EPFL Anna Lachowska
Sections IN, SC 28 novembre 2024

Analyse I — Corrigé de la Série 11

Exercice 1.

1)

i)

)

On distingue trois cas selon la valeur de m :
— m=0: fM(x)=0pour tout n € N*.

— m>1: f(”)(x):{

— m<—1: fO2)=m(m—1)(m—2)---(m —n+1)z™ ™ pour tout n € N*

On commence par calculer les quatre premieres dérivées de f :

m(m—1)(m—2)---(m—n+1)2™™, n<m

0, n>m

f(x) = 2cos(2z) — 2sin(x) f"(x) = —4sin(2z) — 2 cos(x)
" (x) = —8cos(2x) + 2sin(z) fW(x) = 16sin(2z) + 2 cos(x)

Il faut donc distinguer deux cas selon la parité de n € N*. On propose I’hypothese :
(n) (=1)2 (2" sin(2z) + 2 cos(x)) n pair
f (x) = n—1
(=1)"
Démontrons cette formule par récurrence. L’initialisation est déja achévée. Supposons que
la formule est vraie pour tout n < k € N*. Alors pour n=k+1on a:
Si k est pair,

(2" cos(2z) — 2sin(z)), n impair

(F®Y (@) = (—1)* (2" - 2cos(22) — 2sin(z)) = (—1)" 2 (28 cos(2z) — 2sin(x)) = FE) (x).
Si k est impair,
(f(k))’(x) = (—1)% (—2" - 2sin(2x) — 2cos(x)) = (—1)% (2’“rl sin(2x) + 2cos(:c)) = f(k“)(a:).

Alors la formule est vraie pour tout n € N*.

Comme f'(z) = 27!, on peut utiliser le résultat de i) avec m = —1 pour obtenir f™. En

effet, pour tout n € N*,
(=1)"*(n—1)!

:CTL

) = (f)" V(@) = (=1)(=2)(=3) -+ (—(n — 1))a7170"D =

Exercice 2.

i) Le logarithme de f est

In(f(z)) =2In(z* + 1) + 3In(z + 2) + 5In(z — 1),

et en dérivant par rapport a x on trouve

/ 4 3 5
(hl(f@))) :xzf—1+x+2+a§—1'
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f'(x)
fx)’
f'@) = f(z)- <ln(f(x))>/ = fl@) (m;li 1 + x—?i)—2 + x E 1)
4r(z+2)(z—1)+3(@*+ 1) (x — 1) +5(z* + 1)(z + 2)
(2 4+ 1)(x+2)(x — 1)

on obtient

Comme <ln(f(x))>/ =

= f(x)

) f()
(2 + 1) (z+2)(z —1)

= (22 + 1)(z +2)*(z — D*(122° + 1122 + 7).
it) On a

(493(:v2+1:—2)+3(:v3—932+x—1)—1—5(:)33—{—2:162—!—35—1—2))

In (f(z)) = Z kIn(1 + sin®(kz))
k=1
et donc

( ) Z 2k sin(kx) cos(kx) i k% sin(2kx)

= 1 + sin®(kx) —~ 1+ sin?(kz)

Il s’en suit que

k=1

Exercice 3.
La dérivée de la fonction valeur absolue g(x) = |z| étant connue pour tout x € R* et pour tout

re Ry :
1, x>0
g’(x):{_l z <0

La fonction g n’étant pas dérivable en x = 0, ainsi

f/(l’): {14-695,90 x>0

—1+e* <0
Notez que f'(0) n’existe pas non plus.
Comme rappel, la Fig. 1 montre les graphiques des fonctions e* et |z|. Les graphiques de f et
f" sont donnés aux Fig. 2 et 3 respectivement.
Remarque : Les lignes hachurées dans les Fig. 2 et 3 sont les asymptotes a gauche de f et f’
qui sont dues au fait que la fonction exponentielle admet une asymptote a gauche en y = 0.

Exercice 4.

Rappel : La dérivée de la fonction réciproque f~! de f est donnée par (cf. cours)

1
(@) = oy
F(f(2))
Toutes les fonctions f considérées sont des fonctions élémentaires injectives et dérivables sur

les domaines donnés. Par un théoréme du cours, la fonction réciproque f~! est donc dérivable
sur 'image de tout intervalle sur lequel f’ ne s’annule pas.
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FIGURE 1 — €” et |z FIGURE 2 — f(z). FIGURE 3 - f'(z).

i) f~l(z) = arctan(z), D(f™')=R.

