EPFL Anna Lachowska
Sections IN, SC 5 décembre 2024

Analyse I — Corrigé de la Série 12

Exercice 1.

Nous allons démontrer que les fonctions suivantes sont indéfiniment dérivables sur leur domaine
de définition en explicitant leur dérivée n-ieme.

i) Pour tout = € R, et pour tout n € N, on a

sin(x) sin=0 [4]
) =1 G wnoald
[4]

—cos(z) sin=3[4

La série de Mac-Laurin de la fonction sin est donc la suivante :
P2+

sin(a) = (1 S
= (2n +1)!

p2n+1

De plus, en posant pour tout n € N a,(x) = (—1)”m, on a d’apres le critere de
n !

d’Alembert que

apy1() _ |z (2n + 1)! _ x? 0
an(x) (2n + 3)! |z|?nH! 2(2n+3)(n+ 1) n—oo

Et ce, pour tout z € R.
Ainsi, R = 4o00.

it) Pour tout x € R, et pour tout n € N, on a

cos(z) sin =0 [4]
ol =1 T2 dnasd
sin(x) sin=3[4]

La série de Mac-Laurin de la fonction cos est donc la suivante :

2n
G
cos(x) = Z(—l) 2n)]
n>0
xQn
De plus, en posant pour tout n € N a,(z) = (—1)”<2 ik on a d’apres le critere de
n)!
d’Alembert que
2n+2 | 2
Ga@)|_ B @) a
an () 2n+2)! |z 2(2n+1)(n+ 1) n—oo

Et ce, pour tout x € R.
Ainsi, R = 4o00.



iii) Pour tout x € R, et pour tout n € N, on a
()" =

n

x
ey
n!

n>0

La série de Mac-Laurin de la fonction exponentielle est donc la suivante :

xn
De plus, en posant pour tout n € N a,(z) = —,ona d’apres le critere de d’Alembert
n!

que
n+1 |
(@) o™t el
an () (n+ D!zl (n+1) nooo
Et ce, pour tout x € R.
Ainsi, R = +00.
iv) Pour tout = € R, et pour tout n € N, on a

n - in=0 |2
()™ = ¢ sin 2]
—e™® sin=1[2]

La série de Mac-Laurin de la fonction x — e~ * est donc la suivante :

=YD

n>0
n
on a d’apres le critere de d’Alembert

= (—1)715,

F

De plus, en posant pour tout n € N a,,(x)
= —

B |:L,|n+1 7’L'
N (n+ 1)! x|

an+1(x>

que
an(z)

Et ce, pour tout x € R.

Ainsi, R = 4o00.
Pour tout x € R, et pour tout n € N, on a
sh(z)

N B sin=0 2]
() = {ch(x) sin=1][2]

La série de Mac-Laurin de sh(x) est donc la suivante :
2n+1
x
sh(z) = YRR
= (2n +1)!
ce qui confirme que la fonction sinus hyperbolique est la partie impaire de ’exponen-
2n+1
x
—— on a d’apres le critere de
2n +1)! P

tielle. De plus, en posant pour tout n € N a,(z) =
d’Alembert que
Apy1 () _ |z 3 (2n + 1)! _ x? 0
a, () (2n + 3)! |x|>+! 22n 4+ 3)(n+ 1) n—oo

Et ce, pour tout x € R.
Ainsi, R = 4o00.



vi) Pour tout x € R, et pour tout n € N, on a

w, \_ Jch(z) sin=
() = {sh(x) sin=1[

I
o
S

La série de Mac-Laurin de ch(x) est donc la suivante :
x
ch(x) = —
n>0
ce qui confirme que la fonction cosinus hyperbolique est la partie paire de I'exponentielle.
2n

x
De plus, en posant pour tout n € N a,(z) = m, on a d’apres le critere de d’Alembert
n)!

C|aP 2n) 22 o
S @2n+2)! |z 2@2n 4+ 1)(n+ 1) nooo

que
an+1 (Qj)

an ()
Et ce, pour tout x € R.
Ainsi, R = +00.

vii) Pour tout z €] — 1, +o0f, et pour tout n € N*, on a

(n—1! . —0

" sin=0]2
e P

m Sln:l[Q]

La série de Mac-Laurin de la fonction z — In(1 + x) est donc la suivante :

In(1 +z) = Z(—nnﬂx—n

n
n>1

De plus, pour le rayon de convergence on a

R = lim

n—0o0

‘(_1)n+1 n 4+ 1 _

n (=12

Ainsi, R = 1.

viig) Pour tout o €] — oo, 1], et pour tout n € N*  on a

(n—1)!

