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Analyse I – Corrigé de la Série 12

Exercice 1.

Nous allons démontrer que les fonctions suivantes sont indéfiniment dérivables sur leur domaine
de définition en explicitant leur dérivée n-ième.

i) Pour tout x ∈ R, et pour tout n ∈ N, on a

sin(n)(x) =


sin(x) si n ≡ 0 [4]

cos(x) si n ≡ 1 [4]

− sin(x) si n ≡ 2 [4]

− cos(x) si n ≡ 3 [4]

La série de Mac-Laurin de la fonction sin est donc la suivante :

sin(x) =
∑
n≥0

(−1)n
x2n+1

(2n+ 1)!

De plus, en posant pour tout n ∈ N an(x) = (−1)n
x2n+1

(2n+ 1)!
, on a d’après le critère de

d’Alembert que∣∣∣∣an+1(x)

an(x)

∣∣∣∣ =
|x|2n+3

(2n+ 3)!

(2n+ 1)!

|x|2n+1
=

x2

2(2n+ 3)(n+ 1)
−→
n→∞

0

Et ce, pour tout x ∈ R.

Ainsi, R = +∞.

ii) Pour tout x ∈ R, et pour tout n ∈ N, on a

cos(n)(x) =


cos(x) si n ≡ 0 [4]

− sin(x) si n ≡ 1 [4]

− cos(x) si n ≡ 2 [4]

sin(x) si n ≡ 3 [4]

La série de Mac-Laurin de la fonction cos est donc la suivante :

cos(x) =
∑
n≥0

(−1)n
x2n

(2n)!

De plus, en posant pour tout n ∈ N an(x) = (−1)n
x2n

(2n)!
, on a d’après le critère de

d’Alembert que ∣∣∣∣an+1(x)

an(x)

∣∣∣∣ =
|x|2n+2

(2n+ 2)!

(2n)!

|x|2n
=

x2

2(2n+ 1)(n+ 1)
−→
n→∞

0

Et ce, pour tout x ∈ R.

Ainsi, R = +∞.
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iii) Pour tout x ∈ R, et pour tout n ∈ N, on a

(ex)(n) = ex

La série de Mac-Laurin de la fonction exponentielle est donc la suivante :

ex =
∑
n≥0

xn

n!

De plus, en posant pour tout n ∈ N an(x) =
xn

n!
, on a d’après le critère de d’Alembert

que ∣∣∣∣an+1(x)

an(x)

∣∣∣∣ =
|x|n+1

(n+ 1)!

n!

|x|n
=

|x|
(n+ 1)

−→
n→∞

0

Et ce, pour tout x ∈ R.

Ainsi, R = +∞.

iv) Pour tout x ∈ R, et pour tout n ∈ N, on a

(
e−x
)(n)

=

{
e−x si n ≡ 0 [2]

−e−x si n ≡ 1 [2]

La série de Mac-Laurin de la fonction x 7→ e−x est donc la suivante :

e−x =
∑
n≥0

(−1)n
xn

n!

De plus, en posant pour tout n ∈ N an(x) = (−1)n
xn

n!
, on a d’après le critère de d’Alembert

que ∣∣∣∣an+1(x)

an(x)

∣∣∣∣ =
|x|n+1

(n+ 1)!

n!

|x|n
=

|x|
(n+ 1)

−→
n→∞

0

Et ce, pour tout x ∈ R.

Ainsi, R = +∞.

v) Pour tout x ∈ R, et pour tout n ∈ N, on a

sh(n)(x) =

{
sh(x) si n ≡ 0 [2]

ch(x) si n ≡ 1 [2]

La série de Mac-Laurin de sh(x) est donc la suivante :

sh(x) =
∑
n≥0

x2n+1

(2n+ 1)!
,

ce qui confirme que la fonction sinus hyperbolique est la partie impaire de l’exponen-

tielle. De plus, en posant pour tout n ∈ N an(x) =
x2n+1

(2n+ 1)!
, on a d’après le critère de

d’Alembert que∣∣∣∣an+1(x)

an(x)

∣∣∣∣ =
|x|2n+3

(2n+ 3)!

(2n+ 1)!

|x|2n+1
=

x2

2(2n+ 3)(n+ 1)
−→
n→∞

0

Et ce, pour tout x ∈ R.

