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Sections IN, SC 19 décembre 2024

Analyse I — Corrigé de la Série 14

Exercice 1.

On utilise la formule d’intégration par parties :

/ 9(2) f'(x) dr = g(x) f(z) - / f(2)d(x) da

i) Par intégration par parties d’abord avec f'(z) = cos(z) [= f(z) = sin(z)], g(z) = 22
[= ¢'(x) = 2] et puis avec f'(z) = sin(z) [= f(x) = —cos(x)], g(x) =2z [= ¢ (z) = 1],
il vient

— (xQ — 2) sin(x) + 2z cos(x) + ¢

ii) Posons I,), = / e cos(bxr) dx et intégrons deux fois par parties avec f'(z) = e [=

f(x) = % e ainsi que g(x) = cos(bx) [= ¢'(x) = —bsin(bz)] :
1 b :
I, = . e cos(bx) + o / e sin(bx) dx

Cette derniere intégrale doit aussi étre intégrée par parties avec f'(z) = ™ et g(x) =
sin(bx) [= ¢'(x) = bcos(bx)]

1
/e‘w sin(bx) dr = — e** sin(bx) — é/e““ cos(bx) dx

a a

On remarque alors que l'intégrale a droite est I, ;. Ainsi on peut combiner les deux équations
précédentes et isoler I,;. On obtient

1 1
Loy = —€** cos(bx) + b <— e sin(bx) — b a,b)
a

a a \a

b? e b .
& (1 + ﬁ) I, = — (Cos(bx) + - sm(bx))

a

et donc

Iy = a;——l—bQ (a cos(bx) + bsin(b:c)) +¢, ouc € R est une constante.
/ 1 /
iii) Posons g(x) = arctan(z) (= ¢'(x) = T s)et flx) =1 (= f(z)=2).
T
Par intégration par parties on obtient donc
/ tan(z) d tan(z) / L
arctan(x) dz = z arctan(z) — x
1+ 22
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i)

Vi)

1
/1fx2dx:§1n(1+x2)+CoﬁC€R

Soit
1
/arctan(:z:) dx = x arctan(z) — 3 In(1 +2%) +C

—z1n(2)

In(2) )

e

Posons g(z) =z (= ¢'(z) =1) et f'(z) =277 =e? (= f(z) = —

Par intégration par parties on obtient donc

xe—zln(Q) 1
2T dp = — —x1n(2) d
/ ST T The) / e

e—:cln(Z)
/e“‘@)dx:— +CouCeR
In(2)

2—:1)
T T " ¢

Soit

x2™" 27®
2%dr = ——= — ——+C
/I ’ In(2) In*2) *

1@ ( ! hiz)) e

Posons g(z) =2 (= ¢'(v) =1) et f'(z) =

Par intégration par parties on obtient :

/ g do = —acot(a) + / cot(x) dz = —cot(x) + / cos(a) o _

() sin(x)
= —xcot(x /— = —zcot(z) + In|u| + C = —zcot(x) + In | sin(z)| + C,
ol on a utilisé le changement de variables u = sin(z) ( = du = cos(z)dz).
1 1 1
Posons g(x) = In(a) (= ¢/(x) = 7) et f'(x) = & (= [(x) = —5)

Par intégration par parties on obtient :

In(z) . In(x) 1 [dx
/ x3 dx__sz +2/:1:

In(z) 1
— 21’2 — 4— C ou C c R
1 1



vii) Posons le changement de variable ¢ = /z et donc dx = 2tdt. L’intégrale & calculer se

transforme donc comme suit :
/eﬁdx = 2/tetdt

Posons g(t) =t (= ¢'(t) =1) et f'(t) =¢' (= [f(t) =¢€").
Par intégration par parties on obtient :

2/tetdt:2(t6t—/etdt) =2te! — 2! +C ouC eR

Et donc
/eﬁdac = 2/zeV® — 2eVT 4

viti) Nous allons ici effectuer 2 intégrations par parties mais avec des fonctions différentes.
1

Pour la premiere, posons ¢g(z) = sin(In(z)) ( = ¢'(z) = M) et fl(z) =1
x

(= f(z) =2).

Par intégration par parties on obtient :
/sin(ln(x)) dx = xsin(In(z)) — /COS(ID(ZL‘)) dx

De méme, posons g(z) = cos(In(z)) (= ¢'(z) = W) et fllz) =1(= f(z)=

Et ainsi I'intégration par parties sur notre nouvelle intégrale donne
/cos(ln(x)) dx = x cos(In(x)) + /sin(ln(a:)) dx

Ainsi, si 'on note par Z = /sin(ln(m)) dx, nous avons que

7 = zsin(Iln(z)) — zcos(In(z)) — 7

Et donce

/sin(ln(ﬁ)) dr = %(Sin(ln(x)) — cos(In(x)))

e

2

ir) Posons g(z) = 2% (= ¢'(z) = 2z) et f'(z) =ze ™ (= f(z)=—

).

