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Analyse I – Corrigé de la Série 11

Exercice 1.

i) On distingue trois cas selon la valeur de m :

— m = 0 : f (n)(x) = 0 pour tout n ∈ N∗.

— m ≥ 1 : f (n)(x) =

{
m(m− 1)(m− 2) · · · (m− n+ 1)xm−n , n ≤ m

0 , n > m

— m ≤ −1 : f (n)(x) = m(m− 1)(m− 2) · · · (m− n+ 1)xm−n pour tout n ∈ N∗

ii) On commence par calculer les quatre premières dérivées de f :

f ′(x) = 2 cos(2x)− 2 sin(x) f ′′(x) = −4 sin(2x)− 2 cos(x)

f ′′′(x) = −8 cos(2x) + 2 sin(x) f (4)(x) = 16 sin(2x) + 2 cos(x)

Il faut donc distinguer deux cas selon la parité de n ∈ N∗. On propose l’hypothèse :

f (n)(x) =

{
(−1)

n
2

(
2n sin(2x) + 2 cos(x)

)
, n pair

(−1)
n−1
2

(
2n cos(2x)− 2 sin(x)

)
, n impair

Démontrons cette formule par récurrence. L’initialisation est déjà achévée. Supposons que
la formule est vraie pour tout n ≤ k ∈ N∗. Alors pour n = k + 1 on a :
Si k est pair,

(f (k))′(x) = (−1)
k
2

(
2k · 2 cos(2x)− 2 sin(x)

)
= (−1)

(k+1)−1
2

(
2k+1 cos(2x)− 2 sin(x)

)
= f (k+1)(x).

Si k est impair,

(f (k))′(x) = (−1)
k−1
2 (−2n · 2 sin(2x)− 2 cos(x)) = (−1)

k+1
2

(
2k+1 sin(2x) + 2 cos(x)

)
= f (k+1)(x).

Alors la formule est vraie pour tout n ∈ N∗.
iii) Comme f ′(x) = x−1, on peut utiliser le résultat de i) avec m = −1 pour obtenir f (n). En

effet, pour tout n ∈ N∗,

f (n)(x) = (f ′)(n−1)(x) = (−1)(−2)(−3) · · · (−(n− 1))x−1−(n−1) =
(−1)n−1(n− 1)!

xn
.

Exercice 2.

i) Le logarithme de f est

ln
(
f(x)

)
= 2 ln(x2 + 1) + 3 ln(x+ 2) + 5 ln(x− 1),

et en dérivant par rapport à x on trouve(
ln
(
f(x)

))′
=

4x

x2 + 1
+

3

x+ 2
+

5

x− 1
.
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Comme
(

ln
(
f(x)

))′
=
f ′(x)

f(x)
, on obtient

f ′(x) = f(x) ·
(

ln
(
f(x)

))′
= f(x)

(
4x

x2 + 1
+

3

x+ 2
+

5

x− 1

)
= f(x)

4x(x+ 2)(x− 1) + 3(x2 + 1)(x− 1) + 5(x2 + 1)(x+ 2)

(x2 + 1)(x+ 2)(x− 1)

=
f(x)

(x2 + 1)(x+ 2)(x− 1)

(
4x(x2 + x− 2) + 3(x3 − x2 + x− 1) + 5(x3 + 2x2 + x+ 2)

)
= (x2 + 1)(x+ 2)2(x− 1)4(12x3 + 11x2 + 7).

ii) On a

ln
(
f(x)

)
=

11∑
k=1

k ln
(
1 + sin2(kx)

)
et donc (

ln
(
f(x)

))′
=

11∑
k=1

k
2k sin(kx) cos(kx)

1 + sin2(kx)
=

11∑
k=1

k2 sin(2kx)

1 + sin2(kx)
.

Il s’en suit que

f ′(x) =
(

ln
(
f(x)

))′
· f(x) =

(
11∑
k=1

k2 sin(2kx)

1 + sin2(kx)

)(
11∏
k=1

(
1 + sin2(kx)

)k)
.