Ainsi, R = +∞.
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vi) Pour tout x ∈ R, et pour tout n ∈ N, on a

ch(n)(x) =

{
ch(x) si n ≡ 0 [2]

sh(x) si n ≡ 1 [2]

La série de Mac-Laurin de ch(x) est donc la suivante :

ch(x) =
∑
n≥0

x2n

(2n)!
,

ce qui confirme que la fonction cosinus hyperbolique est la partie paire de l’exponentielle.

De plus, en posant pour tout n ∈ N an(x) =
x2n

(2n)!
, on a d’après le critère de d’Alembert

que ∣∣∣∣an+1(x)

an(x)

∣∣∣∣ =
|x|2n+2

(2n+ 2)!

(2n)!

|x|2n
=

x2

2(2n+ 1)(n+ 1)
−→
n→∞

0

Et ce, pour tout x ∈ R.

Ainsi, R = +∞.

vii) Pour tout x ∈]− 1, +∞[, et pour tout n ∈ N∗, on a

ln(n)(1 + x) =


− (n− 1)!

(1 + x)n
si n ≡ 0 [2]

(n− 1)!

(1 + x)n
si n ≡ 1 [2]

La série de Mac-Laurin de la fonction x 7→ ln(1 + x) est donc la suivante :

ln(1 + x) =
∑
n≥1

(−1)n+1x
n

n

De plus, pour le rayon de convergence on a

R = lim
n→∞

∣∣∣∣(−1)n+1

n

n+ 1

(−1)n+2

∣∣∣∣ = 1.

Ainsi, R = 1.

viii) Pour tout x ∈]−∞, 1[, et pour tout n ∈ N∗, on a

ln(n)(1− x) = − (n− 1)!

(1− x)n

La série de Mac-Laurin de la fonction x 7→ ln(1− x) est donc la suivante :

ln(1− x) = −
∑
n≥1

xn

n

De plus, pour le rayon de convergence on a

R = lim
n→∞

∣∣∣∣n+ 1

n

∣∣∣∣ = 1.

Ainsi, R = 1.
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ix ) Pour tout x ∈ R, et pour tout n ∈ N∗, on a

((1 + x)m)
(n)

(x) =

(
n−1∏
i=0

(m− i)

)
(1 + x)m−n

La série de Mac-Laurin de la fonction x 7→ (1 + x)m est donc la suivante :

(1 + x)m = 1 +
∑
n≥1

m(m− 1) . . . (m− (n− 1))

n!
xn

Posons, pour tout n ∈ N an(x) = 1 +
∑

n≥1
m(m− 1) . . . (m− (n− 1))

n!
xn.

Si m /∈ N, alors pour le rayon de convergence on a

R = lim
n→∞

∣∣∣∣m(m− 1) . . . (m− n+ 1)

n!

(n+ 1)!

m(m− 1) . . . (m− n)

∣∣∣∣ = lim
n→∞

∣∣∣∣ n+ 1

m− n

∣∣∣∣ = 1.

On a R = 1 si m /∈ N et R = +∞ sinon car la série devient une somme finie.

Exercice 2.

Notez que dans les exemples ci-dessous on peut échanger la dérivation et la somme infinie
pour tout x dans l’intérieur du domaine de convergence de la série entière. Pour la série de

Mac-Laurin f(x) =
∞∑
n=0

anx
n on a donc

f ′(x) =
d

dx

(
∞∑
n=0

anx
n

)
=
∞∑
n=0

an
d

dx
(xn) , x ∈]−R,R[.

i)
d

dx
ex =

d

dx

(
∞∑
n=0

1

n!
xn

)
=
∞∑
n=1

1

(n− 1)!
xn−1 =

∞∑
n=0

1

n!
xn = ex

ii)
d

dx
sin(x) =

d

dx

(
∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1

)
=
∞∑
n=0

(−1)n

(2n)!
x2n = cos(x)

iii)
d

dx
cos(x) =

d

dx

(
∞∑
n=0

(−1)n

(2n)!
x2n

)
=
∞∑
n=1

(−1)n

(2n− 1)!
x2n−1 =

∞∑
n=0

(−1)n+1

(2n+ 1)!
x2n+1 = − sin(x)

iv)
d

dx
ln(1+x) =

d

dx

(
∞∑
n=0

(−1)n

n+ 1
xn+1

)
=
∞∑
n=0

(−1)nxn =
1

1 + x
, |x| < 1 (série géométrique)

Exercice 3.