Par intégration par parties on obtient :

2, —a? 2, —z? —x
xr7e x’e e
/x3e_x2dx:— +/xe_$2d:ﬁ:— — +CouCeR

2 2 2
e
= (1+2*)+C
z) Tout d’abord, utilisons la formule cos(2r) = 1 — 2sin?(x) afin de linéariser sin®(x) en
1 — cos(27) _ _
— Puis, observons que — = e~ 7.
ex



Ainsi, I'intégrale se transforme comme suit :

in2 1 — cos(2 1 1
/sm (x) e :/ cos( :1:')6_1, do — —/e‘w dr — —/cos(Q:v)e_x de
e 2 2 2

et 1

_ - 27"
5 2/cos( x)e *dx

Posons Z = /cos(?x)e‘“” dx. Alors d’apres (ii) on aZ = I, avec a = —1 et b = 2, et donc

T e (2 sin(2x5) — cos(2x)) LC

sin’(¢) e (| 2sin(2z) — cos(2x) Lo
/ (1 )

Et donc

er 2 5

Exercice 2.

i) Posons I, = /x” sin(2z) dz. Alors Iy = —3 cos(2z) + ¢ et

1 1
L = —5¢ cos(2x) + 1 sin(2z) + ¢ (par parties avec f'(z) = sin(2z) et g(z) = x)

et sin > 2 (encore deux fois par parties),

1 1
I, = /9:" sin(2x) dx 0 —§:U" cos(2x) + En/x”_l cos(2x) dx

1 1 1
) —§x” cos(2z) + g §x”_1 sin(2z) — i(n - 1) /x”_Q sin(2z) dm}

n—1

—~

(nsin(2x) — 2z cos(2x)) — M I, o,

4
ou (1): f'(z) =sin(2z) et g(z) = t (2): f'(x) = cos(2z) et g(x) =" L.
i1) Posons I, / In"(x)dz. Alors Iy = x4+ ¢ . Pour n > 1 on integre par parties avec
fl(@)=1 et g(z) =In"(z) :
1
I, = / 1-In"(z)der = xIn"(z) — n/xlnn_l(x)—dx =zIn"(x) — nl, ;.
x

Exercice 3.

I 1 101 1
2—1 (z4+1)(xz—-1) 2\z—-1 z2+1

1 1 1 1 1
/x2—1d$:§/w—1_ dr=-In

r+1 2

Et donc

r—1
z+1

REC



i)

Et donc

2 1
/Ld —/ - de =2Inlx —2|—In|lz — 1|+ C
r—2 w-—1

iii)

1 1 1 1
SN S /A [ S
/m2+2x+5 “ /(x+1)2+4 . 4/1_,_(:6_“)2 .

2

1
Posons y = % Alors dx = 2dy.

Ainsi,
1/ 1 1/ 1 1
- | —————drx == dy = —arctan(y) + C ou C € R
z4+1\2 2
4 1+(%) 2 1—|—y 2
1 1
= iarctan(x > +C
iv)
1 1 1 1 1
/ dx:/—dx:—/—— d
2+ 2x (x4 2) 2) v x+2
—_ln|——|+CouCeR
2 |xz+2
v)
3v—-2 %(2x—4)+ 4 3 2z—4 N 4
22 —dr+5 22—dx+5 a2—dr+5 222 —4dr+5 14 (v—2)2
Alinsi,

/ w2 _/ 3 204 4 ;

22 Az +5 0 222 —4x+5 14 (x—2)? v
3/d($2—4x+5) / d(zx —2)
2 22 —4x +5 14 (z—2)2

3
= §ln|gv2 — 42 4 5| + darctan(z —2) + C ou C € R

Ici, le terme 4arctan(z — 2) est obtenu en effectuant le méme type de changement de
variable qu’en iii).

vi) La décomposition en éléments simples est

avec a=2 pf=2 ~v=-1

2 —2 2 9 1 9
/$3—x2dm:/(5+ﬁ_as—1) dx:QlH(|:E|)—ln(|x—1|)_E+C_
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vii) La décomposition en éléments simples est

dr o« N B yr 40
-1 -1 z+4+1 2241

/ dx d / 1 N 1 2z dr =1 |22 — 1] n
T = — Tr = In C.
xt—1 r—1 z+1 22+1 2+ 1

avec a=1, p=1 ~=-=-2, §=0,

d’ou

Exercice 4.