1y 1 * 1 1
(f71) () = ———F—— = cos*(arctan(x)) = e (arctan(a)) — 13 22

cos? (arctan(z))

ou il faut utiliser la trigonométrie pour obtenir I'expression en tan(x) a I'étape * :

cos’(z) = 1 —sin’*(z) = 1 — tan’(z) cos’(z) &  cos’(z) (1 + tan’(z)) =1

2/ N 1
& cost(z) = T’ ()

Le domaine de la dérivée est D((f~)') = R,
i) f~Y(x) = arccos(x), D(f™') =[-1,1].

) (@) = e = - 1 -

— sin(arccos(z)) /1 — cos?(arccos(z)) V1—z2’

D((f))=1-11[.
i) [0 = vE, DU =Ry, f(x) =12

Y @) = 5m

() @) ==y =2 D) =100l
vi) f_l(x) = —log,(z), D(f_l) =10, ool .

On a f'(z) = (2”)' = (e*zln@))/ = —In(2) e = —In(2)27"

et donc (ffl)/ (m) = —1n(2) ‘ 21—(—log2(:c)) = _$Ii<2) , D ((fﬂ)’) — ]0, oo[
vii) f~'(x) = arsinh(z), D(f™')=R.




iy 1 _ 1 1 v
) @) = o arsimb(@)) /L + st (arsinh(z) = DUT=R
ving) f~Y(x) = arcosh(z), D(f™') = [1,00][.
Sy 1 _ 1 1
() (@) sinh(arcosh(x)) \/coshQ(arcosh(I)) _q1 Var-1 ’

D((f1)) =11, 00].

iz) f~Y(x) = artanh(x), D(f™')=]-1,1][.
;. ( sinh(z) '_ cosh?(z) — sinh?(x) B 1
Comme f'(z) = (cosh(x)) B cosh?(z) ~ cosh?(z) ona
1/ _ 1 B 9 - 1 1
(/) (@) = Wltanh(z)) = cosh™(artanh(z)) = 1 — tanh*(artanh(z)) 1—a?2’

ou 'étape ** et due a
cosh®(z) = 1 + sinh®(z) = 1 + tanh®(z)cosh®(z) <«  cosh’(z) (1 — tanh*(z)) =1

1
& h(z) = ————— .
cosh”(z) 1 — tanh?(x)

Le domaine de la dérivée est D((f74)") =] 1,1].

Exercice 5.

i) Comme % < 3% = Z+ X on va considérer la fonction f(z) = tan(z) sur I'intervalle [%, 5% ],

ou elle est continue et dérivable. Le théoreme des accroissements finis nous indique qu’il

il 5_7T o) — tan(g_z) — tan(%)
& 2 [ tel que tan’(c) = = :

En réarrangeant cette équation, nous obtenons

oT m ™, T ™
=) = - — - — ) 1
ta,n(24) tan<6> + 24tan <6 + )\24> ou A €]0, 1]

existe ¢ €

B 1 + T 1
V3 24 COSQ(% +)\27r—4)
R 1
Il ne nous reste plus qu’a borner le terme —————:
cos? (g + )\ﬂ)
. 1 ) , T
La fonction x — ————— étant croissante sur ] -, = [, nous obtenons
cos?(x) 6" 4
4 1 < 1 < 1 _o
3 COSQ(%) - COSQ(% + )\2”—4) - COSQ(%) ’

et ainsi

1 L L ¢ o < 1 N T
V3 18~ 24) =3 127
Il est a remarquer ici que I’encadrement obtenu est bien plus fin que si I'on avait simple-
T

ment utilisé la croissance de la fonction x +— tan(z) sur ] &1 [
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En effet, on obtient numériquement avec notre encadrement que
o
0.75188... < tan<ﬂ) < 0.83914. ..

alors que 1'on aurait obtenu

1 5
0.57735. .. = = tan(%) < tan(Z—Z) < tanG) ~1.

en utilisant la croissance de la fonction x — tan(x).

ii) (a) Pour que f soit bien définie, il faut et il suffit que les dénominateurs ne s’annulent
pas.

Ainsi, D(f) =R\ {-2, 4}.
(b) Par opérations usuelles, la fonction f est donc continue sur | — 2, 4.
De plus, nous avons

f(—l):l—%>0etf(3):%—1<0

Ainsi, d’apres le théoreme de la valeur intermédiaire, il existe ¢ €] — 1, 3[ tel que
fle) =0.
(c) Etudions la fonction f sur ses 3 domaines différents :

—r< =2
f(x) étant la somme de deux termes strictement négatifs, sa somme est stricte-
ment négative.
Il n’existe donc pas de réel ¢ €] — 0o, —2[ tel que f(c) = 0.

—ax>4:

De méme, ici f(z) est la somme de deux termes strictement positifs, sa somme
est donc strictement positive.

