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Sections IN, SC 12 décembre 2024

Analyse I — Corrigé de la Série 13

Exercice 1.

i) Pour trouver le rayon de convergence on calcule la limite
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Alors r =4 et on a | —4,4[C D.
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Pour z = 4 on obtient
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Le terme général de cette série ne converge pas vers zéro :
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et donc la série diverge. Le méme calcul montre que pour x = —4, le terme général de la
, . , 00 k 2k—1 2k k , , . .

série alte.rnee Y reo (m) 2 (—1) ne Converge pas vers z¢ro et donc la série diverge.

Le domaine de convergence de la série entiere est D =| — 4,4].

it) Pour trouver le rayon de convergence on calcule la limite

k
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Alors le rayon de convergence est 7 =3, et on a | — 1,5[C D.

Pour x = 5 on obtient la série numérique
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dont le terme général ne converge pas vers zéro : limy_, kL—i-Z =12 0. Le méme argument
montre que pour x = —1, le terme général de la série alternée
(o] (o]
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ne converge pas vers zéro. Finalement, D =] — 1, 5].



iii) Pour trouver le rayon de convergence on calcule la limite
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Alors le rayon de convergence est » = 3, et on a | — 1,5[C D.

Pour z = 5 on obtient la série numérique
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Rappel que "7, kip converge pour p > 1 et diverge autrement. Puisque la série Y ;- k+r2

diverge et la série — - ﬁ converge, la somme diverge. Par conséquence, 5 ¢ D.

Pour z = —1 on obtient la série alternée
s k = (—1)*k
— (=3 = —_—
Y

Pour étudier la convergence de cette série on utilise le critere de Leibniz : la limite
(=1)*k
(k+2)2

considere la fonction f(x) =

= 0 et pour démontrer que la suite des valeurs absolues est décroissante, on

fe s 24+2)2—2(z+2)x
ﬁv r > 0. La dérivée f/(ZE) = ! +22£+Z§4+2) - (:Jc+2)3 <0

pour tout x > 2. Alors la suite b, = (HLW est décroissante pour k > 3, et la série alternée

converge par le critere de Leibniz. Donc —1 € D, et finalement on a D = [—1, 5][.

iv) Pour trouver le rayon de convergence on calcule la limite
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Alors le rayon de convergence est » =3, et on a | — 1,5[C D.

Pour x = 5 on obtient la série numérique

(e} o0
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Puisque pour tout £ > 0, (k+2)3 < (kk+22)3 = (ij)Q, et la série Y-, ﬁ converge, par le
critére de comparaison la série Y - G f2)3 converge aussi. Pour z = —1, la série alternée
Y o kié)f converge absolument, et donc —1 € D et 5 € D. Finalement, D = [—1, 5].
Exercice 2.
1
Posons f(z) := P et g(z) := e 2. Alors, f,g:[0,1] — R sont continues et g(z) > 0 sur
x

[0, 1]. De plus, les fonctions f(x) et g(x) sont strictement décroissantes et positives sur [0, 1] :
si0 <z <za<l,onal< f(x) < f(z1) et 0 < g(x2) < g(z1), et alors le produit f(x)g(z)
est aussi une fonction positive est strictement décroissante : 0 < f(xg)g(z2) < f(x1)g(z1).
Alors M = f(0)g(0) est le maximum et m = f(1)g(1) le minimum de la fonction f(z)g(x) sur
I'intervale [0, 1]. Par le théoreme de la moyenne on a

—2z

fM)g(1)-(1-0) < /0 51 —dz < f(0)g(0) - (1-0) = £
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Puisque e < 3, on a f(1)g(1) = e 5 1 De plus, la fonction est plus petit que % et donc
g 6 54 5

I'inégalité a droite est stricte, d’ou le résultat.
Exercice 3.