In"(1 —z) = M=o

La série de Mac-Laurin de la fonction z — In(1 — z) est donc la suivante :

ln(l—@z—Z%ﬂ

n>1
De plus, pour le rayon de convergence on a
) n+1
R = lim ‘ =1.
n—oo n

Ainsi, R = 1.



iz) Pour tout z € R, et pour tout n € N*, on a
n—1
(1+2)™)™ (2) = (H(m - z‘)) (1)
i=0
La série de Mac-Laurin de la fonction z — (1 + x)™ est donc la suivante :

(1+x)m:1+Zm(m—1)...(m—(n—1))xn

n!
n>1

-1)... —(n—-1
Posons, pour tout n € N a,(z) =1+ ., m(m — 1) ('m (n ))x”
= n!
Si m ¢ N, alors pour le rayon de convergence on a
—-1)... — 1 ! 1
R lim |Mm =D (m=n+]) (n+1) — lim |2
n—o0 n! m(m—1)...(m—n)| noc|m-—n

Ona R=1sim¢ N et R= 400 sinon car la série devient une somme finie.

Exercice 2.

Notez que dans les exemples ci-dessous on peut échanger la dérivation et la somme infinie
pour tout x dans l'intérieur du domaine de convergence de la série entiere. Pour la série de

Mac-Laurin f(z) = Z a,x" on a donc

n=0

wod oo d (g (D" | o (5D o
i) %sm(w) = %(me > = @) " = cos(x)

D" o) o GO s e (DT
2 @) " )‘Z(zn—m“" _Z(Zn—l—l)!x = —sin(z)

n=0

. d d
i) e cos(x) = %<

; d _ OO<_1)n n+1 _OO n.n __ ]- ;. ) S
w) %ln(l—i-x) - (Z T = Z(—l) =T |z| < 1 (série géométrique)

Exercice 3.

Le développement limité d’ordre 3 autour du point a d'une fonction f de classe C* est donné
par la formule

f@) = fa) + L0 )+ D o Z 0y (o),
ou Rs(z) = f(jl(u) (x — a)! pour un certain u entre a et z.
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i) On calcule les dérivées de f :

f'(x) =3cos(3z), f"(z)=—9sin(3z), f"(x)=—27cos(3x), fW(z)=81sin(3z)
f(0) =0, 1'(0) = 3, f"(0) =0, 1"(0) = —27.
Donc le développement limité de f d’ordre 3 autour de 0 est
_ , 27 . 27 9 ,
f(z) =sin(3z) =0+32+4+0-2° — ETRd + R3(x) = 3z — FTRd + R3(z) = 3z — 2% + Rs3(z),
1si 27 si
avec Rz(z) = 5 SIZ(SU> t = 7812(3u) x! pour un certain u entre 0 et x.
it) On calcule
/ _ 1 " . 1 " 2 (4) 6
1 1 1
f0)=In(2), f(O) =5  fO)=-7 0=
2 4 4
Ainsi, le développement limité de f d’ordre 3 autour de 0 est
1 1 1
flz) =In(2+2) =1n(2) + 5%~ gxz + ﬂxg + Rs(x)
6 I ,
avec Rs(x) = ETCEE rt = P TCEenT x* pour un certain u entre 0 et x.
! u u

it1) Comme sin(x) cos(z) = 1/2sin(2z), on a
f(x) =1/2-2cos(22) = cos(2z), ["(z) =—2sin(2x), [f"(x)= —4cos(2z),

f®(z) = 8sin(2x).

Alors on a
FO)y=1, f0)=0, f'(0)=-4, f90)=0.
2
sin(x) cos(z) = x — gx?’ + Rs(x)
f(4)<u) 4 1. 4 .
avec Rs(x) = T §SIH<2U) x* pour un certain u entre 0 et x.
Exercice 4.
)
2 4 ,
1 —m(1-Z 4%
n(cos(z)) n( 5 togt e(x)x )
72 4 A 1 72 4 A 2
= (—?—l-ﬂ—i—&(x)x ) —5 <—E+ﬂ+£(x)x >
22 ot A
—? - ﬁ + 8($) X



i)

exp(sin(z)) = exp (:v - %3 +e(a) :174)

24 6
3 2 4 3 4
=1 S T 4
+x 6+2 6+6+24+6(x)x
2 4
:1—|—x+%—%—|—5(x)m4

iii)

