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Analyse I – Corrigé de la Série 14

Exercice 1.

On utilise la formule d’intégration par parties :∫
g(x) f ′(x) dx = g(x)f(x)−

∫
f(x) g′(x) dx

i) Par intégration par parties d’abord avec f ′(x) = cos(x) [⇒ f(x) = sin(x)], g(x) = x2

[⇒ g′(x) = 2x] et puis avec f ′(x) = sin(x) [⇒ f(x) = − cos(x)], g(x) = x [⇒ g′(x) = 1],
il vient∫

x2 cos(x) dx = sin(x)x2 − 2

∫
sin(x)x dx = sin(x)x2 − 2

(
− cos(x)x+

∫
cos(x) dx

)
=
(
x2 − 2

)
sin(x) + 2x cos(x) + c

ii) Posons Ia,b =

∫
eax cos(bx) dx et intégrons deux fois par parties avec f ′(x) = eax [⇒

f(x) = 1
a
eax] ainsi que g(x) = cos(bx) [⇒ g′(x) = −b sin(bx)] :

Ia,b =
1

a
eax cos(bx) +

b

a

∫
eax sin(bx) dx

Cette dernière intégrale doit aussi être intégrée par parties avec f ′(x) = eax et g(x) =
sin(bx) [⇒ g′(x) = b cos(bx)]∫

eax sin(bx) dx =
1

a
eax sin(bx)− b

a

∫
eax cos(bx) dx

On remarque alors que l’intégrale à droite est Ia,b. Ainsi on peut combiner les deux équations
précédentes et isoler Ia,b . On obtient

Ia,b =
1

a
eax cos(bx) +

b

a

(
1

a
eax sin(bx)− b

a
Ia,b

)
⇔

(
1 +

b2

a2

)
Ia,b =

eax

a

(
cos(bx) +

b

a
sin(bx)

)
et donc

Ia,b =
eax

a2 + b2

(
a cos(bx) + b sin(bx)

)
+ c, où c ∈ R est une constante.

iii) Posons g(x) = arctan(x) ( =⇒ g′(x) =
1

1 + x2
) et f ′(x) = 1 ( =⇒ f(x) = x).

Par intégration par parties on obtient donc∫
arctan(x) dx = x arctan(x)−

∫
x

1 + x2
dx
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Or ∫
x

1 + x2
dx =

1

2
ln(1 + x2) + C où C ∈ R

Soit ∫
arctan(x) dx = x arctan(x)− 1

2
ln(1 + x2) + C

iv) Posons g(x) = x ( =⇒ g′(x) = 1) et f ′(x) = 2−x = e−x ln(2) ( =⇒ f(x) = −e
−x ln(2)

ln(2)
).

Par intégration par parties on obtient donc∫
x2−x dx = −xe

−x ln(2)

ln(2)
+

1

ln(2)

∫
e−x ln(2) dx

Or ∫
e−x ln(2) dx = −e

−x ln(2)

ln(2)
+ C où C ∈ R

= − 2−x

ln(2)
+ C

Soit ∫
x2−x dx = −x2−x

ln(2)
− 2−x

ln2(2)
+ C

= − 2−x

ln(2)

(
x+

1

ln(2)

)
+ C

v) Posons g(x) = x ( =⇒ g′(x) = 1) et f ′(x) =
1

sin2(x)
( =⇒ f(x) = −cot(x))

Par intégration par parties on obtient :∫
x

sin2(x)
dx = −xcot(x) +

∫
cot(x) dx = −xcot(x) +

∫
cos(x)

sin(x)
dx =

= −xcot(x) +

∫
du

u
= −xcot(x) + ln |u|+ C = −xcot(x) + ln | sin(x)|+ C,

où on a utilisé le changement de variables u = sin(x) ( =⇒ du = cos(x)dx).

vi) Posons g(x) = ln(x) ( =⇒ g′(x) =
1

x
) et f ′(x) =

1

x3
( =⇒ f(x) = − 1

2x2
)