I n’existe donc pas de réel ¢ €]4, +oo] tel que f(c) = 0.

— x €] —2,4]:
Supposons par 'absurde qu’il existe (¢, d) €] — 2, 4] tel que ¢ < d (on peut sans
perte d’'information supposer cela et non le contraire) et f(c) = f(d) = 0.
Alors, d’apres le théoréeme des accroissements finis, il existe e €lc,d| tel que
f'le)=0.
Or, pour tout z €] — 2, 4]

10 =~ (G o) <

On aboutit donc & une contradiction. Et ainsi, I’équation f(z) = 0 possede une
seule solution dans R.
ii1) La fonction f(x) = 3% — 42® + 622 — 122 + s olt s € R, est dérivable partout dans R.

Supposons par I'absurde que f possede au moins 3 racines distinctes. Posons a, b et ¢
trois d’entre elles telles que a < b < c.

Ainsi, d’apres le théoréme des accroissements finis, il existe (d, ) € R? tels que f(d) =

f'(e) =0et d+#e.



Or, pour tout x € R on a
fllx) =122 —2* + 2 — 1) = 12(z — 1)(2* + 1)

On voit tres clairement que f’ ne s’annule que pour x = 1 et on arrive donc a une
contradiction.

Ainsi, f admet bien au plus 2 racines dans R.
iv) Puisque f € C%*(R,R), alors f est continue sur [—3, 3] et dérivable sur | — 3, 3[.
D’apres le théoreme des accroissements finis, il existe a €] — 3, 3] tel que

f(3) = f(=3)
!
== —-— ]_
De méme, le theoreme des accroissements finis nous indique qu'il existe b €]3, 10] tel que
f(10) — f(3)
/ b = = 1

Ensuite, toujours car f € C*(R,R), nous avons que f’ est continue sur [a, b] et dérivable
sur Ja, b[. Donc, d’apres le théoreme des accroissements finis, il existe ¢ €]a, b[ tel que

f”(c) _ fl(b;) : i:/(a) -0

Exercice 6.
Afin de calculer les limites demandées, on applique la reégle de Bernoulli-I'Hopital (abrégée par
BL) une fois qu’on a vérifié ses hypotheses.
i) Posons f(z) = In(x — 1) et g(z) = = — 2. Alors on a igf(x) = 0, glggg(a:) =0 et
g'(z) =1 +# 0. Les hypotheses de BL sont donc satisfaites et on a
In(z — 1) L L

lim ———— = lim &L = 1.
z—=2 T —2 z—2 1

ii) Ici, on doit utiliser la regle BL plusieurs fois. Pour la premiere fois on pose f(z) = tanh(x)—1
et g(z) = L. Comme lim f(z) = lim g(z) = 0 et ¢'(z) = —=5 # 0, les hypotheses sont
T—00 T—r00

satisfaites. On peut donc appliquer BL une premiere fois (les hypotheses pour les étapes
suivantes seront vérifiées ci-dessous) :

tanh(z) — 1 L a2
lim z (tanh(z) — 1) = lim ——>—— 2 Jim COSh(f) = — lim 5
T—>00 T—00 P T200  —-3 z—oo cosh (ilf)
= limQ—x%—lim L:O
z—o0 sinh(2x) z—o0 2cosh(2z)

Pour la deuxi¢me application de BL on a f(z) = 22 et §(z) = cosh®(z) on a xh_}rg() f(x) =
lim g(z) = 0o et ¢'(x) = 2sinh(z)cosh(z) = sinh(2z) # 0 pour x # 0 (ce qui est bien le
Z;soolorsque T — 00).

Finalement pour la troisieme fois avec f(z) =2z et g(x) = sinh(2z) et donc xh_}rilo flz) =
;}1—>I20 g(z) = oo ainsi que g'(x) = 2cosh(2z) # 0. On a donc bien pu appliquer BL les trois

fois.



iii)

iv)

v)

i)

Remarque : On peut aussi appliquer la regle de Bernoulli-L’Hopital a la limite

T

1
tanh(z)—1

lim z (tanh(z) — 1) = lim

T—00 T—00

pour obtenir le méme résultat.