“1
(1) On cherche a tel que / - dr = 1.
1
Or,
“1
/ - dr = In(z)|{ = In(a) — In(1) = In(a)
1

Et donc
In(a)=1<a=e
Remarque. C’est une des possibles fagons de définir le nombre e.

(1) D’abord, tragons les différentes fonctions :

-05

Il est facile a voir a partir des propriétés des fonction élémentaires que les fonctions
f(z) = 2 — 2% et g(x) = 2*/° sont toutes les deux paires, et que pour x > 0 il existe
un seul point d’intersection, notamment x = 1. Autrement, on peut résoudre I’équation
2 — 22 = 2%/% qui implique

2D+ -1)=0 = @ P-DE"P+2"P+1)+@*-1)=0

(212 = 1)@ +1)(2 + 2¥3 + 2%%) = 0,

avec les deux solutions reélles © = +1.
On obtient x = %1 pour les bornes d’intégration de x.
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On remarque également que l'aire que I'on doit calculer est symétrique par rapport a la
droite d’équation x = 0, ainsi, il nous suffit de calculer I'intégrale pour x variant de 0 a 1
et de multiplier le résultat par 2 grace a I’argument de symétrie.

sl
1 3 5

3 1 3 32

2/(2—x2)—x§d9&:2 Pl R Y > B )

; 35 |, 3°5) 15

Exercice 5.

i)

i)

Nous avons ici une intégrale de type 1. Pour p # 1 posons

1
1
1. = —dx

3 xp

117! 1 1

IE: = 1—
lL—part]_ 1-p gp—1
0.

1
Sip—1<0,o0nalim—— =

On a pour p#1:

e—0 gp—1
Et donc )
Z=1lmZ. = ——
e—0 1—0p
Sip—1 > 0 la limite n’existe pas et l'intégral est divergente.
Sip=1,ona
"1
/ —dx =In(1) — In(e) = —In(e).
. T
Or lim In(e) = —o0, et U'intégral est divergente.
e—0+

Finalement, I'intégral est convergente si et seulement si p < 1.

Nous avons ici une intégrale de type 2.

Posons
B
IR:/ —dx
LT
On a pour p# 1 :
111" 1 1
Ip=|\7—>7| = —7\1= 5
l—part], p-1 RP
. . 1
Slp—1>OonaREIJIrlooRp_l—0
Et donc )
Z= lim Zp=——
R—+o00 p—l

Sip—1 <0, la limite n’existe pas et I'intégral est divergente.
Sip=1ona

/R = dr =In(R) —In(1) = In(R).

T

Or Rlim In(R) = oo, et l'intégral est divergente.
—00

Finalement, 'intégral est convergente si et seulement si p > 1.
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iii) Nous avons ici une intégrale de type 1.
Posons

1
1 1
= ——— dx = [arcsin(z)], © = arcsin(1 — ¢
/0 V1 — 22 [ (@)lo ( )
Et donc
Z =1limZ, . = arcsin(l) =
e—0

|

Car la fonction x +— arcsin(x) est continue sur [—1, 1].

1
S|
Ie = / dz
. xln(z)

1
Opérons le changement de variable suivant : t = In(z) et donc dt = —dz. x = ¢ = t =
T

iv) Posons

1
In(e) et . = 5 = t = —1In(2).
Alinsi,

—1n(2)1
e [ =t i
In(e)

Or
limln|In(e)| = 400
e—0
Donc 7 est une intégrale divergente.
v) C’est une intégrale généralisée de type 2 qui est définie par la limite

[e%) 2 R 2
1:/ () b [

x2 R—oo J, a2

On intégre dans lintégrale de droite par parties avec f'(z) = &% [= f(z) = —1] et
g(z) =In*(2) [= ¢'(z) = 2In(z)]]

[ =[] - (i)
"2 (

:—%ln (R) + - —l—/e

On intégre par partie encore une fois avec f'(z) = &5 [= f(z) = —1] et g(z) = 2In(z)

2]
/fngx) do = [—gln(x)]j—/j (—é %dm

= gl(f):;
2 2 L)
2

%3

e
2 2 2
— SR+ =
R R
Pour l'intégrale généralisée I on trouve donc
R 1.2
L In“(z) . 1., 1 2 2 2 2
1= g [P e g (<) - 42 - 7
5
=,



o)

vit)

ou on a utilisé Bernoulli-I’'Hospital pour calculer les limites

_ 1 oo h® 51
i () = = i M = g B = =0
o In(R)
2 S
lim <—11n2(R)> _ i 200 g 2@
R— o0 R R— o0 1 R—o0 R