Les primitives I’ sont définies a une constante C' € R pres. La plupart des exemples suivent
des formules élémentaires pour les dérivées.

it) F(z) =sin(x) +C
i) F(z) = —In(|cos(z)]) + C
) Fx)=¢"+C
v) F(z) = /#dmz ¢ _;e—z + C = cosh(z) + C
vi) F(x) :/e:v+2€—w dr = < _26 - + C =sinh(z) + C
vit) F(z) =z (In(z) = 1)+ C
vitg) F(z) =In(|z]) + C
ir) F(z)= /(a:v+b)5 dx = o a(ax+b)°dr = (st 1)(ax+b)s+1+0 car (ax+b) =a
et donc F(z) = é/f(gp(x))g&’(x) iz — %/f(t) dt avee f(t) =t ot t = o(x) = az-+b.
?) F(x)z/lixdx—/1__1xdx:1n(|1+x|)_1n<|1_x|)+c=1n< ii)+c
1 1 l—z+1+2z 1 1 1
=) F(x):/(1+x)(1—:v)dx:5/(1+x)(1—x)d$:§/(1+:1:+ 1—:[)6“

1 1+2x
— 1 C
2 n(‘l—x>+

-2
zii) F(z) = —/ T odr = —In(|1 = 2*[)+C car (1 —2?)' = —22 (méme idée qu’au ix)

1 — 22

ziii) F(x) = / tanl(:c) de = / (s:?j((g dr = In(|sin(z)|) + C  car (sin(x))/ = cos(z) (meéme
idée qu’au ix)

1 1
ziv) F(x) = 5 / 22 exp(2?) dr = 5 exp(z?) +C  (méme idée qu'au iz)
1 1
F(z) = P+ b) 2P de = — [ apa?ax? +b) dr = ——— (az? + b)*T + C
w) Fw)= [ (s +b) o [t by e = ()
car (az? +b) = apa?~' (méme idée qu'au ix)
Exercice 4.

La formule pour le changement de variable x = ¢(u) est [ f(z)dx = /f(go(u)) ¢'(u) du .
1 1 1

et

1) Pour =z = ¢p(u) = sin(u) on a u)) = = =
) o(u) = sin(u) fo) = s = Tt = oot

¢'(u) = cos(u). Ainsi

/\/%dx:/EZZEZ;du:/du:u+C’:arcsin(x)+C,
—x
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ot on a utilisé que u = p~!(x) = arcsin(z).
1 cos®(u)

ii) Pour = = ¢(u) =tan(u) ona f(p(u)) = T+ tan®(a) = cos2 () T sin? () = cos?(u) et
1

¢'(u) = m

2
/ 1 dx:/cos (u>du:/du:u—l—C':arctan(x)—i-C,

14 22 cos?(u)

. Ainsi

ot on a utilisé que u = ¢~ !(z) = arctan(z).

1 1 |
iii) Pour z = p(t) =1In(t) ona f(p(t)) = 011 151 et ¢'(t) = I Ainsi

1 1 11
dr= | —dt= | >— ——dt=In(t)~In(t+1) + C
/e””+1 v /t(1+t) /t t+1 n(t) = In(t+1)+

1 1 .
zln(l—H_—l)+C—ln<1—em+1>+0——ln(1+e )+C.

olt on a utilisé que t = ! (x) = €*.

i) Pour z = (t) =t>+1 ona f(p(t)=EF+DVE2+1-1=t{t>+1) et Q(t) =2t

Ainsi
22 4 o2 2t° 2t
eV —1lde= [ 2t°(t"+ 1)dt = | 2t" + 2t dt:?—l—?ﬂLC
20z —1) 2 —1)3
= C
5 3 *

ot on a utilisé que t = ¢~ (z) = /x — 1.

Exercice 5.

Pour calculer I'intégrale 7), on propose de la ramener a des intégrales standards. Pour calculer
les intégrales ii) — iii) et v) — viii), on propose de procéder par changement de variable. Notez
qu’il n’y a pas de méthode absolue et que vous pouvez procéder de maniere différente si vous
le souhaitez.

i) On sépare la somme en deux termes

3z 44 3z 4 3 [ 2 1
do — do = 2 dz + 4 d
/1+x2 v /(1+m2+1—|—x2> v 2/1—|—w2 T /1—|—x2 .

3
=3 In(1 + 2*) + 4arctan(z) + c.

ii) Comme (COS(:L‘))/ = —sin(z), on a

avec t = p(x) = cos(x) et f(t) = 1 . Ainsi

sin(z) 1
d — dt = =—— .
/COS3 (x) e / 2t2 +c 2 cos?(x) +C




1 sin(x)

Autre méthode : Comme (tg(x)) = o (1) on peut prendre ¢t = tan(x) = cos(2) et on a
sin(x) 1, 1,
dr= [ tdt=-t"4+C = =t C.
/cos3(x) ‘ / SH g (z) +
1 1 — cos? 1
Notez que —tan?(x) = cos”(z) = — 1, donc la différence entre les deux
2 2 cos?(x) 2 cos?(x)

primitives est une constante.