Le développement limité d’ordre 3 autour du point a d’une fonction f de classe C4 est donné
par la formule

f(x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 +R3(x) ,

où R3(x) =
f (4)(u)

4!
(x− a)4 pour un certain u entre a et x.
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i) On calcule les dérivées de f :

f ′(x) = 3 cos(3x), f ′′(x) = −9 sin(3x), f ′′′(x) = −27 cos(3x), f (4)(x) = 81 sin(3x)

f(0) = 0, f ′(0) = 3, f ′′(0) = 0, f ′′′(0) = −27.

Donc le développement limité de f d’ordre 3 autour de 0 est

f(x) = sin(3x) = 0 + 3x+ 0 · x2− 27

3!
x3 +R3(x) = 3x− 27

3!
x3 +R3(x) = 3x− 9

2
x3 +R3(x) ,

avec R3(x) =
81 sin(3u)

4!
x4 =

27 sin(3u)

8
x4 pour un certain u entre 0 et x.

ii) On calcule

f ′(x) =
1

2 + x
, f ′′(x) = − 1

(2 + x)2
, f ′′′(x) =

2

(2 + x)3
, f (4)(x) = − 6

(2 + x)4

f(0) = ln(2), f ′(0) =
1

2
, f ′′(0) = −1

4
, f ′′′(0) =

1

4
.

Ainsi, le développement limité de f d’ordre 3 autour de 0 est

f(x) = ln(2 + x) = ln(2) +
1

2
x− 1

8
x2 +

1

24
x3 +R3(x)

avec R3(x) = − 6

4!(2 + u)4
x4 = − 1

4(2 + u)4
x4 pour un certain u entre 0 et x.

iii) Comme sin(x) cos(x) = 1/2 sin(2x), on a

f ′(x) = 1/2 · 2 cos(2x) = cos(2x), f ′′(x) = −2 sin(2x), f ′′′(x) = −4 cos(2x),

f (4)(x) = 8 sin(2x).

Alors on a
f ′(0) = 1, f ′′(0) = 0, f ′′(0) = −4, f (4)(0) = 0.

sin(x) cos(x) = x− 2

3
x3 +R3(x)

avec R3(x) =
f (4)(u)

4!
x4 =

1

3
sin(2u)x4 pour un certain u entre 0 et x.

Exercice 4.

i)

ln(cos(x)) = ln

(
1− x2

2
+
x4

24
+ ε(x)x4

)
=

(
−x

2

2
+
x4

24
+ ε(x)x4

)
− 1

2

(
−x

2

2
+
x4

24
+ ε(x)x4

)2

= −x
2

2
− x4

12
+ ε(x)x4
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ii)

exp(sin(x)) = exp

(
x− x3

6
+ ε(x)x4

)
= 1 +

(
x− x3

6
+ ε(x)x4

)
+

1

2

(
x− x3

6
+ ε(x)x4

)2

+
1

6

(
x− x3

6
+ ε(x)x4

)3

+
1

24

(
x− x3

6
+ ε(x)x4

)4

+ ε(x)x4

= 1 + x− x3

6
+
x2

2
− x4

6
+
x3

6
+
x4

24
+ ε(x)x4

= 1 + x+
x2

2
− x4

8
+ ε(x)x4

iii)

√
1 + sin(x) =

(
1 +

(
x− x3

6
+ ε(x)x4

)) 1
2

= 1 +
1

2

(
x− x3

6
+ ε(x)x4

)
− 1

8

(
x− x3

6
+ ε(x)x4

)2

+
1

16

(
x− x3

6
+ ε(x)x4

)3

− 5

128

(
x− x3

6
+ ε(x)x4

)4

= 1 +
x

2
− x3

12
− x2

8
+
x4

24
+
x3

16
− 5x4

128
+ ε(x)x4

= 1 +
x

2
− x2

8
− x3

48
+

x4

384
+ ε(x)x4

iv) Tout d’abord, effectuons une décomposition en éléments simples de la fonction f . On sait
que f peut s’écrire de la forme suivante :

f(x) =
3

(1− x)(1 + 2x)
=

A

1− x
+

B

1 + 2x

où (A, B) ∈ R2. Donc on a A+B = 3 et 2A−B = 0, d’où A = 1 et B = 2. Ainsi, on a

f(x) =
1

1− x
+

2

1 + 2x

Il ne nous reste plus qu’à additionner les deux développements limités des fractions ra-
tionnelles obtenues :

f(x) =
(
1 + x+ x2 + x3 + x4 + ε(x)x4

)
+ 2

(
1− 2x+ 4x2 − 8x3 + 16x4 + ε(x)x4

)
= 3− 3x+ 9x2 − 15x3 + 33x4 + ε(x)x4

v) Ici, il suffit juste de remplacer x par x2 dans le développement limité usuel de la fonction
exponentielle.