On a (1+ sin(m))l/x = exp(LIn(1 + sin(z))). On va donc d’abord calculer la limite de
Pexposant. Posons f(z) =In(1+sin(z)) et g(z)=z. Alors liH(l) flz) = lin% g(x) =0 et
z— z—
g (x) =1+# 0. Ainsi
. cos(x)
lim In(1 + sin(x)) BL ) Tsin(@) _ .
z—0 x z—0 1

et par conséquent

lim (1 + si Ve — el =—e¢.

m12[1)( + sin(z)) e =e
Posons f(z) = tan(x) — sin(z) et g(z) = z — sin(z).
Nous allons appliquer a plusieurs reprises la regle de Bernoulli I’Hopital. Pour la premiere
foi on i i o 00— I i -
ois nous avons bien lim f(x) lim tan(z) — sin(z) = 0—0 = 0 et lim g(x) z1{3(1)(31:
sin(z)) =0—0=0, et ¢'(x) # 0 au voisinage de x = 0. Ainsi, d’apres la regle de Bernoulli
I"'Hopital nous avons (nous vérifierons les prochaines étapes ci-dessous) :

= lim

1; f(x) BL li coS%(z) - COS(I) BL 2050123(2) -+ SiIl(:L') . 9 X ;
m ——- = lim _ _
250 g(z) =0 1 — cos(x) 20 sin(x) =0 \ cos?(z)

Pour la seconde étape de Bernoulli I’'Hopital, nous avons bien que lir%( — cos(x)) =
z—

1
cos?(z)
1—-1=0et glcig%(l —cos(z)) =1 —1=0. La deuxieme application de la régle de Bernoulli
I’Hopital était donc bien légitime.

x 1 _zln(z) —r+1
(J; -1 1n(m)>  (z—1)In(z)
Posons f(z) =zIn(z) —xz+ 1 et g(z) = (x — 1) In(x).
Nous allons appliquer a plusieurs reprises la regle de Bernoulli I’'Hopital. Pour la premiere
fois nous avons bien glcl_rﬁ flz) = il_)fﬂl(xln(x) —z4+1)=0—-141=0c¢et 31612% g(x) =

lir%(x —1)In(z) =0x0=0, et ¢'(x) # 0 au voisinage de = 1. Ainsi, d’apres la regle de
Tr—r
Bernoulli I’'Hépital nous avons (nous vérifierons les prochaines étapes ci-dessous) :

I f(x) L, In(z)—1+1 pL . %
m-——- =1 ————- = lm — = =
z—1 g(x) a—1In(x) + 1 — s amlo 4 2

Pour la seconde étape de Bernoulli 'Hopital, nous avons bien que lin% In(z) =141 =
T—r
1
0—1+1=0c¢et lin}(ln(:c) +1——-)=0+4+1-1=0, et la dérivée du dénominateur n’est
r—r €T

pas zéro au voisinage de x = 1. La deuxieme application de la regle de Bernoulli I’'Hopital
était donc bien légitime.

On a que 2™ = e™@ (7 > 0). Calculons tout d’abord la limite de I'exposant.

1
Pour cela, posons f(z) = wln(z) et g(z) = —.
x



1

Nous avons bien lim f(z) = lim wln(z) = —oo et lim g(z) = lim — = 4o00. Ainsi,
z—07t z—07F z—0*t z—0t T
d’apres la généralisation de la regle de Bernoulli I’'Hopital nous obtenons :
s
x ™
lim mg lim — = lim —7mz =0
z—0t g(l‘) z—0t —3 z—0t
Et donc

lim 2™ =1
z—07F
vii) Posons f(z) =1 — cos(x) et g(x) = tan(z).
Nous avons bien llg(l) flz) = glglil(l)(l —cos(z)) =1—1=0cet }g]%g(a:) = ilg(l)tan(:c) = 0.
Ainsi, d’apres la regle de Bernoulli I’'Hopital nous obtenons :
f(x)

. BL ,.
lim —~% = lim
x—0 g(:}j) x—0

sin(x)
1
cos?(x)

=0

) (xtan(ac) — ) _ sin(e) = T
2 cos(x) 2 cos(x)
Posons f(z) = 2zsin(z) — 7 et g(x) = 2 cos(z).
Nous avons bien lim f(z) = li_r)gT(Qx sin(z) —m) =71 —m=0e¢t lim g(x) = lim 2cos(z) =

s us
z =% =75

2 x 0 = 0. Ainsi, d’apres la regle de Bernoulli I’'Hopital nous obtenons :

I m BL ) _sin(m) i{—xcos(x) _ 1
e g(xr)  a—l sin(z)
ir) Posons f(z) = In(x) et g(z) = 3.
Nous avons bien lim f(z) = lim In(z) = 400 et lim g(z) = lim 3 = +oc0. Ainsi,
T——+00 T—>—+00 T—+00 T—r+00
d’apres la généralisation de la regle de Bernoulli I’'Hopital nous obtenons :
1
i L) BL ~ = lim 3273 =0
r——+00 g(q; T——+00 %x*§ xr——+00

Exercice 7.