iii) Comme
/ 1 1 / dx
——dr =< | —,
V4 — 32?2 2 1 — 32
Y 4
2

2
on pose © = p(u) = —u si bien que ¢'(u) = — et on obtient

V3 V3
1 dx V3 / du V3 V3 V3
— | Y= = —arcsin(u) + C = —arcsin| —zx | + C'.
2/ /1 — 3y 3 V1 —u? 3 () 3 2
iv) En utilisant la définition du sinus hyperbolique, on a
/ sinh(x) dp — 1/ et — et e 1/ 1—e 2 . 1/ (1—e®)(14e) "
et 41 2 et 41 2 1+e® 2 1+4+e®

1 1 1
25/(1—6_w)d:1::§x+§e_$+0.

1
v) Posons e” =t et donc x = In(t) et de = ;dt. On a

e t
——dr = | ——dt
Ver +1 Vi+1
Posons u = v/t + 1 et donc t = u?> — 1 et dt = 2udu. On a

t 2 2_1 2u3
/ dt:/w_uu:/guudu:i_mc
Vi+1

IS

wlw O

Njw

20t +1 2e” 41
%—zx/wucz%—weuuc

t t
vi) Posons t = In(2x) et donc x = % et de = %dt. Ainsi

In(2x) B t e t
/ xIn(4x) do = / < (In(2) +¢) 2 dt = / In(2) +¢ dt

t B In(2)
/ln(2)+tdt_/(1_ln(2)+t) dat
=t —In(2)In|In(2) + ¢+ C

= In(2z) — In(2) In |In(22) + In(2)| + C
= In(x) — In(2) In|In(z) + In(4)| + C .

Puis on obtient
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2t
vii) Posons t = +v/e* — 1. On a donc x = In(t? + 1) et do = 1

1 2t dt
/ Jer—1 dr = / E+1) dt =2 / T = 2arctan(t) +C = 2arctan(ve® — 1) + C

vidi) Posons x = sin(t) et donc t = arcsin(z) et dz = cos(t)dt. Et ainsi

z? sin (t) o 1 — cos(2t) t  sin(2t)
_ b sin(?) cos(t) _ arcsin(z)  x cos(arcsin(z)) Lo
2 2 2 2

: Y
_ arcsin(z) 2x\/ L

On utilise ici I'idéntité cos(arcsin(x)) = /1 — sin?(arcsin(x)) = v/1 — 2.

Exercice 6.

i) En utilisant que sin?(z ) + cos?(z) = 1, on observe que
sin’(z) = (1 — cos® ) sin(z) = —f(¢(2)) ¢ (2)

avec t = p(x) = cos(z) et f( ) = (1 —t?)%
Comme les bornes de x sont a = 0 et 3 = 7, les bornes de t sont a = ¢(a) = 1 et

b= ¢(B)=0. Ainsi

/Ovr/2 (1- COS2(x))2 sin(x) do = — /10(1 — 3?2 dt = /01(1 — 2t +th) dt

1
1155} — é

P
- 3 5 15

0

i) On pose z = p(u) = u? — 1, ¢'(u) = 2u. Comme z varie entre a = 2 = ©(\/3) et
b =3 = (2), les bornes de u sont a = v/3 et § = 2. Ainsi

3 2 2 2
NS 1
P =2 [ O du-2/ (1+ g )du
9 x 1 u —1

V3 U = V3
_ /d —l—/ u—l—l—u—l)du
D(u—1)
2
1
—2/ du+/ u—/ du
u—1 vau+1

{2u+1n( U+H>rﬁ_4—2x/§+m<%>.

ii1) Le changement de Varlable a poser est r = p(u) = u?, ¢'(u) = 2u. Comme x varie entre

az?—ézgp(%)etb— —gp()lesbornesdeusontazg et f=7%
72 /9 w/3 (%) /3 w/3
/ cos(v/x) dx = 2/ ucos(u) du = 2 [u sin(u)} — 2/ sin(u) du
w2 /16 w/4 /4 /4
/3 2 3
= 2[usin(u) + cos(u)L/4 =1-v2— WT + % ,

ol on a intégré () par parties avec f'(u) = cos(u), g(u) = u.
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Exercice 7.