ex
2

=
n∑
k≥0

x2k

k!
+ ε(x)x2n
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vi)

ln(1 + x− 2x2) =
(
x− 2x2

)
− 1

2

(
x− 2x2

)2
+

1

3

(
x− 2x2

)3 − 1

4

(
x− 2x2

)4
+ ε(x)x4

= x− 2x2 − x2

2
+ 2x3 − 2x4 +

x3

3
− 2x4 − x4

4
+ ε(x)x4

= x− 5

2
x2 +

7x3

3
− 17x4

4
+ ε(x)x4

vii) Comme dans l’Exercice 3. ii), il nous faut transformer f pour la faire ressembler à une
forme usuelle :

f(x) =
x

9 + x2
=
x

9

1

1 +
(
x
3

)2
Et donc,

f(x) =
x

9

n∑
k=0

(−1)k
x2k

9k
+ ε(x)x2n+1

=
n∑
k=0

(−1)k
x2k+1

9k+1
+ ε(x)x2n+1

Exercice 5.

On utilise que le développement de f(z) =
1

1− z
en série entière est f(z) =

∞∑
k=0

zk pour tout

z ∈ ]− 1, 1[ .

i) On peut récrire

f(x) =
2

3 + 4x
=

2

3
· 1

1 + 4
3
x
.

Ainsi, en posant z := −4
3
x, on obtient que son développement en série entière est

f(x) =
2

3
·
∞∑
n=0

(
−4

3

)n
xn pour x ∈

]
−3

4
,
3

4

[
.

ii) De façon similaire, on peut récrire

f(x) =
2

3 + 4x
=

2

11 + 4(x− 2)
=

2

11
· 1

1 + 4
11

(x− 2)

de telle sorte qu’en posant z := − 4
11

(x − 2), on obtient que son développement en série
entière est

f(x) =
2

11
·
∞∑
n=0

(
− 4

11

)n
(x− 2)n,

avec intervalle de convergence
]
−3

4
, 19

4

[
(obtenue à partir de z = − 4

11
(x− 2) ∈ ]− 1, 1[ ).

Remarque générale : On peut aussi calculer le rayon de convergence de la série
∑∞

n=0 an(x−a)n

en utilisant la formule

r = 1

/
lim
n→∞

n
√
|an| ou r = lim

n→∞

∣∣∣∣ anan+1

∣∣∣∣ . (1)
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si ces limites existent.

Exercice 6.

Si f ∈ C∞(I) et si Rn(x)
n→∞−−−→ 0 dans le développement limité de f en a ∈ I, la série de Taylor

de f en a est donnée par f(x) =
∞∑
k=0

f (k)(a)

k!
(x− a)k pour x ∈ I.

i) On a f (n)(x) = 2n · e2x+1 et f (n)(0) = 2n · e . Ainsi le développement limité d’ordre n de f
autour de a = 0 est

f(x) =
n∑
k=0

2ke

k!
xk +Rn(x) avec Rn(x) =

2n+1 · e2u+1

(n+ 1)!
xn+1 pour un certain u entre 0 et x.

En outre, étant donné que pour x fixé

0 ≤ |Rn(x)| ≤ 2n+1 · e ·max{e2x, 1}
(n+ 1)!

|x|n+1

et

lim
n→∞

(2|x|)n+1

(n+ 1)!
= 0,

il suit que lim
n→∞

Rn(x) = 0 pour tout x ∈ R.

Comme en plus f ∈ C∞(R), la série de Taylor de f autour de a = 0 est donnée par

f(x) = e2x+1 = e ·
∞∑
n=0

2n

n!
xn pour tout x ∈ R

et son rayon de convergence est r =∞.

ii) Méthode 1 : Considérer f(x) comme somme d’une série géométrique. On obtient

f(x) =
1

x+ 1
=

1

3 + (x− 2)
=

1

3
· 1

1 + 1
3
(x− 2)

=
∞∑
n=0

(−1)n

3n+1
(x− 2)n

qui converge vers la fonction f(x) = 1
x+1

si et seulement si −1 < −1
3
(x − 2) < 1 ⇔

−1 < x < 5.