Exercice 3.
La dérivée de la fonction valeur absolue g(x) = |x| étant connue pour tout x ∈ R∗− et pour tout
x ∈ R∗+ :

g′(x) =

{
1, x > 0

−1, x < 0

La fonction g n’étant pas dérivable en x = 0, ainsi

f ′(x) =

{
1 + ex, x > 0

−1 + ex, x < 0

Notez que f ′(0) n’existe pas non plus.
Comme rappel, la Fig. 1 montre les graphiques des fonctions ex et |x|. Les graphiques de f et
f ′ sont donnés aux Fig. 2 et 3 respectivement.
Remarque : Les lignes hachurées dans les Fig. 2 et 3 sont les asymptotes à gauche de f et f ′

qui sont dues au fait que la fonction exponentielle admet une asymptote à gauche en y = 0.

Exercice 4.

Rappel : La dérivée de la fonction réciproque f−1 de f est donnée par (cf. cours)

(f−1)′(x) =
1

f ′
(
f−1(x)

) .
Toutes les fonctions f considérées sont des fonctions élémentaires injectives et dérivables sur
les domaines donnés. Par un théorème du cours, la fonction réciproque f−1 est donc dérivable
sur l’image de tout intervalle sur lequel f ′ ne s’annule pas.
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Figure 1 – ex et |x|.
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Figure 2 – f(x).
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Figure 3 – f ′(x).

i) f−1(x) = arctan(x) , D(f−1) = R.

(f−1)
′
(x) =

1
1

cos2(arctan(x))

= cos2(arctan(x))
∗
=

1

1 + tan2(arctan(x))
=

1

1 + x2

où il faut utiliser la trigonométrie pour obtenir l’expression en tan(x) à l’étape ∗ :

cos2(x) = 1− sin2(x) = 1− tan2(x) cos2(x) ⇔ cos2(x)
(
1 + tan2(x)

)
= 1

⇔ cos2(x) =
1

1 + tan2(x)

Le domaine de la dérivée est D((f−1)
′
) = R.

ii) f−1(x) = arccos(x) , D(f−1) = [−1, 1].

(f−1)
′
(x) =

1

− sin(arccos(x))
= − 1√

1− cos2(arccos(x))
= − 1√

1− x2
,

D
(
(f−1)

′)
= ]−1, 1[ .

iii) f−1(x) =
√
x , D(f−1) = R+, f(x) = x2.

(f−1)
′
(x) =

1

2
√
x
,

D
(
(f−1)

′)
= R∗+ .

iv) f−1(x) = x−
1
4 , D(f−1) = R∗+, f(x) = x−4.

(f−1)
′
(x) = − 1

4(
x−

1
4

)5

= −x
− 5

4

4
,

D
(
(f−1)

′)
= R∗+ .

v) f−1(x) = − ln(x) , D(f−1) = ]0,∞[ .

(f−1)
′
(x) =

1

−e−(− ln(x))
= −1

x
, D

(
(f−1)

′)
= ]0,∞[ .

vi) f−1(x) = − log2(x) , D(f−1) = ]0,∞[ .

On a f ′(x) = (2−x)
′
=
(
e−x ln(2)

)′
= − ln(2) e−x ln(2) = − ln(2) 2−x

et donc (f−1)
′
(x) =

1

− ln(2) · 2−(− log2(x))
= − 1

x ln(2)
, D

(
(f−1)

′)
= ]0,∞[ .

vii) f−1(x) = arsinh(x) , D(f−1) = R .
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(f−1)
′
(x) =

1

cosh(arsinh(x))
=

1√
1 + sinh2(arsinh(x))

=
1√

1 + x2
, D((f−1)

′
) = R.

viii) f−1(x) = arcosh(x) , D(f−1) = [1,∞[ .