Par intégration par parties on obtient :∫
ln(x)

x3
dx = − ln(x)

2x2
+

1

2

∫
dx

x3

= − ln(x)

2x2
− 1

4x2
+ C où C ∈ R

= − 1

2x2

(
ln(x) +

1

2

)
+ C
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vii) Posons le changement de variable t =
√
x et donc dx = 2tdt. L’intégrale à calculer se

transforme donc comme suit : ∫
e
√
x dx = 2

∫
tet dt

Posons g(t) = t ( =⇒ g′(t) = 1) et f ′(t) = et ( =⇒ f(t) = et).

Par intégration par parties on obtient :

2

∫
tet dt = 2

(
tet −

∫
et dt

)
= 2tet − 2et + C où C ∈ R

Et donc ∫
e
√
x dx = 2

√
xe
√
x − 2e

√
x + C

viii) Nous allons ici effectuer 2 intégrations par parties mais avec des fonctions différentes.

Pour la première, posons g(x) = sin(ln(x)) ( =⇒ g′(x) =
cos(ln(x))

x
) et f ′(x) = 1

( =⇒ f(x) = x).

Par intégration par parties on obtient :∫
sin(ln(x)) dx = x sin(ln(x))−

∫
cos(ln(x)) dx

De même, posons g(x) = cos(ln(x)) ( =⇒ g′(x) =
sin(ln(x))

x
) et f ′(x) = 1 ( =⇒ f(x) =

x).

Et ainsi l’intégration par parties sur notre nouvelle intégrale donne∫
cos(ln(x)) dx = x cos(ln(x)) +

∫
sin(ln(x)) dx

Ainsi, si l’on note par I =

∫
sin(ln(x)) dx, nous avons que

I = x sin(ln(x))− x cos(ln(x))− I

Et donc ∫
sin(ln(x)) dx =

x

2
(sin(ln(x))− cos(ln(x)))

ix ) Posons g(x) = x2 ( =⇒ g′(x) = 2x) et f ′(x) = xe−x
2

( =⇒ f(x) = −e
−x2

2
).

Par intégration par parties on obtient :∫
x3e−x

2

dx = −x
2e−x

2

2
+

∫
xe−x

2

dx = −x
2e−x

2

2
− e−x

2

2
+ C où C ∈ R

= −e
−x2

2
(1 + x2) + C

x ) Tout d’abord, utilisons la formule cos(2x) = 1 − 2 sin2(x) afin de linéariser sin2(x) en
1− cos(2x)

2
. Puis, observons que

1

ex
= e−x.
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Ainsi, l’intégrale se transforme comme suit :∫
sin2(x)

ex
dx =

∫
1− cos(2x)

2
e−x dx =

1

2

∫
e−x dx− 1

2

∫
cos(2x)e−x dx

= −e
−x

2
− 1

2

∫
cos(2x)e−x dx

Posons I =

∫
cos(2x)e−x dx. Alors d’après (ii) on a I = Ia,b avec a = −1 et b = 2, et donc

I =
e−x(2 sin(2x)− cos(2x))

5
+ C

Et donc ∫
sin2(x)

ex
dx = −e

−x

2

(
1 +

2 sin(2x)− cos(2x)

5

)
+ C

Exercice 2.

i) Posons In =

∫
xn sin(2x) dx. Alors I0 = −1

2
cos(2x) + c et

I1 = −1

2
x cos(2x) +

1

4
sin(2x) + c (par parties avec f ′(x) = sin(2x) et g(x) = x)

et si n ≥ 2 (encore deux fois par parties),

In =

∫
xn sin(2x) dx

(1)
= −1

2
xn cos(2x) +

1

2
n

∫
xn−1 cos(2x) dx

(2)
= −1

2
xn cos(2x) +

n

2

[
1

2
xn−1 sin(2x)− 1

2
(n− 1)

