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Analyse I – Corrigé de la Série 13

Exercice 1.

i) Pour trouver le rayon de convergence on calcule la limite

lim
k→∞
|ak|1/k = lim

k→∞

(
k

2k + 1

)2−1/k

= lim
k→∞

(
k

2k + 1

)2(
2k + 1

k

) 1
k

=

= lim
k→∞

(
k

2k + 1

)2

lim
k→∞

(
2 +

1

k

) 1
k

=
1

4
· 1 =

1

4
.

Alors r = 4 et on a ]− 4, 4[⊂ D.

Pour x = 4 on obtient

∞∑
k=0

(
k

2k + 1

)2k−1

22k =
∞∑
k=0

(
2k + 1

k

)(
2k

2k + 1

)2k

=
∞∑
k=0

(
2 +

1

k

)
1(

1 + 1
2k

)2k .
Le terme général de cette série ne converge pas vers zéro :

lim
k→∞

(
2 +

1

k

)
1(

1 + 1
2k

)2k =
2

e
6= 0,

et donc la série diverge. Le même calcul montre que pour x = −4, le terme général de la

série alternée
∑∞

k=0

(
k

2k+1

)2k−1
22k(−1)k ne converge pas vers zéro et donc la série diverge.

Le domaine de convergence de la série entière est D =]− 4, 4[.

ii) Pour trouver le rayon de convergence on calcule la limite

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

(k + 1)

(k + 3)3k+1

(k + 2)3k

k
= lim

k→∞

1

3

(k + 1)(k + 2)

k(k + 3)
=

1

3
.

Alors le rayon de convergence est r = 3, et on a ]− 1, 5[⊂ D.

Pour x = 5 on obtient la série numérique

∞∑
k=0

k

(k + 2)3k
3k =

∞∑
k=0

k

k + 2
,

dont le terme général ne converge pas vers zéro : limk→∞
k
k+2

= 1 6= 0. Le même argument
montre que pour x = −1, le terme général de la série alternée

∞∑
k=0

k

(k + 2)3k
(−3)k =

∞∑
k=0

(−1)kk

k + 2

ne converge pas vers zéro. Finalement, D =]− 1, 5[.
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iii) Pour trouver le rayon de convergence on calcule la limite

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

(k + 1)

(k + 3)2 3k+1

(k + 2)2 3k

k
= lim

k→∞

1

3

(k + 1)(k + 2)2

k(k + 3)2
=

1

3
.

Alors le rayon de convergence est r = 3, et on a ]− 1, 5[⊂ D.

Pour x = 5 on obtient la série numérique

∞∑
k=0

k

(k + 2)2 3k
3k =

∞∑
k=0

k

(k + 2)2
=
∞∑
k=0

k + 2− 2

(k + 2)2
=
∞∑
k=0

(
1

k + 2
− 2

(k + 2)2

)
.

Rappel que
∑∞

k=1
1
kp

converge pour p > 1 et diverge autrement. Puisque la série
∑∞

k=0
1

k+2

diverge et la série −
∑∞

k=0
2

(k+2)2
converge, la somme diverge. Par conséquence, 5 /∈ D.

Pour x = −1 on obtient la série alternée
∞∑
k=0

k

(k + 2)2 3k
(−3)k =

∞∑
k=0

(−1)kk

(k + 2)2
.

Pour étudier la convergence de cette série on utilise le critère de Leibniz : la limite

limk→∞
(−1)kk
(k+2)2

= 0 et pour démontrer que la suite des valeurs absolues est décroissante, on

considère la fonction f(x) = x
(x+2)2

, x ≥ 0. La dérivée f ′(x) = (x+2)2−2(x+2)x
(x+2)4

= 2−x
(x+2)3

< 0

pour tout x > 2. Alors la suite bk = k
(k+2)2

est décroissante pour k ≥ 3, et la série alternée

converge par le critère de Leibniz. Donc −1 ∈ D, et finalement on a D = [−1, 5[.

iv) Pour trouver le rayon de convergence on calcule la limite

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

(k + 1)

(k + 3)3 3k+1

(k + 2)3 3k

k
= lim

k→∞

1

3

(k + 1)(k + 2)3

k(k + 3)3
=

1

3
.

Alors le rayon de convergence est r = 3, et on a ]− 1, 5[⊂ D.

Pour x = 5 on obtient la série numérique

∞∑
k=0

k

(k + 2)3 3k
3k =

∞∑
k=0

k

(k + 2)3
.