1 3 1 s 21 ’ ’
—1+§<$—E+€<$>$4)—§($_%+€(x)x4> +1_6(x_%+€($)$4)
5 3 44
1 (o o)
1+x x3 $2+l‘4+$3 5$4+5()4
= ——— = — - — )T
2 12 8 24 16 128
2 3 4
:1+§_93__$_+$_+€(x>x4

iv) Tout d’abord, effectuons une décomposition en éléments simples de la fonction f. On sait
que f peut s’écrire de la forme suivante :

3 A B

J@) = a0 son 1=z 1+

ot (A, ByeR?. Doncona A+ B=3et 24— B=0,dot A=1et B=2. Ainsi, on a

1 n 2
l—-2 142z

flx) =

Il ne nous reste plus qu’a additionner les deux développements limités des fractions ra-
tionnelles obtenues :

fl@)=(1+z+2>+2° + 2" + () 2*) + 2 (1 — 22 + 42% — 82° + 162" + =(z) z*)
=3 — 3z + 92% — 152° + 332" + &(z) 2*

v) Ici, il suffit juste de remplacer = par z* dans le développement limité usuel de la fonction

exponentielle.
no ok

I2 T n
e’ = Z o T e(z)a?

k>0



i)

In(1+4z —22%) = (z — 22%) — % (z— 2:62)2 - % (z — 2952)3 - % (z— 2x2)4 + e(z) o

2 3 4

:x—2x2—x—+2x3—2x4+%—2x4—%+5(1’)x4
5) 723 172%
:x—§x2+%— f + e(z) o

vii) Comme dans 1'Exercice 3. ii), il nous faut transformer f pour la faire ressembler a une
forme usuelle :

T T 1
@)= =1
et 914 (3)°
Et donc,
T kx% 2n+1
f(z) = 52(—1) na +e(z)x
k=0
- kIQkH 2n+1
= (—1) S +e(x)x
k=0

Exercice 5.

1 o
On utilise que le développement de f(z) = 1 en série entiere est f(z) = Z 2F pour tout
k=0
ze|—1,1].
i) On peut récrire
2 2 1
f(z) = =3 i
3+4dx 3 1+3x
Ainsi, en posant z := —%x, on obtient que son développement en série entiere est
2 «— ([ 4\" , 33
f(x):§-n2:%(—§> T pourxe}—z,é—l{.
i1) De fagon similaire, on peut récrire
2 2 2 1
fa)= 7 = -
3+4r  1l+4x—2) 11 14+ 5(x—-2)
de telle sorte qu’en posant z := —%(x — 2), on obtient que son développement en série
entiere est -
=23 (1) @2y
xr) = — - N €T —
11 4 11 ’
avec intervalle de convergence | —2, 2] (obtenue & partir de z = —-(z — 2) €] — 1, 1[).

s, i . /s o0 n
Remarque générale : On peut aussi calculer le rayon de convergence de la série Y >  a,(z —a)
en utilisant la formule

r=1/ lim 1/|a,| ou r = lim
n—oo

n—oo

An

(1)

Ap+1



si ces limites existent.

Exercice 6.

n— o0

SifelC>®)etsi Ry(z) — 0 dans le developpement limité de f en a € I, la série de Taylor

(k)
de f en a est donnée par f(z) = Z / k' (:L' —a)* pour z € 1.

i) Ona fM(z)=2"-e¥* et f(M(0) =2"-e. Ainsi le développement limité d’ordre n de f

autour de a = 0 est

n 2k€ 2n+1 . 6Qu-‘rl
flx) = 2"+ R,(z) avec Ry(z) = NCESUE 2" pour un certain u entre 0 et x.
n !

En outre, étant donné que pour x fixé

0< |Ry(o)] < 2 e 1}y o
-0 - (n+1)!

) 2]
a0

il suit que nhjEO R,(xz) =0 pour tout z € R.