∫
xn−2 sin(2x) dx

]
=
xn−1

4
(n sin(2x)− 2x cos(2x))− n(n− 1)

4
In−2,

où (1) : f ′(x) = sin(2x) et g(x) = xn et (2) : f ′(x) = cos(2x) et g(x) = xn−1.

ii) Posons In =

∫
lnn(x) dx. Alors I0 = x + c . Pour n ≥ 1 on intègre par parties avec

f ′(x) = 1 et g(x) = lnn(x) :

In =

∫
1 · lnn(x) dx = x lnn(x)− n

∫
x lnn−1(x)

1

x
dx = x lnn(x)− nIn−1.

Exercice 3.

i)
1

x2 − 1
=

1

(x+ 1)(x− 1)
=

1

2

(
1

x− 1
− 1

x+ 1

)
Et donc ∫

1

x2 − 1
dx =

1

2

∫
1

x− 1
− 1

x+ 1
dx =

1

2
ln

∣∣∣∣x− 1

x+ 1

∣∣∣∣+ C

4



ii)
x

x2 − 3x+ 2
=

x

(x− 1)(x− 2)
=

2

x− 2
− 1

x− 1

Et donc ∫
x

x2 − 3x+ 2
dx =

∫
2

x− 2
− 1

x− 1
dx = 2 ln |x− 2| − ln |x− 1|+ C

iii) ∫
1

x2 + 2x+ 5
dx =

∫
1

(x+ 1)2 + 4
dx =

1

4

∫
1

1 +
(
x+1
2

)2 dx
Posons y =

x+ 1

2
. Alors dx = 2dy.

Ainsi,

1

4

∫
1

1 +
(
x+1
2

)2 dx =
1

2

∫
1

1 + y2
dy =

1

2
arctan(y) + C où C ∈ R

=
1

2
arctan

(
x+ 1

2

)
+ C

iv) ∫
1

x2 + 2x
dx =

∫
1

x(x+ 2)
dx =

1

2

∫
1

x
− 1

x+ 2
dx

=
1

2
ln

∣∣∣∣ x

x+ 2

∣∣∣∣+ C où C ∈ R

v)
3x− 2

x2 − 4x+ 5
=

3
2
(2x− 4)

x2 − 4x+ 5
+

4

x2 − 4x+ 5
=

3

2

2x− 4

x2 − 4x+ 5
+

4

1 + (x− 2)2

Ainsi, ∫
3x− 2

x2 − 4x+ 5
dx =

∫ (
3

2

2x− 4

x2 − 4x+ 5
+

4

1 + (x− 2)2

)
dx

=
3

2

∫
d(x2 − 4x+ 5)

x2 − 4x+ 5
+ 4

∫
d(x− 2)

1 + (x− 2)2

=
3

2
ln|x2 − 4x+ 5|+ 4arctan(x− 2) + C où C ∈ R

Ici, le terme 4arctan(x − 2) est obtenu en effectuant le même type de changement de
variable qu’en iii).

vi) La décomposition en éléments simples est

x2 − 2

x3 − x2
=
α

x
+
β

x2
+

γ

x− 1
, avec α = 2, β = 2, γ = −1.

On obtient donc∫
x2 − 2

x3 − x2
dx =

∫ (
2

x
+

2

x2
− 1

x− 1

)
dx = 2 ln(|x|)− ln(|x− 1|)− 2

x
+ c.
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vii) La décomposition en éléments simples est

4x

x4 − 1
=

α

x− 1
+

β

x+ 1
+
γx+ δ

x2 + 1
, avec α = 1, β = 1, γ = −2, δ = 0,

d’où ∫
4x

x4 − 1
dx =

∫ (
1

x− 1
+

1

x+ 1
− 2x

x2 + 1

)
dx = ln

(
|x2 − 1|
x2 + 1

)
+ c.

Exercice 4.

(i) On cherche a tel que

∫ a

1

1

x
dx = 1.