Puisque pour tout k ≥ 0, k
(k+2)3

< k+2
(k+2)3

= 1
(k+2)2

, et la série
∑∞

k=0
1

(k+2)2
converge, par le

critère de comparaison la série
∑∞

k=0
k

(k+2)3
converge aussi. Pour x = −1, la série alternée∑∞

k=0
(−1)k k
(k+2)3

converge absolument, et donc −1 ∈ D et 5 ∈ D. Finalement, D = [−1, 5].

Exercice 2.

Posons f(x) :=
1

5 + x3
et g(x) := e−2x. Alors, f, g : [0, 1] −→ R sont continues et g(x) ≥ 0 sur

[0, 1]. De plus, les fonctions f(x) et g(x) sont strictement décroissantes et positives sur [0, 1] :
si 0 < x1 < x2 < 1, on a 0 < f(x2) < f(x1) et 0 < g(x2) < g(x1), et alors le produit f(x)g(x)
est aussi une fonction positive est strictement décroissante : 0 < f(x2)g(x2) < f(x1)g(x1).
Alors M = f(0)g(0) est le maximum et m = f(1)g(1) le minimum de la fonction f(x)g(x) sur
l’intervale [0, 1]. Par le théorème de la moyenne on a

f(1)g(1) · (1− 0) ≤
∫ 1

0

e−2x

5 + x3
dx ≤ f(0)g(0) · (1− 0) =

1

5
.
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Puisque e < 3, on a f(1)g(1) = e−2

6
> 1

54
. De plus, la fonction est plus petit que 1

5
et donc

l’inégalité à droite est stricte, d’où le résultat.

Exercice 3.

Les primitives F sont définies à une constante C ∈ R près. La plupart des exemples suivent
des formules élémentaires pour les dérivées.

i) F (x) = − cos(x) + C

ii) F (x) = sin(x) + C

iii) F (x) = − ln(| cos(x)|) + C

iv) F (x) = ex + C

v) F (x) =

∫
ex − e−x

2
dx =

ex + e−x

2
+ C = cosh(x) + C

vi) F (x) =

∫
ex + e−x

2
dx =

ex − e−x

2
+ C = sinh(x) + C

vii) F (x) = x (ln(x)− 1) + C

viii) F (x) = ln(|x|) + C

ix ) F (x) =

∫
(ax+b)s dx =

1

a

∫
a(ax+b)s dx =

1

a(s+ 1)
(ax+ b)s+1+C car (ax+b)′ = a

et donc F (x) =
1

a

∫
f(ϕ(x))ϕ′(x) dx =

1

a

∫
f(t) dt avec f(t) = ts et t = ϕ(x) = ax+b .

x ) F (x) =

∫
1

1 + x
dx−

∫
−1

1− x
dx = ln(|1 + x|)− ln(|1− x|) + C = ln

(∣∣∣∣1 + x

1− x

∣∣∣∣)+ C

xi) F (x) =

∫
1

(1 + x)(1− x)
dx =

1

2

∫
1− x+ 1 + x

(1 + x)(1− x)
dx =

1

2

∫ (
1

1 + x
+

1

1− x

)
dx

=
1

2
ln

(∣∣∣∣1 + x

1− x

∣∣∣∣)+ C

xii) F (x) = −
∫
−2x

1− x2
dx = − ln

(
|1− x2|

)
+C car (1− x2)′ = −2x (même idée qu’au ix)

xiii) F (x) =

∫
1

tan(x)
dx =

∫
cos(x)

sin(x)
dx = ln(| sin(x)|) + C car

(
sin(x)

)′
= cos(x) (même

idée qu’au ix)

xiv) F (x) =
1

2

∫
2x exp(x2) dx =

1

2
exp(x2) + C (même idée qu’au ix)

xv) F (x) =

∫
(axp + b)s xp−1 dx =

1

ap

∫
ap xp−1(axp + b)s dx =

1

ap(s+ 1)
(axp + b)s+1 + C

car (axp + b)′ = ap xp−1 (même idée qu’au ix)

Exercice 4.