Méthode 2 : On utilise directement la formule de Taylor. On calcule que

f (n)(x) =
(−1)n · n!

(x+ 1)n+1
et f (n)(2) =

(−1)n · n!

3n+1
.

D’où le développement limité d’ordre n de f(x) autour de 2 :

f(x) =
1

x+ 1
=

n∑
k=0

(−1)k

3k+1
(x− 2)k︸ ︷︷ ︸

=fn(x)

+Rn(x)

où Rn(x) =
(−1)n+1

u+ 1

(
x− 2

u+ 1

)n+1

pour un certain u entre 2 et x.
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On calcule le rayon de convergence par la formule générale (1) (en fait, on ne peut pas
facilement démontrer la convergence du reste Rn vers 0 dans ce cas) :

r =
(

lim
n→∞

n
√
|an|
)−1

=

(
lim
n→∞

n

√
|3−(n+1)|

)−1
=
(

lim
n→∞

3−(1+
1
n
)
)−1

= 3 .

Donc fn converge sur ]−1, 5[ , et il faut encore examiner la convergence aux bornes. Comme
f n’est pas définie en x = −1, fn ne peut converger en ce point (notez pourtant que fn(−1)

existe). Pour x = 5, on a fn(5) =
n∑
k=0

(−1)k

3
qui n’admet pas de limite lorsque n → ∞.

Ainsi ∞∑
n=0

(−1)n

3n+1
(x− 2)n

converge pour −1 < x < 5.

Exercice 7.

Il faut choisir l’ordre des développements limités tel que l’on puisse éliminer le dénominateur.
Comme on s’intéresse seulement à des limites, il suffit que l’on obtienne finalement un reste en
ε(x) (garder plus de termes conduirait seulement à plus de calculs).

i) Comme

sin(x) = x− x3

6
+

x5

120
+ ε(x)x5 pour tout x ∈ R,

on a

lim
x→0

1

x5

(
x− x3

6
− sin(x)

)
= lim

x→0

(
− 1

120
+
ε(x)x5

x5

)
= − 1

120
,

puisque ε(x)→ 0 quand x→ 0.

ii) Comme

x− ln(1 + x) = x− x+
x2

2
+ ε(x)x2 =

x2

2
+ ε(x)x2,

et

ex + sin(x)− cos(x)− 2x = 1 + x+
x2

2
+ x− 1 +

x2

2
− 2x+ ε(x)x2 = x2 + ε(x)x2

on a

lim
x→0

ex + sin(x)− cos(x)− 2x

x− ln(1 + x)
= lim

x→0

x2 + ε(x)x2

x2

2
+ ε(x)x2

= lim
x→0

1 + ε(x)x2

x2

1
2

+ ε(x)x2

x2

= 2.

iii) Pour le développement limité d’ordre 6 du numérateur, il faut obtenir le développement
limité d’ordre 5 de sin(sin(x)) et celui d’ordre 6 de sin2(x).

Comme sin(x) = x− x3

3!
+
x5

5!
+ ε(x)x5, il s’ensuit que

sin(sin(x)) = (x−x
3

3!
+
x5

5!
+ε(x)x5))−1

6
(x−x

3

3!
+
x5

5!
+ε(x)x5)3+

1

120
(x−x

3

3!
+
x5

5!
+ε(x)x5)5+ε(x)x5

où le dernier terme découle de lim
x→0

sin(x)

x
= 1.
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Pour les puissances de sin(x) on a :

sin2(x) =

(
x− x3

6
+

x5

120
+ ε(x)x6

)2

= x2 − x4

3
+

2x6

45
+ ε(x)x6,

sin3(x) =

(
x− x3

6
+

x5

120
+ ε(x)x5

)3

= x3 − x5

2
+ ε(x)x5,

sin5(x) =

(
x2 − x4

3
+ ε(x)x5

)(
x3 − x5

2
+ ε(x)x5

)
= x5 + ε(x)x5,

et donc

sin(sin(x)) = x− x3

6
+

x5

120
− 1

6

(
x3 − x5

2

)
+

x5

120
+ ε(x)x5

= x− x3

3
+
x5

10
+ ε(x)x5.