Or, ∫ a

1

1

x
dx = ln(x)|a1 = ln(a)− ln(1) = ln(a)

Et donc
ln(a) = 1⇔ a = e

Remarque. C’est une des possibles façons de définir le nombre e.

(ii) D’abord, traçons les différentes fonctions :

Il est facile à voir à partir des propriétés des fonction élémentaires que les fonctions
f(x) = 2 − x2 et g(x) = x2/3 sont toutes les deux paires, et que pour x > 0 il existe
un seul point d’intersection, notamment x = 1. Autrement, on peut résoudre l’équation
2− x2 = x2/3 qui implique

(x2 − 1) + (x2/3 − 1) = 0 =⇒ (x2/3 − 1)(x4/3 + x2/3 + 1) + (x2/3 − 1) = 0

(x1/3 − 1)(x1/3 + 1)(2 + x2/3 + x4/3) = 0,

avec les deux solutions reélles x = ±1.

On obtient x = ±1 pour les bornes d’intégration de x.
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On remarque également que l’aire que l’on doit calculer est symétrique par rapport à la
droite d’équation x = 0, ainsi, il nous suffit de calculer l’intégrale pour x variant de 0 à 1
et de multiplier le résultat par 2 grâce à l’argument de symétrie.

2

∫ 1

0

(2− x2)− x
2
3 dx = 2

[
2x− x3

3
− 3x

5
3

5

]1
0

= 2

(
2− 1

3
− 3

5

)
=

32

15

Exercice 5.

i) Nous avons ici une intégrale de type 1. Pour p 6= 1 posons

Iε =

∫ 1

ε

1

xp
dx

On a pour p 6= 1 :

Iε =

[
1

1− p
1

xp−1

]1
ε

=
1

1− p

(
1− 1

εp−1

)
Si p− 1 < 0, on a lim

ε→0

1

εp−1
= 0.

Et donc

I = lim
ε→0
Iε =

1

1− p
Si p− 1 > 0 la limite n’existe pas et l’intégral est divergente.

Si p = 1, on a ∫ 1

ε

1

x
dx = ln(1)− ln(ε) = − ln(ε).

Or lim
ε→0+

ln(ε) = −∞, et l’intégral est divergente.

Finalement, l’intégral est convergente si et seulement si p < 1.

ii) Nous avons ici une intégrale de type 2.

Posons

IR =

∫ R

1

1

xp
dx

On a pour p 6= 1 :

IR =

[
1

1− p
1

xp−1

]R
1

=
1

p− 1

(
1− 1

Rp−1

)
Si p− 1 > 0 on a lim

R→+∞

1

Rp−1 = 0.

Et donc

I = lim
R→+∞

IR =
1

p− 1

Si p− 1 < 0, la limite n’existe pas et l’intégral est divergente.

Si p = 1 on a ∫ R

1

1

x
dx = ln(R)− ln(1) = ln(R).

Or lim
R→∞

ln(R) =∞, et l’intégral est divergente.

Finalement, l’intégral est convergente si et seulement si p > 1.
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iii) Nous avons ici une intégrale de type 1.

Posons

I1−ε =

∫ 1−ε

0

1√
1− x2

dx = [arcsin(x)]1−ε0 = arcsin(1− ε)

Et donc
I = lim

ε→0
I1−ε = arcsin(1) =

π

2

Car la fonction x 7→ arcsin(x) est continue sur [−1, 1].

iv) Posons

Iε =

∫ 1
2

ε

1

x ln(x)
dx

Opérons le changement de variable suivant : t = ln(x) et donc dt =
1

x
dx. x = ε =⇒ t =

ln(ε) et x =
1

2
=⇒ t = − ln(2).