La formule pour le changement de variable x = ϕ(u) est

∫
f(x) dx =

∫
f(ϕ(u))ϕ′(u) du .

i) Pour x = ϕ(u) = sin(u) on a f(ϕ(u)) =
1√

1− sin2(u)
=

1√
cos2(u)

=
1

cos(u)
et

ϕ′(u) = cos(u). Ainsi∫
1√

1− x2
dx =

∫
cos(u)

cos(u)
du =

∫
du = u+ C = arcsin(x) + C ,

3



où on a utilisé que u = ϕ−1(x) = arcsin(x).

ii) Pour x = ϕ(u) = tan(u) on a f(ϕ(u)) =
1

1 + tan2(u)
=

cos2(u)

cos2(u) + sin2(u)
= cos2(u) et

ϕ′(u) =
1

cos2(u)
. Ainsi

∫
1

1 + x2
dx =

∫
cos2(u)

cos2(u)
du =

∫
du = u+ C = arctan(x) + C ,

où on a utilisé que u = ϕ−1(x) = arctan(x) .

iii) Pour x = ϕ(t) = ln(t) on a f(ϕ(t)) =
1

eln(t) + 1
=

1

1 + t
et ϕ′(t) =

1

t
. Ainsi∫

1

ex + 1
dx =

∫
1

t(1 + t)
dt =

∫
1

t
− 1

t+ 1
dt = ln(t)− ln(t+ 1) + C

= ln

(
1− 1

t+ 1

)
+ C = ln

(
1− 1

ex + 1

)
+ C = − ln

(
1 + e−x

)
+ C.

où on a utilisé que t = ϕ−1(x) = ex .

iv) Pour x = ϕ(t) = t2 + 1 on a f(ϕ(t)) = (t2 + 1)
√
t2 + 1− 1 = t(t2 + 1) et ϕ′(t) = 2t.

Ainsi ∫
x
√
x− 1 dx =

∫
2t2(t2 + 1) dt =

∫
2t4 + 2t2 dt =

2t5

5
+

2t3

3
+ C

=
2(x− 1)

5
2

5
+

2(x− 1)
3
2

3
+ C

où on a utilisé que t = ϕ−1(x) =
√
x− 1 .

Exercice 5.

Pour calculer l’intégrale i), on propose de la ramener à des intégrales standards. Pour calculer
les intégrales ii)− iii) et v)− viii), on propose de procéder par changement de variable. Notez
qu’il n’y a pas de méthode absolue et que vous pouvez procéder de manière différente si vous
le souhaitez.

i) On sépare la somme en deux termes∫
3x+ 4

1 + x2
dx =

∫ (
3x

1 + x2
+

4

1 + x2

)
dx =

3

2

∫
2x

1 + x2
dx+ 4

∫
1

1 + x2
dx

=
3

2
ln
(
1 + x2

)
+ 4arctan(x) + c .

ii) Comme
(
cos(x)

)′
= − sin(x), on a

sin(x)

cos3(x)
= f

(
ϕ(x)

)
·
(
− ϕ′(x)

)
,

avec t = ϕ(x) = cos(x) et f(t) =
1

t3
. Ainsi∫

sin(x)

cos3(x)
dx = −

∫
1

t3
dt =

1

2t2
+ C =

1

2 cos2(x)
+ C .
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Autre méthode : Comme (tg(x))′ =
1

cos2(x)
, on peut prendre t = tan(x) =

sin(x)

cos(x)
et on a

∫
sin(x)

cos3(x)
dx =

∫
t dt =

1

2
t2 + C =

1

2
tan2(x) + C .

Notez que
1

2
tan2(x) =

1− cos2(x)

2 cos2(x)
=

1

2 cos2(x)
− 1, donc la différence entre les deux

primitives est une constante.

iii) Comme ∫
1√

4− 3x2
dx =

1

2

∫
dx√

1− 3
4
x2

,

on pose x = ϕ(u) =
2√
3
u si bien que ϕ′(u) =

2√
3

et on obtient

1

2

∫
dx√

1− 3
4
x2

=

√
3

3

∫
du√

1− u2
=

√
3

3
arcsin(u) + C =

√
3

3
arcsin

(√
3

2
x

)
+ C .

iv) En utilisant la définition du sinus hyperbolique, on a∫
sinh(x)

ex + 1
dx =

1

2

∫
ex − e−x

ex + 1
dx =

1

2

∫
1− e−2x

1 + e−x
dx =

1

2

∫
(1− e−x)(1 + e−x)

1 + e−x
dx

=
1

2

∫
(1− e−x) dx =

1

2
x+

1

2
e−x + C .

v) Posons ex = t et donc x = ln(t) et dx =
1

t
dt. On a∫

e2x√
ex + 1

dx =

∫
t√
t+ 1

dt

Posons u =
√
t+ 1 et donc t = u2 − 1 et dt = 2udu. On a∫
t√
t+ 1

dt =

∫
2u(u2 − 1)

u
du =

∫
2u2 − 2 du =

2u3

3
− 2u+ C

=
2(t+ 1)

3
2

3
− 2
√
t+ 1 + C =

2(ex + 1)
3
2

3
− 2
√
ex + 1 + C

vi) Posons t = ln(2x) et donc x =
et

2
et dx =

et

2
dt. Ainsi∫

ln(2x)

x ln(4x)
dx =

∫
t

et

2
(ln(2) + t)

et

2
dt =

∫
t

ln(2) + t
dt

Puis on obtient ∫
t

ln(2) + t
dt =

∫ (
1− ln(2)

ln(2) + t

)
dt

= t− ln(2) ln |ln(2) + t|+ C

= ln(2x)− ln(2) ln |ln(2x) + ln(2)|+ C

= ln(x)− ln(2) ln |ln(x) + ln(4)|+ C .