(f−1)
′
(x) =

1

sinh(arcosh(x))
=

1√
cosh2(arcosh(x))− 1

=
1√

x2 − 1
,

D((f−1)
′
) = ]1,∞[ .

ix ) f−1(x) = artanh(x) , D(f−1) = ]− 1, 1[ .

Comme f ′(x) =

(
sinh(x)

cosh(x)

)′
=

cosh2(x)− sinh2(x)

cosh2(x)
=

1

cosh2(x)
on a

(
f−1
)′

(x) =
1
1

cosh2(artanh(x))

= cosh2(artanh(x))
∗∗
=

1

1− tanh2(artanh(x))
=

1

1− x2
,

où l’étape ∗∗ et due à

cosh2(x) = 1 + sinh2(x) = 1 + tanh2(x)cosh2(x) ⇔ cosh2(x)
(
1− tanh2(x)

)
= 1

⇔ cosh2(x) =
1

1− tanh2(x)
.

Le domaine de la dérivée est D
(

(f−1)
′ )

= ]− 1, 1[ .

Exercice 5.

i) Comme π
6
< 5π

24
= π

6
+ π

24
, on va considérer la fonction f(x) = tan(x) sur l’intervalle

[
π
6
, 5π
24

]
,

où elle est continue et dérivable. Le théorème des accroissements finis nous indique qu’il

existe c ∈
]
π

6
,

5π

24

[
tel que tan′(c) =

tan
(
5π
24

)
− tan

(
π
6

)
π
24

.

En réarrangeant cette équation, nous obtenons

tan

(
5π

24

)
= tan

(π
6

)
+

π

24
tan′

(π
6

+ λ
π

24

)
où λ ∈]0, 1[

=
1√
3

+
π

24

1

cos2
(
π
6

+ λ π
24

)
Il ne nous reste plus qu’à borner le terme

1

cos2
(
π
6

+ λ π
24

) :

La fonction x 7→ 1

cos2(x)
étant croissante sur

]π
6
,
π

4

[
, nous obtenons

4

3
=

1

cos2
(
π
6

) ≤ 1

cos2
(
π
6

+ λ π
24

) ≤ 1

cos2
(
π
4

) = 2 ,

et ainsi
1√
3

+
π

18
≤ tan

(
5π

24

)
≤ 1√

3
+

π

12
,

Il est à remarquer ici que l’encadrement obtenu est bien plus fin que si l’on avait simple-

ment utilisé la croissance de la fonction x 7→ tan(x) sur
]π

6
,
π

4

[
.
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En effet, on obtient numériquement avec notre encadrement que

0.75188 . . . ≤ tan

(
5π

24

)
≤ 0.83914 . . .

alors que l’on aurait obtenu

0.57735 . . . =
1√
3

= tan
(π

6

)
≤ tan

(
5π

24

)
≤ tan

(π
4

)
= 1 .

en utilisant la croissance de la fonction x 7→ tan(x).

ii) (a) Pour que f soit bien définie, il faut et il suffit que les dénominateurs ne s’annulent
pas.

Ainsi, D(f) = R \ {−2, 4}.
(b) Par opérations usuelles, la fonction f est donc continue sur ]− 2, 4[.

De plus, nous avons

f(−1) = 1− 1

55
> 0 et f(3) =

1

53
− 1 < 0

Ainsi, d’après le théorème de la valeur intermédiaire, il existe c ∈] − 1, 3[ tel que
f(c) = 0.

(c) Étudions la fonction f sur ses 3 domaines différents :

— x < −2 :

f(x) étant la somme de deux termes strictement négatifs, sa somme est stricte-
ment négative.

Il n’existe donc pas de réel c ∈]−∞, −2[ tel que f(c) = 0.

— x > 4 :

De même, ici f(x) est la somme de deux termes strictement positifs, sa somme
est donc strictement positive.

Il n’existe donc pas de réel c ∈]4, +∞[ tel que f(c) = 0.

