant z = r′ eiθ

′
. En opérant comme dans l’exercice 6.i), 6.iii) ou 6.iv), on trouve que

r′ = 3

√
2
(

1±
√
2
2

)
et θ′ ∈ {π

3
, π, 5π

3
},

• Méthode 2 : fastidieuse :
Résolvons maintenant z3 = 2

(
−1±

√
2
2

)
:

En posant z = a + ib où (a, b) ∈ R2, on obtient z3 = a3 − 3ab2 + i (3a2b− b3).
Cela nous mène directement au système d’équations suivant :{

a3 − 3ab2 = 2
(
−1±

√
2
2

)
b(3a2 − b2) = 0

b = 0 :

Alors a = − 3

√
2
(

1±
√
2
2

)
. Ce qui nous fait 2 solutions pour ce cas.

b2 = 3a2 :

Alors −8a3 = 2
(
−1±

√
2
2

)
et donc a =

3

√
1
4 ±

√
2
8 . Notons que les nombres 1

4 ±
√
2
8 sont positifs.

Finalement b = ±
√

3
3

√
1
4 ±

√
2
8 . Ce qui nous fait 4 solutions pour ce cas.

Nous avons bien trouvé nos 6 solutions.

Exercice 8.

Comme ei
π
2 = i , on a

1 +
√

3 ei
π
2 = 1 + i

√
3 ,

qu’on récrit sous forme polaire :
1 + i

√
3 = 2 ei

π
3 .

Ainsi l’équation devient

z2 =
(
2 ei

π
3

)8
= 28 ei

8π
3 = 28 ei

2π
3 .

Afin de résoudre cette équation, on écrit

z2 = 28 ei(
2π
3
+2πn), avec n = 0, 1 ,
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car une équation polynomiale du deuxième degré a deux solutions. Ces solutions sont donc

z1 = 24 ei
π
3 = 16

(
1

2
+ i

√
3

2

)
= 8 + i 8

√
3 ,

z2 = 24 ei
4π
3 = 16

(
−1

2
− i
√

3

2

)
= −8− i 8

√
3 .

Les quantités recherchées sont alors

Re(z1) = 8, Im(z1) = 8
√

3, |z1| = 16, arg(z1) = π
3
,

Re(z2) = −8, Im(z2) = −8
√

3, |z2| = 16, arg(z2) = 4π
3
.

Exercice 9.

Il nous faut ici trouver les racines du polynôme z6 = −8.
Posons z = r eiθ. Puisque −8 = 8e−iπ, alors r = 6

√
8 et θ = π

6
(1 + 2n) où n ∈ J0, 5K.

Ainsi, z6 + 8 = (z− 6
√

8ei
π
6 )(z− 6

√
8e−i

π
6 )(z− 6

√
8ei

3π
6 )(z− 6

√
8e−i

3π
6 )(z− 6

√
8ei

5π
6 )(z− 6

√
8e−i

5π
6 ).

Afin de décomposer ce polynôme en produit de facteurs irréductibles réels, il suffit de regrouper
deux à deux les racines complexes conjuguées. En remarquant que (z − r eiθ)(z − r e−iθ) =
z2 − 2r cos(θ)z + r2, on trouve que
z6 + 8 = (z2 −

√
6z + 2)(z2 + 2)(z2 +

√
6z + 2)

Exercice 10.

Pour caractériser l’ensemble
{
z ∈ C : z 6= 0, z + 1

z
∈ R

}
, on pose z = ρ eiφ avec ρ > 0 et

φ ∈ [0, 2π[. La condition devient alors

ρ eiφ +
1

ρ
e−iφ ∈ R ,

ou

Im

(
ρ eiφ +

1

ρ
e−iφ

)
= ρ sin(φ)− 1

ρ
sin(φ) = 0 .

Cette condition est satisfaite pour φ = 0, φ = π, ou ρ = 1 et φ arbitraire, donc pour les
nombres de forme z = ρ, z = −ρ et les nombres complexes de module égal à 1. L’ensemble
{z ∈ C : z 6= 0 et Im(z) = 0, ou |z| = 1} contient non seulement les nombres complexes z de
module 1, mais aussi les nombres réels non-nuls qui correspondent aux nombres de la forme
z = ρ et z = −ρ avec ρ > 0.

Exercice 11.

Q1 : VRAI.
Noter que z2 + 1 = (z − i)(z + i). Comme i6 + 3i4 + i2 − 1 = −1 + 3 − 1 − 1 = 0 ,
z − i divise le polynôme donné. Puisque ce dernier est à coefficients réels, il suit que
ī = −i en est aussi une racine et donc z + i le divise aussi. Ainsi on conclut que
z2 + 1 = (z − i)(z + i) divise ce polynôme donné.

Sinon, on peut aussi faire une division polynomiale pour obtenir que z6 +3z4 +z2−1 =
(z2 + 1)(z4 + 2z2 − 1).
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Q2 : VRAI.
Comme z1, . . . , zn sont racines du polynôme, on a

zn + an−1z
n−1 + · · ·+ a0 = (z − z1)(z − z2) · · · (z − zn).

En comparant les termes de degré zéro des deux côtés de l’expression, on trouve la
formule de l’énoncé.

Q3 : VRAI.
L’astuce ici est de factoriser le terme dans la parenthèse par 4.

On trouve alors que (2 + 2i
√

3)n = 22n
(

1
2

+ i
√
3
2

)n
. On reconnâıt alors les cosinus et

sinus de π
3
. Ainsi, on a (2 + 2i

√
3)n = 22nein

π
3 . Cette expression est réelle ⇔ nπ

3
= kπ

où k ∈ Z et donc pour tout n = 3k. (2 + 2i
√

3)n est donc réel pour par exemple n = 3.
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