Ainsi,

Iε =

∫ − ln(2)

ln(ε)

1

t
dt = [ln |t|]− ln(2)

ln(ε) = ln(ln(2))− ln | ln(ε)|

Or
lim
ε→0

ln | ln(ε)| = +∞

Donc I est une intégrale divergente.

v) C’est une intégrale généralisée de type 2 qui est définie par la limite

I =

∫ ∞
e

ln2(x)

x2
dx = lim

R→∞

∫ R

e

ln2(x)

x2
dx .

On intègre dans l’intégrale de droite par parties avec f ′(x) = 1
x2

[⇒ f(x) = − 1
x
] et

g(x) = ln2(x) [⇒ g′(x) = 2 ln(x) 1
x
]∫ R

e

ln2(x)

x2
dx =

[
−1

x
ln2(x)

]R
e

−
∫ R

e

(
−1

x

)
2 ln(x)

x
dx

= − 1

R
ln2(R) +

1

e
+

∫ R

e

2 ln(x)

x2
dx

On intègre par partie encore une fois avec f ′(x) = 1
x2

[⇒ f(x) = − 1
x
] et g(x) = 2 ln(x)

[⇒ g′(x) = 2
x
] ∫ R

e

2 ln(x)

x2
dx =

[
−2

x
ln(x)

]R
e

−
∫ R

e

(
−1

x

)
2

x
dx

= − 2

R
ln(R) +

2

e
+

∫ R

e

2

x2
dx

= − 2

R
ln(R) +

2

e
− 2

R
+

2

e
.

Pour l’intégrale généralisée I on trouve donc

I = lim
R→∞

∫ R

e

ln2(x)

x2
dx = lim

R→∞

(
− 1

R
ln2(R) +

1

e
− 2

R
ln(R) +

2

e
− 2

R
+

2

e

)
=

5

e
,
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où on a utilisé Bernoulli-l’Hospital pour calculer les limites

lim
R→∞

(
− 1

R
ln(R)

)
= − lim

R→∞

ln(R)

R
= − lim

R→∞

1
R

1
= − lim

R→∞

1

R
= 0 .

et

lim
R→∞

(
− 1

R
ln2(R)

)
= − lim

R→∞

2 ln(R) 1
R

1
= − lim

R→∞

2 ln(R)

R
= 0.

vi) C’est une intégrale généralisée de type 1 qui s’écrit

I =

∫ 2

1

x√
x− 1

dx = lim
δ→0

∫ 2

1+δ

x√
x− 1

dx .

Pour calculer l’intégrale à droite, on pose le changement de variable x = ϕ(u) = u2 + 1,
ϕ′(u) = 2u et on écrit δ = ε2 avec ε > 0 pour simplifier la notation. Comme x varie entre
1 + ε2 = ϕ(ε) et 2 = ϕ(1), on a

I = lim
ε→0

∫ 2

1+ε2

x√
x− 1

dx = lim
ε→0

∫ 1

ε

ϕ(u)√
ϕ(u)− 1

ϕ′(u) du

= lim
ε→0

∫ 1

ε

u2 + 1√
u2

2u du = lim
ε→0

∫ 1

ε

2(u2 + 1) du

= 2

∫ 1

0

(u2 + 1) du

= 2

[
1

3
u3 + u

]1
0

= 2 · 4

3
=

8

3
.

Notez qu’on a pu enlever la limite parce que l’expression en u est (dans ce cas, pas de
manière générale) bien définie aux nouvelles bornes.

vii) Il s’agit d’une intégrale généralisée de type 2 qui est définie par la limite

I = lim
R→∞

∫ R

0

sin(x) e−x dx .

On intègre par parties avec f ′(x) = e−x [⇒ f(x) = −e−x] et g(x) = sin(x) [⇒ g′(x) =
cos(x)]. On obtient

I = lim
R→∞

∫ R

0

sin(x) e−x dx = lim
R→∞

[
− sin(x) e−x

]R
0

+ lim
R→∞

∫ R

0

cos(x) e−x dx

= lim
R→∞

(
− sin(R) e−R

)
+ lim

R→∞

∫ R

0

cos(x) e−x dx

= lim
R→∞

∫ R

0

cos(x) e−x dx

car lim
R→∞

(
sin(R) e−R

)
= 0. En effet, on a lim

R→∞
e−R = 0 et −1 ≤ sin(R) ≤ 1 , ce qui

permet de conclure par le théorème des deux gendarmes.