— x ∈]− 2, 4[ :

Supposons par l’absurde qu’il existe (c, d) ∈]− 2, 4[ tel que c < d (on peut sans
perte d’information supposer cela et non le contraire) et f(c) = f(d) = 0.

Alors, d’après le théorème des accroissements finis, il existe e ∈]c, d[ tel que
f ′(e) = 0.

Or, pour tout x ∈]− 2, 4[

f ′(x) = −
(

3

(x+ 2)4
+

5

(x− 4)6

)
< 0

On aboutit donc à une contradiction. Et ainsi, l’équation f(x) = 0 possède une
seule solution dans R.

iii) La fonction f(x) = 3x4 − 4x3 + 6x2 − 12x+ s où s ∈ R, est dérivable partout dans R.

Supposons par l’absurde que f possède au moins 3 racines distinctes. Posons a, b et c
trois d’entre elles telles que a < b < c.

Ainsi, d’après le théorème des accroissements finis, il existe (d, e) ∈ R2 tels que f ′(d) =
f ′(e) = 0 et d 6= e.
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Or, pour tout x ∈ R on a

f ′(x) = 12(x3 − x2 + x− 1) = 12(x− 1)(x2 + 1)

On voit très clairement que f ′ ne s’annule que pour x = 1 et on arrive donc à une
contradiction.

Ainsi, f admet bien au plus 2 racines dans R.

iv) Puisque f ∈ C2(R,R), alors f est continue sur [−3, 3] et dérivable sur ]− 3, 3[.

D’après le théorème des accroissements finis, il existe a ∈]− 3, 3[ tel que

f ′(a) =
f(3)− f(−3)

3− (−3)
= 1

De même, le thèorème des accroissements finis nous indique qu’il existe b ∈]3, 10[ tel que

f ′(b) =
f(10)− f(3)

10− 3
= 1

Ensuite, toujours car f ∈ C2(R,R), nous avons que f ′ est continue sur [a, b] et dérivable
sur ]a, b[. Donc, d’après le théorème des accroissements finis, il existe c ∈]a, b[ tel que

f ′′(c) =
f ′(b)− f ′(a)

b− a
= 0

Exercice 6.

Afin de calculer les limites demandées, on applique la règle de Bernoulli-l’Hôpital (abrégée par
BL) une fois qu’on a vérifié ses hypothèses.

i) Posons f(x) = ln(x − 1) et g(x) = x − 2. Alors on a lim
x→2

f(x) = 0, lim
x→2

g(x) = 0 et

g′(x) = 1 6= 0. Les hypothèses de BL sont donc satisfaites et on a

lim
x→2

ln(x− 1)

x− 2
BL
= lim

x→2

1
x−1

1
= 1.

ii) Ici, on doit utiliser la règle BL plusieurs fois. Pour la première fois on pose f(x) = tanh(x)−1
et g(x) = 1

x
. Comme lim

x→∞
f(x) = lim

x→∞
g(x) = 0 et g′(x) = − 1

x2
6= 0, les hypothèses sont

satisfaites. On peut donc appliquer BL une première fois (les hypothèses pour les étapes
suivantes seront vérifiées ci-dessous) :

lim
x→∞

x
(
tanh(x)− 1

)
= lim

x→∞

tanh(x)− 1
1
x

BL
= lim

x→∞

1
cosh(x)2

− 1
x2

= − lim
x→∞

x2

cosh2(x)

BL
= − lim

x→∞

2x

sinh(2x)
BL
= − lim

x→∞

2

2cosh(2x)
= 0 .

Pour la deuxième application de BL on a f̃(x) = x2 et g̃(x) = cosh2(x) on a lim
x→∞

f̃(x) =

lim
x→∞

g̃(x) =∞ et g′(x) = 2sinh(x)cosh(x) = sinh(2x) 6= 0 pour x 6= 0 (ce qui est bien le

cas lorsque x→∞).