Comme en plus f € C*(R), la série de Taylor de f autour de a = 0 est donnée par

[e.9]

2"
f(z) = >t = E il 2" pour tout z € R
n=0

et son rayon de convergence est r = oo.

it) Méthode 1 : Considérer f(z) comme somme d’une série géométrique. On obtient

1 1 1 = (=1)"
/(@) r+1 34+(x—-2) 3 1—|—%x—2 %3"
qui converge vers la fonction f(x) = x+r1 si et seulement si —1 < —3(z —2) <1 &

-1l <z <h.
M¢éthode 2 : On utilise directement la formule de Taylor. On calcule que

f (x) o (x + 1>n+1 et f (2) o gn+l
D’ou le développement limité d’ordre n de f(z) autour de 2 :
f(x) Z (z — 2)* +R,(2)
= @)
—1 n+1 -9
ou R,(x)= (=1 ’ pour un certain u entre 2 et x.
u+1 \u+1



On calcule le rayon de convergence par la formule générale (1) (en fait, on ne peut pas
facilement démontrer la convergence du reste R, vers 0 dans ce cas) :

-1 -1 ~1
— (1im ¢ — ( 1im ¢/;3-0+0) = (1 f<1+%>> -
= (i i) " = (e eot) = (s g

Donc f,, converge sur |—1,5[, et il faut encore examiner la convergence aux bornes. Comme

f n’est pas définie en x = —1, f,, ne peut converger en ce point (notez pourtant que f,(—1)
n o 1\k

existe). Pour z = 5, on a f,(5) = Z ( 3 qui n’admet pas de limite lorsque n — oo.
k=0

Ainsi oo n
n=0

converge pour —1 < x < 5.

Exercice 7.

Il faut choisir 'ordre des développements limités tel que I'on puisse éliminer le dénominateur.
Comme on s’intéresse seulement a des limites, il suffit que ’on obtienne finalement un reste en

e(z) (garder plus de termes conduirait seulement a plus de calculs).
i) Comme
sin(z) =z — v + = +e(z)z®  pour tout # € R
6 120 ’

.. @ (@) = I 1 +€(a:) z° 1
im— (2 — — —sin =lim [ —— = ——
a0 \F T g e 50 \ 120 25 120

puisque e(z) — 0 quand x — 0.

on a

i) Comme
72 7
r—In(l+x) :x—$+?+€(w)x2 = ?—l—e(x)xz,
et
7 72
e® +sin(z) — cos(x) — 2x = Ltet o te—1+= — 22 + e(n)2? = 2° + &()2?
on a .
z—0 T — lIl(]_ + J]) z—0 5 + 5(:13)1- z—0 3 + =

iii) Pour le développement limité d’ordre 6 du numérateur, il faut obtenir le développement
limité d’ordre 5 de sin(sin(z)) et celui d’ordre 6 de sin?(x).

w3 2P
Comme sin(x) =z — 3 + = + e(z)2®, il s’ensuit que
3 .5 1 3 .5 3 .5
sin(sin(z)) = (a:—%%—%—l—a(x)ﬁ))—a(Jc—%+%+5(£)x5)3+m(:c—%—l—%—i—s(x)xf’f—l—g(x)a:“r’
. : , . sin(x)
ou le dernier terme découle de lim =1
z—0 T



Pour les puissances de sin(z) on a :

zt x°
sin®(z) = (x2 -3 T 8(I>ZE5) (x3 -5t 6(x)x5> = 2° + e(x)2°,
et donc
. 3 ad 1/, 2° x° 5
SIH(SIH(QZ)) =X — E m - 6 <LE — ?) + 1—20 + E(IE)SU
3 5
=z — %—l—f—o—l—s(a&)x‘r’
Finalement
_wsin(sin(z)) —sin(z)®> 1 (, a2t a2, ozt 22° 6
gir(l) p: —glﬂll}r(l)ﬁ T +§—B+5(Jc)x
)

iv) Nous avons que

1
(o e(a)a)’ =
3 43 3
Z—I-i—g—i-g—?%—e(x)x?’:
3 3
= —x+§+5(x)x :
Et donc,
. r+In(e"—2x) . 1 1
fy —— 3 =l 3 tele) =3
Exercice 8.
11—z

1+
I’Exercice 1., on obtient

i) Observons que ln< ) = In(1 — z) — In(1 + 2). Ainsi, en utilisant les résultats de




ii) Meéthode 1 : Utiliser I'égalité tan(z) =

i)

sin(x)

et les développements limités d’ordre 5 de

cos(z)
. 3 2zt
sin(r) =z — TR e(x)z® et cos(w)=1— DIV e(z)z”.
ainsi que celui d’ordre 2 de
! =1—z+ 2+ ¢e(z)2?
1+ '
Comme cos(z) — 1 = —% + % +e(z)2z°, on obtient
1 2 2t 2?2 2t 2 Y

= 1— E— _— 5 R - 5 4 — 1 _ - 4
cos(a) < 5 —|—24+5(:1:)a:)+< 5 +24—|—8(x)x) +e(z)x t5 5 +e(z)x
et ainsi

3 5 2 gl 3 9.5
tan(x) = (az— %%—1%—20 +5(x)x5)-(1+ %—F%jte(x)ﬁ) :x+% +1—x5+5(x)x5,
c’est-a-dire 5 g
tan(z) =z + % + 1—375 + e(w)a®.