Soit u = 2%, alors du = 33232dx. Si x € [0,7'/33], alors u € [0, 7]. On obtient I'intégrale

x1/33

/0 sin(sin(2*)) cos(a®) 2°2 do = 3—13 Owsin(sin(U))COS(U) du
_ 3_13 [ N cos(sm(u))K car (sin(u)) = cos(u)
3_13 ( — cos(sin(m)) + cos(sm(o)))
= - (~ cos(0) + cos(0)) = 0

Exercice 8.

(Q1) VRAL
Démonstration par contraposée : Supposons que pour tout ¢ €]a, b[, on a f'(c) > 0. Alors
f est strictement croissante sur [a, b] par propriété (DZ §6.2.16).

(Q2) FAUX.
Prendre la fonction f définie sur [a, b] telle que f(x) = z®. On a bien f’(z) = 0 mais f
est strictement croissante sur R.

(Q3) VRAL
Puisque f change de monotonie sur ]a, b], alors il existe deux intervalles [a;, b1] et [ag, bo]
inclus dans |a, b] tels que f’ est négative sur [aq, by] et positive sur [ag, by]. Posons ¢; €
la1, bi] et co € [ag, by et supposons pour fixer les idées ¢; < c¢y. Ensuite, f étant de
classe C™ sur |a, b[, sa dérivée f’ est continue sur |a, b[. Nous pouvons donc appliquer
le théoreme des valeurs intermédiaires a f’ sur U'intervalle [c1, ¢o] qui nous indique qu'’il
existe ¢ € [¢1, ¢z] tel que f'(¢) = 0.

(Q4) VRAL
f étant de classe C* sur [a, b], la fonction f” est donc continue en ¢ € [a, b].
Par définition de la continuité, il existe a > 0 tel que pour tout y tel que |y — ¢| < a, on
aie f"(y) > 0.
De plus, la formule de Taylor appliqué a la fonction f nous donne

F&) = F0) + PO =) + e+ ule - ) T L

= flc) + ["(c+ bu(x — )

ou 4, €]0, 1]

(z—¢)
2

Ainsi, en choisissant z tel que |x — ¢| < «, on obtient f(z) — f(c) > 0 et f admet bien un
minimum local au point de coordonnées ¢, f(c).

(Q5) FAUX.
Prendre la fonction f définie sur [a, b] telle que f(z) = —2*. f admet un maximum global
et donc local en x = 0 mais onaf( )= f"(0) =0.

(Q6) FAUX.

On peut reprendre la méme fonction de la question précédente. On a bien f'(0) = f”(0) =
0 mais f est concave car pour tout z € [a, b], f”(x) = —122% < 0. Ainsi, (0, 0) n’est pas
un point d’inflexion a la courbe représentative de f.
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(Q7)

(Q10)

(Q11)

FAUX.

Prendre la fonction f définie sur [a, 0] telle que f(x) = 2® + z. On a f"(z) = 6x qui
change de signe en 0. Donc (0, 0) est bien un point d’inflexion a la courbe représentative
de f mais f’(0) = 1.

VRAL

C’est la propriété DZ §6.5.4.

VRAL

(Voir Proposition DZ §6.5.5.) Démonstration par absurde. Supposons qu’il existe ¢ €]a, b]
tel que f”(c) > 0 (on pourrait tres bien choisir f”(c) < 0).

Puisque la fonction f est de classe C*° sur |a, b], alors la fonction f” est continue. Donc
par définition, il existe a > 0 tel que pour tout y tel que |y — ¢| < «, on ait f”(y) > 0.
Nous pouvons écrire le développement de Taylor de la fonction f :

— 6)2

fx)=fc)+ fl(c)(x —c) + f(c+ 0.(z — ¢)) (x ou 6, €]0, 1]

Ainsi, en posant la fonction v, définie par ¥(x) = f(x)— f(c)— f'(¢)(x—c) comme fonction
permettant de déterminer la position de la courbe représentative de f par rapport a sa

(z -0
2

Pour tout x tel que |x — ¢| < a, on obtient que ¥ (z) garde un signe constant, ce qui
prouve que la fonction ne change pas de convexité.

VRAL

C’est la propriété DZ §6.6.3.

FAUX.

Prendre la fonction f définie sur [a, b] telle que f(z) = z*. Alors f”(x) = 122* > 0 pour

tout = € R, et donc la fonction est convexe pour tout x € R, mais f”(0) = 0. (Voir DZ
§6.6.4).

tangente au point (¢, f(c)), on obtient ¥ (z) = f"(c 4 0.(x — ¢))