5



vii) Posons t =
√
ex − 1. On a donc x = ln(t2 + 1) et dx =

2t

t2 + 1
dt. Ainsi,∫

1√
ex − 1

dx =

∫
2t

t(t2 + 1)
dt = 2

∫
dt

1 + t2
= 2arctan(t) + C = 2arctan(

√
ex − 1) + C

viii) Posons x = sin(t) et donc t = arcsin(x) et dx = cos(t)dt. Et ainsi∫
x2√

1− x2
dx =

∫
sin2(t)√

1− sin2(t)
cos(t) dt =

∫
sin2(t) dt =

∫
1− cos(2t)

2
dt =

t

2
− sin(2t)

4
+ C

=
t

2
− sin(t) cos(t)

2
=

arcsin(x)

2
− x cos(arcsin(x))

2
+ C

=
arcsin(x)− x

√
1− x2

2
+ C

On utilise ici l’idéntité cos(arcsin(x)) =
√

1− sin2(arcsin(x)) =
√

1− x2.

Exercice 6.

i) En utilisant que sin2(x) + cos2(x) = 1, on observe que

sin5(x) =
(
1− cos2(x)

)2
sin(x) = −f

(
ϕ(x)

)
ϕ′(x)

avec t = ϕ(x) = cos(x) et f(t) = (1− t2)2.
Comme les bornes de x sont α = 0 et β = π

2
, les bornes de t sont a = ϕ(α) = 1 et

b = ϕ(β) = 0. Ainsi∫ π/2

0

(
1− cos2(x)

)2
sin(x) dx = −

∫ 0

1

(1− t2)2 dt =

∫ 1

0

(1− 2t2 + t4) dt

=

[
t− 2

3
t3 +

1

5
t5
]1
0

=
8

15
.

ii) On pose x = ϕ(u) = u2 − 1, ϕ′(u) = 2u. Comme x varie entre a = 2 = ϕ(
√

3) et
b = 3 = ϕ(2), les bornes de u sont α =

√
3 et β = 2. Ainsi∫ 3

2

√
x+ 1

x
dx = 2

∫ 2

√
3

u2

u2 − 1
du = 2

∫ 2

√
3

(
1 +

1

u2 − 1

)
du

= 2

∫ 2

√
3

du+

∫ 2

√
3

u+ 1− (u− 1)

(u+ 1)(u− 1)
du

= 2

∫ 2

√
3

du+

∫ 2

√
3

1

u− 1
du−

∫ 2

√
3

1

u+ 1
du

=

[
2u+ ln

(∣∣∣∣u− 1

u+ 1

∣∣∣∣)]2√
3

= 4− 2
√

3 + ln

( √
3 + 1

3(
√

3− 1)

)
.

iii) Le changement de variable à poser est x = ϕ(u) = u2, ϕ′(u) = 2u. Comme x varie entre
a = π2

16
= ϕ

(
π
4

)
et b = π2

9
= ϕ

(
π
3

)
, les bornes de u sont α = π

4
et β = π

3
.∫ π2/9

π2/16

cos(
√
x) dx = 2

∫ π/3

π/4

u cos(u) du
(∗)
= 2

[
u sin(u)

]π/3
π/4
− 2

∫ π/3

π/4

sin(u) du

= 2
[
u sin(u) + cos(u)

]π/3
π/4

= 1−
√

2− π
√

2

4
+
π
√

3

3
,

où on a intégré (∗) par parties avec f ′(u) = cos(u) , g(u) = u.

6



Exercice 7.

Soit u = x33, alors du = 33x32dx. Si x ∈ [0, π1/33], alors u ∈ [0, π]. On obtient l’intégrale∫ π1/33

0

sin(sin(x33)) cos(x33)x32 dx =
1

33

∫ π

0

sin(sin(u)) cos(u) du

=
1

33

[
− cos(sin(u))

]π
0

car
(

sin(u)
)′

= cos(u)

=
1

33

(
− cos(sin(π)) + cos(sin(0))

)
=

1

33
(− cos(0) + cos(0)) = 0 .