Finalement pour la troisième fois avec f̄(x) = 2x et ḡ(x) = sinh(2x) et donc lim
x→∞

f̄(x) =

lim
x→∞

ḡ(x) =∞ ainsi que ḡ′(x) = 2cosh(2x) 6= 0. On a donc bien pu appliquer BL les trois

fois.
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Remarque : On peut aussi appliquer la règle de Bernoulli-L’Hôpital à la limite

lim
x→∞

x
(
tanh(x)− 1

)
= lim

x→∞

x
1

tanh(x)−1
.

pour obtenir le même résultat.

iii) On a
(
1 + sin(x)

)1/x
= exp

(
1
x

ln
(
1 + sin(x)

))
. On va donc d’abord calculer la limite de

l’exposant. Posons f(x) = ln
(
1 + sin(x)

)
et g(x) = x . Alors lim

x→0
f(x) = lim

x→0
g(x) = 0 et

g′(x) = 1 6= 0. Ainsi

lim
x→0

ln(1 + sin(x))

x
BL
= lim

x→0

cos(x)
1+sin(x)

1
= 1 ,

et par conséquent
lim
x→0

(1 + sin(x))1/x = e1 = e .

iv) Posons f(x) = tan(x)− sin(x) et g(x) = x− sin(x).

Nous allons appliquer à plusieurs reprises la règle de Bernoulli l’Hôpital. Pour la première
fois nous avons bien lim

x→0
f(x) = lim

x→0
tan(x) − sin(x) = 0 − 0 = 0 et lim

x→0
g(x) = lim

x→0
(x −

sin(x)) = 0− 0 = 0, et g′(x) 6= 0 au voisinage de x = 0. Ainsi, d’après la règle de Bernoulli
l’Hôpital nous avons (nous vérifierons les prochaines étapes ci-dessous) :

lim
x→0

f(x)

g(x)
BL
= lim

x→0

1
cos2(x)

− cos(x)

1− cos(x)
BL
= lim

x→0

2 sin(x)
cos3(x)

+ sin(x)

sin(x)
= lim

x→0

(
2

cos3(x)
+ 1

)
= 3

Pour la seconde étape de Bernoulli l’Hôpital, nous avons bien que lim
x→0

( 1
cos2(x)

− cos(x)) =

1− 1 = 0 et lim
x→0

(1− cos(x)) = 1− 1 = 0. La deuxième application de la règle de Bernoulli

l’Hôpital était donc bien légitime.

v)

(
x

x− 1
− 1

ln(x)

)
=
x ln(x)− x+ 1

(x− 1) ln(x)
.

Posons f(x) = x ln(x)− x+ 1 et g(x) = (x− 1) ln(x).

Nous allons appliquer à plusieurs reprises la règle de Bernoulli l’Hôpital. Pour la première
fois nous avons bien lim

x→1
f(x) = lim

x→1
(x ln(x) − x + 1) = 0 − 1 + 1 = 0 et lim

x→1
g(x) =

lim
x→1

(x− 1) ln(x) = 0× 0 = 0, et g′(x) 6= 0 au voisinage de x = 1. Ainsi, d’après la règle de

Bernoulli l’Hôpital nous avons (nous vérifierons les prochaines étapes ci-dessous) :

lim
x→1

f(x)

g(x)
BL
= lim

x→1

ln(x)− 1 + 1

ln(x) + 1− 1
x

BL
= lim

x→1

1
x

1
x

+ 1
x2

=
1

2

Pour la seconde étape de Bernoulli l’Hôpital, nous avons bien que lim
x→1

ln(x) − 1 + 1 =

0 − 1 + 1 = 0 et lim
x→1

(ln(x) + 1 − 1

x
) = 0 + 1 − 1 = 0, et la dérivée du dénominateur n’est

pas zéro au voisinage de x = 1. La deuxième application de la règle de Bernoulli l’Hôpital
était donc bien légitime.

vi) On a que xπx = eπx ln(x) (x > 0). Calculons tout d’abord la limite de l’exposant.