On intègre une deuxième fois par parties avec f ′(x) = e−x et g(x) = cos(x) [⇒ g′(x) =
− sin(x)] pour obtenir

I = lim
R→∞

[
− cos(x) e−x

]R
0
− lim

R→∞

∫ R

0

sin(x) e−x dx

= lim
R→∞

(
− cos(R) e−R + 1

)
− I

= 1− I
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car lim
R→∞

(
− cos(R) e−R

)
= 0 (conclusion par le théorème des deux gendarmes comme

ci-dessus).

On a donc I = 1− I, ou

I =
1

2
.

viii) Cette intégrale de type 3 est définie par la limite

I = lim
R→+∞

lim
ε→0

Iε,R

avec

Iε,R =

∫ R

ε

e−x(1− x) ln(x) dx .

On intègre par parties avec f ′(x) = e−x(1 − x) et g(x) = ln(x) [⇒ g′(x) = 1
x
]. Pour

trouver f(x) qui est une primitive de f ′(x), on intègre aussi par parties avec u′(x) = e−x

[⇒ u(x) = −e−x] et v(x) = 1− x [⇒ v′(x) = −1]. Ainsi on obtient

f(x) =

∫
e−x(1− x) dx = −e−x(1− x)−

∫
(−e−x)(−1) dx = x e−x .

On a donc

Iε,R =
[
x e−x ln(x)

]R
ε
−
∫ R

ε

x e−x
1

x
dx = Re−R ln(R)− ε e−ε ln(ε)−

∫ R

ε

e−x dx

= Re−R ln(R)− ε e−ε ln(ε)−
[
− e−x

]R
ε

= Re−R ln(R)− ε e−ε ln(ε) + e−R − e−ε .

Puisque lim
ε→0

(ε ln(ε)) = 0 (Bernoulli-l’Hospital) on a

lim
ε→0

Iε,R = Re−R ln(R) + e−R − 1

et puisque

lim
R→∞

Re−R ln(R) = lim
R→∞

R ln(R)

eR
= 0

par Bernoulli-l’Hospital, on a finalement

I = lim
R→∞

lim
ε→0

Iε,R = −1 .

Exercice 6.

Soit la fonction f : [1,∞) −→ R définie par y = f(x) =
√
x2 − 1. L’aire cherchée est alors

t = xy − 2

∫ x

1

f(w) dw = xy − 2

∫ x

1

√
w2 − 1 dw .

On pose w = ϕ(u) = cosh(u). Ainsi ϕ′(u) = sinh(u) et u varie entre 0 et a := cosh−1(x) car
ϕ(0) = 1 et ϕ(a) = x. L’intégrale devient

2

∫ x

1

√
w2 − 1 dw = 2

∫ a

0

√
cosh(u)2 − 1 · sinh(u) du = 2

∫ a

0

sinh(u)2 du =: I .
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Pour calculer I, on intègre par parties avec f ′(u) = g(u) = sinh(u) :

I = 2

∫ a

0

sinh(u)2 du = 2
[
cosh(u)sinh(u)

]a
0
− 2

∫ a

0

cosh(u)2︸ ︷︷ ︸
=1+sinh(u)2

du

= 2cosh(a)sinh(a)− 2

∫ a

0

1 du− I .

Il suit que

I = cosh(a)sinh(a)− a = x
√
x2 − 1︸ ︷︷ ︸
=y

−cosh−1(x) = xy − cosh−1(x) .

Ainsi t = xy − I = cosh−1(x) et donc x = cosh(t), y =
√
x2 − 1 = sinh(t).
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