Finalement

lim
x→0

x sin(sin(x))− sin(x)2

x6
= lim

x→0

1

x6

(
x2 − x4

3
+
x6

10
− x2 +

x4

3
− 2x6

45
+ ε(x)x6

)
= lim

x→0

(
1

18
+
ε(x)x6

x6

)
=

1

18
.

iv) Nous avons que

ln (ex − 2x) = ln

(
1− x+

x2

2
+
x3

6
+ ε(x)x3

)
= ln

(
1−

(
x− x2

2
− x3

6
+ ε(x)x3

))
= −

(
x− x2

2
− x3

6
+ ε(x)x3

)
− 1

2

(
x− x2

2
+ ε(x)x2

)2

−

− 1

3
(x+ ε(x)x)3 =

= −x+
x3

6
+
x3

2
− x3

3
+ ε(x)x3 =

= −x+
x3

3
+ ε(x)x3.

Et donc,

lim
x→0

x+ ln(ex − 2x)

x3
= lim

x→0

1

3
+ ε(x) =

1

3
.

Exercice 8.

i) Observons que ln

(
1− x
1 + x

)
= ln(1 − x) − ln(1 + x). Ainsi, en utilisant les résultats de

l’Exercice 1., on obtient

ln

(
1− x
1 + x

)
=

(
−x− x2

2
− x3

3
− x4

4
− x5

5

)
−
(
x− x2

2
+
x3

3
− x4

4
+
x5

5

)
+ ε(x)x5

= −2x− 2x3

3
− 2x5

5
+ ε(x)x5.
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ii) Méthode 1 : Utiliser l’égalité tan(x) =
sin(x)

cos(x)
et les développements limités d’ordre 5 de

sin(x) = x− x3

3!
+
x5

5!
+ ε(x)x5 et cos(x) = 1− x2

2!
+
x4

4!
+ ε(x)x5 .

ainsi que celui d’ordre 2 de

1

1 + x
= 1− x+ x2 + ε(x)x2 .

Comme cos(x)− 1 = −x2

2
+ x4

24
+ ε(x)x5 , on obtient

1

cos(x)
= 1−

(
−x

2

2
+
x4

24
+ ε(x)x5

)
+

(
−x

2

2
+
x4

24
+ ε(x)x5

)2

+ε(x)x4 = 1+
x2

2
+

5x4

24
+ε(x)x4

et ainsi

tan(x) =

(
x− x3

6
+

x5

120
+ ε(x)x5

)
·
(

1 +
x2

2
+

5x4

24
+ ε(x)x5

)
= x+

x3

3
+

2x5

15
+ ε(x)x5 ,

c’est-à-dire

tan(x) = x+
x3

3
+

2x5

15
+ ε(x)x5 .

Méthode 2 : Utiliser la définition de la série Taylor et donc calculer les dérivées de f(x) =
tan(x) qui sont :

f ′(x) =
1

cos2(x)
, f ′′(x) =

2 sin(x)

cos3(x)
, f ′′′(x) =

2 + 4 sin2(x)

cos4(x)
,

f (4)(x) =
8 sin(x)

(
2 + sin2(x)

)
cos5(x)

, f (5)(x) =
8
(
2 + 11 sin2(x) + 2 sin4(x)

)
cos6(x)

,

f(0) = 0, f ′(0) = 1, f ′′(0) = 0, f ′′′(0) = 2, f (4)(0) = 0, f (5)(0) = 16.

Ainsi

tan(x) =
1

1!
x+

2

3!
x3 +

16

5!
x5 + ε(x)x5 = x+

x3

3
+

2x5

15
+ ε(x)x5.

iii) On calcule

f ′(x) =
1

1 + x2
, f ′′(x) =

−2x

(1 + x2)2
, f ′′′(x) =

8x2

(1 + x2)3
− 2

(1 + x2)2
,

f (4)(x) =
−48x3

(1 + x2)4
+

24x

(1 + x2)3
, f (5)(x) =

384x4

(1 + x2)5
− 288x2

(1 + x2)4
+

24

(1 + x2)3
,

f(0) = 0, f ′(0) = 1, f ′′(0) = 0, f ′′′(0) = −2, f (4)(0) = 0, f (5)(0) = 24.

Ainsi

arctan(x) =
1

1!
x− 2

3!
x3 +

24

5!
x5 + ε(x)x5 = x− x3

3
+
x5

5
+ ε(x)x5.

Remarque. Autrement on peut calculer la série de MacLaurin de arctan(x) en intégrant
celle de la fonction g(x) = 1

1+x2
, puisque on a (arctan(x))′ = 1

1+x2
.