Meéthode 2 : Utiliser la définition de la série Taylor et donc calculer les dérivées de f(z) =
tan(z) qui sont :

g = 1 ") — 2sin(x) ") — 2 + 4sin?(z)
fla) = cos?(x)’ f'(z) cos3(x)’ () cost(x) '
@ (z) = SSin(a:)Cﬁ;(—xjinQ(a:)) | 16 (z) = 8 (2 +11 si::l;(:'()x—)i— 2 sjn4(x)) |

fO)y=0,  fO=1  fro)y=0, f0)=2  fU0)=0,  fO0)=16.

1 2 16 3 9P
tan(x) = Th 5953 + 53:5 +e(r)r® =2+ % + % + e(z)x°.
On calcule
1 —2x 8x? 2
! _ 1" _ " _ .
f(l') - 1+.’L’2’ f (ZL') (1+£L’2)2’ f (:E) (1+I’2)3 (1+$2)27
3 4 2
f(4) (z) = —48z 241 f(S)(:r) _ 384z B 288 24

T+22p (112 (1t a2p
f0)=0,  fO)=1,  f0)=0, f0)==2,  fPo)=0,  fO0) =24

Ainsi A 5 5
1 2 4 24 4 5 x x 5
arctan(x) = TR + e +e(x)r’ = — 5 + 5 +e(x)z”.
Remarque. Autrement on peut calculer la série de MacLaurin de arctan(z) en intégrant

celle de la fonction g(x) = puisque on a (arctan(z))’ = .

1
1+z2>

11



—1 —1 —2
iv) On utilise que pour |z|] <lona (14+x)* =14 az+ a(a2 ) z?+ ala g(a ) 3+
3 2a°
e(x)z® avec a = 1 et tan(z) =z + Tt e(x)z®. Soit t = tan(x). Alors
1/2 1 Lo 13 3
14+t =14+-t—=t —t t)t
(1+1)) +ot =gttt T,
=e(z)x3
t
ol g(t(x)) t3 = e(z)2? car lim an(z) _ 1. Comme

z—0 €T

3 9.5 2
tan®(z) = (x TR E(ZL‘)I5> = 2% 4 ¢(v)2?

3 15
et
3 2 3 x| 227 5 3 3
tan’(z) = (2° + e(2)2”) | = + Tttt e(r)x® | = 2° +e(x)x

on a finalement

1 3 1 1 2 1148
\/1+tan(x):1+§<x+%) —§x2+1—6x3+5($)x3:1+§—%+ 4§ + e(x)a?

Exercice 9.

i) 1) D(f) =R\ {-1,1}, Im(f) =R

2) Impaire
3) flx)=0 & =0
4) Continue et dérivable sur D(f)

2z (2% + 3)
(22 —1)°

Fla)=-FL D =D e )=

, D(f")=D
T (") = D)

5) e f'(z) < 0 pour tout x € D(f’), donc pas de point stationnaire
e ["(x) =0 < x=0. On calcule alors " :

moon _6(354 +62% +1)
f ({L‘) - (33'2 . 1)4

<0 pour tout z € D(f).

Comme f”(0) = —6 # 0, f a un point d’inflexion en x = 0.

6) e Monotonie :

1! <0 <0 <0
f décroissante décroissante décroissante

Notez bien que f est strictement décroissante sur chacun des intervalles listés dans le
tableau mais pas sur D(f).

12
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Ficure 1 - Ex. 8(i)

FIGURE 2 — Ex 8(ii)

FIGURE 3 — Ex 8(iii)

e Convexité/concavité :

1 <0 >0 <0 >0
f concave convexe concave convexe

7) e Asymptotes verticales : f n’est pas définie en x = £1 et on a limlf(m) = lirq f(z) =
T—>— T
00, donc des asymptotes verticales en x = +£1 .

e Asymptote horizontale : lirin f(z) = 0, donc une asymptote horizontale en y = 0.
T—r00

— 0o
o ~— ~—

Le graphique de f est tracé a la Fig. 1.