Exercice 8.

(Q1) VRAI.

Démonstration par contraposée : Supposons que pour tout c ∈]a, b[, on a f ′(c) > 0. Alors
f est strictement croissante sur [a, b] par propriété (DZ §6.2.16).

(Q2) FAUX.

Prendre la fonction f définie sur [a, b] telle que f(x) = x3. On a bien f ′(x) = 0 mais f
est strictement croissante sur R.

(Q3) VRAI.

Puisque f change de monotonie sur ]a, b[, alors il existe deux intervalles [a1, b1] et [a2, b2]
inclus dans ]a, b[ tels que f ′ est négative sur [a1, b1] et positive sur [a2, b2]. Posons c1 ∈
[a1, b1] et c2 ∈ [a2, b2] et supposons pour fixer les idées c1 ≤ c2. Ensuite, f étant de
classe C∞ sur ]a, b[, sa dérivée f ′ est continue sur ]a, b[. Nous pouvons donc appliquer
le théorème des valeurs intermédiaires à f ′ sur l’intervalle [c1, c2] qui nous indique qu’il
existe c ∈ [c1, c2] tel que f ′(c) = 0.

(Q4) VRAI.

f étant de classe C∞ sur [a, b], la fonction f ′′ est donc continue en c ∈ [a, b].

Par définition de la continuité, il existe α > 0 tel que pour tout y tel que |y − c| ≤ α, on
aie f ′′(y) > 0.

De plus, la formule de Taylor appliqué à la fonction f nous donne

f(x) = f(c) + f ′(c)(x− c) + f ′′(c+ θx(x− c))
(x− c)2

2
où θx ∈]0, 1[

= f(c) + f ′′(c+ θx(x− c))
(x− c)2

2

Ainsi, en choisissant x tel que |x− c| < α, on obtient f(x)− f(c) ≥ 0 et f admet bien un
minimum local au point de coordonnées c, f(c).

(Q5) FAUX.

Prendre la fonction f définie sur [a, b] telle que f(x) = −x4. f admet un maximum global
et donc local en x = 0 mais on a f ′(0) = f ′′(0) = 0.

(Q6) FAUX.

On peut reprendre la même fonction de la question précédente. On a bien f ′(0) = f ′′(0) =
0 mais f est concave car pour tout x ∈ [a, b], f ′′(x) = −12x2 ≤ 0. Ainsi, (0, 0) n’est pas
un point d’inflexion à la courbe représentative de f .
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(Q7) FAUX.

Prendre la fonction f définie sur [a, b] telle que f(x) = x3 + x. On a f ′′(x) = 6x qui
change de signe en 0. Donc (0, 0) est bien un point d’inflexion à la courbe représentative
de f mais f ′(0) = 1.

(Q8) VRAI.

C’est la propriété DZ §6.5.4.

(Q9) VRAI.

(Voir Proposition DZ §6.5.5.) Démonstration par absurde. Supposons qu’il existe c ∈]a, b[
tel que f ′′(c) > 0 (on pourrait très bien choisir f ′′(c) < 0).

Puisque la fonction f est de classe C∞ sur ]a, b[, alors la fonction f ′′ est continue. Donc
par définition, il existe α > 0 tel que pour tout y tel que |y − c| ≤ α, on ait f ′′(y) > 0.

Nous pouvons écrire le développement de Taylor de la fonction f :

f(x) = f(c) + f ′(c)(x− c) + f ′′(c+ θx(x− c))
(x− c)2

2
où θx ∈]0, 1[

Ainsi, en posant la fonction ψ, définie par ψ(x) = f(x)−f(c)−f ′(c)(x−c) comme fonction
permettant de déterminer la position de la courbe représentative de f par rapport à sa

tangente au point (c, f(c)), on obtient ψ(x) = f ′′(c+ θx(x− c))
(x− c)2

2
.

Pour tout x tel que |x − c| ≤ α, on obtient que ψ(x) garde un signe constant, ce qui
prouve que la fonction ne change pas de convexité.

(Q10) VRAI.

C’est la propriété DZ §6.6.3.

(Q11) FAUX.

Prendre la fonction f définie sur [a, b] telle que f(x) = x4. Alors f ′′(x) = 12x2 ≥ 0 pour
tout x ∈ R, et donc la fonction est convexe pour tout x ∈ R, mais f ′′(0) = 0. (Voir DZ
§6.6.4).
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