11



iv) On utilise que pour |x| < 1 on a (1 + x)α = 1 + αx+
α(α− 1)

2
x2 +

α(α− 1)(α− 2)

6
x3 +

ε(x)x3 avec α = 1
2

et tan(x) = x+
x3

3
+

2x5

15
+ ε(x)x5. Soit t = tan(x). Alors

(
1 + t)

)1/2
= 1 +

1

2
t− 1

8
t2 +

1

16
t3 + ε(t) t3︸ ︷︷ ︸

=ε(x)x3

,

où ε(t(x)) t3 = ε(x)x3 car lim
x→0

tan(x)

x
= 1. Comme

tan2(x) =

(
x+

x3

3
+

2x5

15
+ ε(x)x5

)2

= x2 + ε(x)x3

et

tan3(x) =
(
x2 + ε(x)x3

)(
x+

x3

3
+

2x5

15
+ ε(x)x5

)
= x3 + ε(x)x3

on a finalement√
1 + tan(x) = 1 +

1

2

(
x+

x3

3

)
− 1

8
x2 +

1

16
x3 + ε(x)x3 = 1 +

x

2
− x2

8
+

11x3

48
+ ε(x)x3

= 1 +
x

2
− x2

8
+ ε(x)x2.

Exercice 9.

i) 1) D(f) = R \ {−1, 1}, Im(f) = R
2) Impaire

3) f(x) = 0 ⇔ x = 0

4) Continue et dérivable sur D(f)

f ′(x) = − x2 + 1

(x2 − 1)2
, D(f ′) = D(f) et f ′′(x) =

2x (x2 + 3)

(x2 − 1)3
, D(f ′′) = D(f)

5) • f ′(x) < 0 pour tout x ∈ D(f ′), donc pas de point stationnaire

• f ′′(x) = 0 ⇔ x = 0. On calcule alors f ′′′ :

f ′′′(x) = −6(x4 + 6x2 + 1)

(x2 − 1)4
< 0 pour tout x ∈ D(f).

Comme f ′′′(0) = −6 6= 0, f a un point d’inflexion en x = 0.

6) • Monotonie :

x ]−∞,−1[ ]− 1, 1[ ]1,∞[
f ′ < 0 < 0 < 0
f décroissante décroissante décroissante

Notez bien que f est strictement décroissante sur chacun des intervalles listés dans le
tableau mais pas sur D(f).
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Figure 3 – Ex 8(iii)

• Convexité/concavité :

x ]−∞,−1[ ]− 1, 0[ ]0, 1[ ]1,∞[
f ′′ < 0 > 0 < 0 > 0
f concave convexe concave convexe

7) • Asymptotes verticales : f n’est pas définie en x = ±1 et on a lim
x→−1

f(x) = lim
x→1

f(x) =

∞, donc des asymptotes verticales en x = ±1 .

• Asymptote horizontale : lim
x→±∞

f(x) = 0 , donc une asymptote horizontale en y = 0 .

8) Le graphique de f est tracé à la Fig. 1.

ii) 1) D(f) = R∗, Im(f) = R
2) ni paire, ni impaire

3) f(x) = 0 ⇔ x2 − 2x− 1 = 0 ⇔ x = 1±
√

2.
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4) continue et dérivable sur D(f), donc D(f ′) = D(f ′′) = D(f)

f ′(x) =

(
1 +

1

x2

)
e−

1
x +

x2 − 2x− 1

x
· 1

x2
e−

1
x =

x3 + x2 − x− 1

x3
e−

1
x

f ′′(x) =

(
− 1

x2
+

2

x3
+

3

x4

)
e−

1
x +

x3 + x2 − x− 1

x3
· 1

x2
e−

1
x =

3x2 + 2x− 1

x5
e−

1
x

5) • f ′(x) = 0 ⇔ x3 + x2 − x− 1 = (x− 1)(x+ 1)2 = 0 ⇔ x = ±1
Donc f a des points stationnaires en x1 = −1 et x2 = 1. Comme f ′(x) ne change
pas de signe en x1, le point x1 = −1 n’est pas un extremum local. Par contre, on a
f ′′(x2) = 4

e
> 0 et donc x2 est un minimum local.