D(f)=R*, Im(f)=R

ni paire, ni impaire

flz)=0 & 2*-2r—-1=0 & x=1++2

i)

[\

13



4) continue et dérivable sur D(f), donc D(f') = D(f") = D(f)

1 2—2r—1 1 P42 —r—1
f@):(1+—)el+——7;——~;5ei: " e s

x

1 2 3 3 Zorx—-1 1 322 +2r —1
f”(m>=( ) T e e T s

[ 3 2 A

5) e flz)=0 & P+2i-x-1=@-1)(z+1)*=0 & x==+1

Donc f a des points stationnaires en z; = —1 et x5 = 1. Comme f’(z) ne change
pas de signe en x1, le point £y = —1 n’est pas un extremum local. Par contre, on a
f"(x2) =2 >0 et donc x est un minimum local.

ff#)=0 & 3242r—-1=Bz—-1)(z+1)=0 & z=3 ou z=-—1
Ainsi 1 = —1 et z3 = % sont candidats pour un point d’inflexion. Puisque f” change
de signe en x; et en w3, ce sont des points d’inflection. D’autre maniere, ou pourrait

vérifier que f"(z1) # 0 et f"(z3) # 0, ou

" 9 8 5\ 1 3x*+2x—1 1 _1 923 -522+Te—1 _1
f(‘”):<_ﬁ_ﬁ+ﬁ) A A 7
Monotonie :

x | — o0, —1] | —1,0[ 10, 1] 11, 00|
1! >0 > 0 <0 > 0
f croissante croissante décroissante croissante

Convexité/concavité :

T ]_007_1[ ]_1’0[ ]07%[ ]%700[
1 <0 >0 <0 >0
f concave convexe concave convexe
Asymptote verticale : f n’est pas définie en x = 0 et lim f(x) = oo, donc une
z—0~
asymptote verticale en z = 0.
Asymptote horizontale : lirf f(z) = o0, donc aucune
T—>L00
x
Asymptote oblique : @ = lim & =1 et
r—too X
2
: . x*—2r—1 1\ _1
: x? =2z —1 1 : 1
= lim (——— —xez |- lim e =
r—+o0 x r—r+o00

. _1 N . /.
Or, lim e = =1 et la premiere limite s’écrit
z—+o00

r—+oo €x r—to0 1 r—+oo

T

. 1 1—ex 1
1m1<a1—aq—2——)_ lim — " —2— lLim -

=0

1 1
BH . — 2t
= lim T
r—r+o0 —=
X

—2=-1-2=-3
Ainsi b = —3 et f a une asymptote oblique d’équation y = ax +b =z — 3.

14



8)
iii) 1)
2)
3)
4)

8)

Le graphlque de f est tracé a la Fig. 2.

D(f) =R, Im(f)=R.
ni palre ni 1mpa1re
f(z) = & +2=0 & z=-2

Par opérations usuelles, f est continue et dérivable sur D(f) et D(f) = D(f") = D(f").

e —e®(r+2) z+1

f'(x) =

@F e
” et —e(x+1) =z
Tr) = — = —
(@) e
o fllz) =0 12=-1
Donc f a un point stationnaire en & = —1. Puisque f”(x;) = —e < 0, alors f admet
un maximum local en z = —1.
e f"(x) =02 =0.
Etudions f” en z =0 :
() = e’ — xe® _ 1—=

(ev)” s
Ainsi, f”(0) =1 # 0. Nous avons donc bien un point d’inflexion en z = 0.

e Monotonie :

]_007_1[ ]_17+OO[
f >0 >0
f croissante décroissante

e Convexité/concavité :

] - o0, O[ ]07 _'_OO[
1" <0 >0
f concave convexe

e Asymptote horizontale : lirf flx) =
T—>+00

Ainsi, la droite d’équation y = 0 est une asymptote a la courbe représentative de f en
+00.

Le graphique de f est tracé a la Fig. 3.

Exercice 10.

Q1 :

Q2 :

FAUX.
f(=@)

Prendre par exemple f(z) = x + sin(z) et g(z) = x. Dans ce cas on a lim W =
T—r00

lim (1 + Sm(x)) =1 mais £ =1+ cos(z) n’admet pas de limite & infini (et donc

T—00 g’ (z)
la derniéere hypothese de Bernoulli-I’'Hospital n’est pas satisfaite).

FAUX.
Prendre les fonctions de la question précédente.
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Q3 : FAUX.
En posant par exemple f(x) = sin(x) + 2 et g(x) = 2z + 2, on obtient que

_flx)
2w
Alors que
f@) 1
z—0 g/(l') N 2
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