i) La fonction f(z) = (e!/* — 1) est une fonction d’interpolation de la suite (a,),>1 donnée
par a, = f(n), dou lim a, = lim f(z) (si cette limite existe). En posant y = —, il
n—00 T—00 €T

s’ensuit que
e —1 )

lim a, = lim f(z) = lim f (1) = lim

n—o00 T—00 y—0t Yy y—0+ Y

it) Comme au point ¢), la fonction f(z) = (1 — %)x = ¢*™(1=%) est une fonction d’interpolation

de la suite a,, = (1 — %)n On va d’abord calculer la limite de I'exposant en posant y = — :
x

In(1 —
TNl 71 AN S
y—0t Yy y—0t 1 -y



ou on a pu utiliser BL parce que lim In(1 —y) = lim+ y=0 ety =1#0.
y—0

y—0t
Finalement, on obtient

1\" 1 1
lim a, = lim <1 - —> = lim f (—) —e =2,
n—oo n—oo n y_>()+ y e
Exercice 8.

i) Avant de calculer ses dérivées, on récrit f en distinguant les deux cas. On a

P +r+2 —1<z< -1 , 2041, —l<z<-—1
fl)=4, 3 1 ) fz) = 1
rr-—r+3, —;<z<1 20 -1, —;<z<l
Puisque |z + %| n’est pas dérivable en z = —1, la fonction f n’est pas dérivable en ce point.

1 1
De plus f”(z) =2 pour tout = € }—1, _Z[U]_Z’ 1[.
Les extremums locaux et absolus sont donc parmi les points suivants :
(a) Points stationnaires : f'(z) = 0 = z; = —3 ou z = 1. Comme f"(z;) =
f"(x2) >0, 21 et x5 sont des minimums locaux. On a f(x;) =1e

1
(b) Points ou f" n’existe pas : Le seul point a examiner est o = —;11 On déduit des signes
17

de f’ au voisinage de x¢ que o est un maximum local. On a f(xo) = 15 .
(¢) Extrémités du domaine de f : Comme f est continue sur [—1, 1], on déduit des signes de

/' au voisinage des extrémités (négatif vers —1 et positif vers 1) que f a des maximums
locaux en a = —letb=1.0Ona f(a)=2 et f(b) =3.

~—
Il
|ot

maximum global en == -1, f(-1

(a)7 (b)v (C) = { 4 (Cf Fig. 4)

it) Comme 2 —x < 0 pour tout = € |2,3[=: I, il ne faut pas distinguer deux cas pour f. On a
en effet

minimum globalen z =3, f(3)=1

f@)=(x—1)+22—-2)=2>—4x+5 et f(r)=2x—2) pourtoutzel

Les extremums locaux et globaux se trouvent de nouveau parmi les points suivants :
(a) Points stationnaires : f'(x) # 0 pour tout = € I, donc aucun.
(b) Points ou f’ n’existe pas : f’ existe sur tout I, donc aucun.
(c¢) Extrémités du domaine de f : Le domaine I est un intervalle ouvert et n’a donc pas
d’extrémités.

Ainsi la fonction f ne possede ni d’extremum local ni absolu sur I (cf. Fig. 5).

Exercice 9.

Q1 : VRAL
Résultat du cours (voir DZ §5.2.16).
Preuve : Soient x1, x5 € [a,b], 1 < x9. Par le théoreme des accroissements finis il
existe u € |xy, xo| tel que f(za) — f(x1) = f'(u)(xe — 7). Puisque f'(u) > 0 il suit que
f(za) — f(x1) >0, c-a-d. f est croissante.
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Q2 :

Q3 :

Q4 -

Q5 :

FIGURE 4 - Ex. 6(7) FIGURE 5 — Ex. 6(i7)

VRAL
Pour tout x € ]a, b[, la dérivée de f est par définition

o) — i L) = @)

h—0 h

Comme f est croissante sur [a,b], f(z + h) — f(z) est du méme signe que h. Ainsi le
quotient dans la limite est toujours positif et donc f'(z) > 0.

FAUX.

Prendre par exemple f: [—1,1] — R définie par f(z) = 3. Cette fonction est stricte-
ment croissante sur [—1, 1] mais f/(0) = 0.

VRAL

Résultat du cours (voir DZ §5.2.16). Preuve comme a la Q1 en remplacant > par >.

FAUX.

Prendre par exemple f: [—1,1] — R définie par f(x) = z3. Alors f a une tangente
horizontale en ¢ = 0 car f’(0) = 0 mais elle n’admet pas d’extremum en ce point car
pour tout € > 0 on a f(—¢) = -2 < f(0) =0 < e = f(e).
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