• f ′′(x) = 0 ⇔ 3x2 + 2x− 1 = (3x− 1)(x+ 1) = 0 ⇔ x = 1
3

ou x = −1
Ainsi x1 = −1 et x3 = 1

3
sont candidats pour un point d’inflexion. Puisque f ′′ change

de signe en x1 et en x3, ce sont des points d’inflection. D’autre manière, ou pourrait
vérifier que f ′′′(x1) 6= 0 et f ′′′(x3) 6= 0, où

f ′′′(x) =

(
− 9

x4
− 8

x5
+

5

x6

)
e−

1
x +

3x2 + 2x− 1

x5
· 1

x2
e−

1
x =
−9x3 − 5x2 + 7x− 1

x7
e−

1
x ,

6) • Monotonie :

x ]−∞,−1[ ]− 1, 0[ ]0, 1[ ]1,∞[
f ′ > 0 > 0 < 0 > 0
f croissante croissante décroissante croissante

• Convexité/concavité :

x ]−∞,−1[ ]− 1, 0[ ]0, 1
3
[ ]1

3
,∞[

f ′′ < 0 > 0 < 0 > 0
f concave convexe concave convexe

7) • Asymptote verticale : f n’est pas définie en x = 0 et lim
x→0−

f(x) = ∞, donc une

asymptote verticale en x = 0.

• Asymptote horizontale : lim
x→±∞

f(x) = ±∞, donc aucune

• Asymptote oblique : a = lim
x→±∞

f(x)

x
= 1 et

b = lim
x→±∞

(
f(x)− ax

)
= lim

x→±∞

(
x2 − 2x− 1

x
− xe

1
x

)
e−

1
x

= lim
x→±∞

(
x2 − 2x− 1

x
− xe

1
x

)
· lim
x→±∞

e−
1
x

Or, lim
x→±∞

e−
1
x = 1 et la première limite s’écrit

lim
x→±∞

(
x(1− e

1
x )− 2− 1

x

)
= lim

x→±∞

1− e 1
x

1
x

− 2− lim
x→±∞

1

x︸ ︷︷ ︸
=0

BH
= lim

x→±∞

− 1
x2
e

1
x

− 1
x2

− 2 = −1− 2 = −3

Ainsi b = −3 et f a une asymptote oblique d’équation y = ax+ b = x− 3.
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8) Le graphique de f est tracé à la Fig. 2.

iii) 1) D(f) = R, Im(f) = R.

2) ni paire, ni impaire.

3) f(x) = 0 ⇔ x+ 2 = 0 ⇔ x = −2.

4) Par opérations usuelles, f est continue et dérivable sur D(f) et D(f) = D(f ′) = D(f ′′).

f ′(x) =
ex − ex(x+ 2)

(ex)2
= −x+ 1

ex

f ′′(x) = −e
x − ex(x+ 1)

(ex)2
=

x

ex

5) • f ′(x) = 0⇔ x = −1

Donc f a un point stationnaire en x = −1. Puisque f ′′(x1) = −e < 0, alors f admet
un maximum local en x = −1.

• f ′′(x) = 0⇔ x = 0.

Étudions f ′′′ en x = 0 :

f ′′′(x) =
ex − xex

(ex)2
=

1− x
ex

Ainsi, f ′′′(0) = 1 6= 0. Nous avons donc bien un point d’inflexion en x = 0.

6) • Monotonie :

x ]−∞,−1[ ]− 1,+∞[
f ′ > 0 > 0
f croissante décroissante

• Convexité/concavité :

x ]−∞, 0[ ]0,+∞[
f ′′ < 0 > 0
f concave convexe

7) • Asymptote horizontale : lim
x→+∞

f(x) = 0.

Ainsi, la droite d’équation y = 0 est une asymptote à la courbe représentative de f en
+∞.

8) Le graphique de f est tracé à la Fig. 3.

Exercice 10.

Q1 : FAUX.
Prendre par exemple f(x) = x + sin(x) et g(x) = x. Dans ce cas on a lim

x→∞
f(x)
g(x)

=

lim
x→∞

(
1 + sin(x)

x

)
= 1 mais f ′(x)

g′(x)
= 1 + cos(x) n’admet pas de limite à l’infini (et donc

la dernière hypothèse de Bernoulli-l’Hospital n’est pas satisfaite).

Q2 : FAUX.
Prendre les fonctions de la question précédente.
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Q3 : FAUX.
En posant par exemple f(x) = sin(x) + 2 et g(x) = 2x+ 2, on obtient que

lim
x→0

f(x)

g(x)
= 1

Alors que

lim
x→0

f ′(x)

g′(x)
=

1

2
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