C’est une intégrale généralisée de type 1 qui s’écrit

2z 2 x
I = dxr = lim dx .
/1 vr—1 6—0 1+6 r—1
Pour calculer I'intégrale & droite, on pose le changement de variable x = p(u) = u? + 1,
¢'(u) = 2u et on éerit § = €2 avec € > 0 pour simplifier la notation. Comme x varie entre
1+e?=p(e) et 2=¢(1),on a

I—tim [ g 1'/1 P iy
= 11m T = 111m —_— u U
=0 Jii o2 Vo — 1 e=0 J, /SO(U—) —1 ¥
i [ g =t [ 20 1 1)d
S e tedvsl LA

1
=2 / (u* + 1) du
0
1, 1
=2 |-u"4u| =2--=-=-.
3 0 3 3
Notez qu’on a pu enlever la limite parce que I'expression en u est (dans ce cas, pas de
maniére générale) bien définie aux nouvelles bornes.
Il s’agit d’une intégrale généralisée de type 2 qui est définie par la limite
R
I = lim sin(z) e “dx .
R—oo [
On integre par parties avec f'(z) =e™* [= f(z) = —e "] et g(z) =sin(z) [= ¢(z) =
cos(x)]. On obtient

R R R
I = lim sin(z) e *dr = lim [—sin(:c) e’x] + lim cos(z) e *dx
R—oo [/ R—oo 0 R—oo [
R
Y o R . —x
71%1_{20( sin(R) e )+1%1_I>20 i cos(x) e *dx
R

= lim cos(z) e “dx

R—o0 0

car lim (sin(R)e™®) = 0. En effet, on a Jim e =0 et —1 <sin(R) <1, ce qui
—00 — 00
permet de conclure par le théoreme des deux gendarmes.

On integre une deuxieme fois par parties avec f'(z) =e™* et g(x) = cos(z) [= ¢'(x) =
— sin(z)] pour obtenir

R R
I = lim [— cos(z) e_m} — lim sin(x) e”* dz
R—o0 0 R—o0 0
— 1 _ -R _
= Rh—I};o (—cos(R)e +1)—1
—1-7



viii)

car lim (— cos(R)e ®) = 0 (conclusion par le théoréme des deux gendarmes comme

R—o0
ci-dessus).
Onadonc I =1-1,o0u
1
==
2

Cette intégrale de type 3 est définie par la limite

I= lim lim/l. g
R—+4o0e—0

avec n
I.p= / e (1 —x)In(x)dx.

On integre par parties avec f'(z) = e (1 —z) et g(z) = In(z) [= ¢'(z) = 1]. Pour
trouver f(x) qui est une primitive de f’(z), on intégre aussi par parties avec u/(z) = e™*
[= u(x) = —e et v(x)=1—2 [= v'(x) = —1]. Ainsi on obtient

(@) = /e—m  2)dr = —e="(1 — 2) /(—6_”)(—1) o =ze.

On a donc

R R 1 R
- / re ™ ~dr=Re "In(R) —ece“In(e) — / e ¥ dx
3 x 3

R
=Re ®In(R) —ce In(e) — [ - e_‘”} = Re In(R) —celn(e) +e ¥ —e°.

€

I.p= [:z: e ” ln(:c)]

£

Puisque lin%(g In(¢)) =0 (Bernoulli-I'Hospital) on a
e—

limI. g = Re ®In(R) +e —1
e—0

et puisque
1
lim Re ®In(R) = lim d n]gR) =0
R—o0 R—o0 (&
par Bernoulli-I’'Hospital, on a finalement
I = lim lim I, p = —1.

R—o00e—0

Exercice 6.

Soit la fonction f: [1,00) — R définie par y = f(z) = Va2 — 1. L’aire cherchée est alors

t:xy—2/ f(w)dw:xy—Z/ Vw? —1dw .
1 1

On pose w = p(u) = cosh(u). Ainsi ¢'(u) = sinh(u) et u varie entre 0 et a := cosh™'(z) car
©(0) =1 et p(a) = z. L'intégrale devient

2/ Vw? — 1dw = 2/ v/ cosh(u)? — 1 - sinh(u) du = 2/ sinh(u)?du =: I .
1 0 0
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Pour calculer I, on integre par parties avec f'(u) = g(u) = sinh(u) :

I= 2/ sinh(u)? du = 2 Cosh(u)sinh(u)r — 2/ cosh(u)? du
0 0 0 ‘—v—’l e
=1+sinh(u

= 2cosh(a)sinh(a) — 2/ ldu—1T.
0
Il suit que

I = cosh(a)sinh(a) — a = 2 V2?2 — 1 —cosh™ () = 2y — cosh™(z) .
——

=Y

Ainsi t =2y — I = cosh™'(z) et donc z = cosh(t), y = V22 — 1 = sinh(t).
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