Pour cela, posons f(x) = π ln(x) et g(x) =
1

x
.
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Nous avons bien lim
x→0+

f(x) = lim
x→0+

π ln(x) = −∞ et lim
x→0+

g(x) = lim
x→0+

1

x
= +∞. Ainsi,

d’après la généralisation de la règle de Bernoulli l’Hôpital nous obtenons :

lim
x→0+

f(x)

g(x)
BL
= lim

x→0+

π
x

− 1
x2

= lim
x→0+

−πx = 0

Et donc
lim
x→0+

xπx = 1

vii) Posons f(x) = 1− cos(x) et g(x) = tan(x).

Nous avons bien lim
x→0

f(x) = lim
x→0

(1 − cos(x)) = 1 − 1 = 0 et lim
x→0

g(x) = lim
x→0

tan(x) = 0.

Ainsi, d’après la règle de Bernoulli l’Hôpital nous obtenons :

lim
x→0

f(x)

g(x)
BL
= lim

x→0

sin(x)
1

cos2(x)

= 0

viii)

(
xtan(x)− π

2 cos(x)

)
=

2x sin(x)− π
2 cos(x)

.

Posons f(x) = 2x sin(x)− π et g(x) = 2 cos(x).

Nous avons bien lim
x→π

2

f(x) = lim
x→π

2

(2x sin(x)− π) = π − π = 0 et lim
x→π

2

g(x) = lim
x→π

2

2 cos(x) =

2× 0 = 0. Ainsi, d’après la règle de Bernoulli l’Hôpital nous obtenons :

lim
x→π

2

f(x)

g(x)
BL
= lim

x→π
2

−sin(x) + x cos(x)

sin(x)
= −1

ix ) Posons f(x) = ln(x) et g(x) = x
1
3 .

Nous avons bien lim
x→+∞

f(x) = lim
x→+∞

ln(x) = +∞ et lim
x→+∞

g(x) = lim
x→+∞

x
1
3 = +∞. Ainsi,

d’après la généralisation de la règle de Bernoulli l’Hôpital nous obtenons :

lim
x→+∞

f(x)

g(x)
BL
= lim

x→+∞

1
x

1
3
x−

2
3

= lim
x→+∞

3x−
1
3 = 0

Exercice 7.

i) La fonction f(x) = x
(
e1/x − 1

)
est une fonction d’interpolation de la suite (an)n≥1 donnée

par an = f(n), d’où lim
n→∞

an = lim
x→∞

f(x) (si cette limite existe). En posant y =
1

x
, il

s’ensuit que

lim
n→∞

an = lim
x→∞

f(x) = lim
y→0+

f

(
1

y

)
= lim

y→0+

ey − 1

y
= 1

ii) Comme au point i), la fonction f(x) =
(
1− 1

x

)x
= ex ln(1−

1
x) est une fonction d’interpolation

de la suite an =
(
1− 1

n

)n
. On va d’abord calculer la limite de l’exposant en posant y =

1

x
:

lim
y→0+

ln(1− y)

y
BL
= lim

y→0+
− 1

1− y
= −1 ,

8



où on a pu utiliser BL parce que lim
y→0+

ln(1− y) = lim
y→0+

y = 0 et y′ = 1 6= 0 .

Finalement, on obtient

lim
n→∞

an = lim
n→∞

(
1− 1

n

)n
= lim

y→0+
f

(
1

y

)
= e−1 =

1

e
.

Exercice 8.

i) Avant de calculer ses dérivées, on récrit f en distinguant les deux cas. On a

f(x) =

{
x2 + x+ 5

4
, −1 ≤ x ≤ −1

4

x2 − x+ 3
4
, −1

4
< x ≤ 1

, f ′(x) =

{
2x+ 1 , −1 < x < −1

4

2x− 1 , −1
4
< x < 1

Puisque |x+ 1
4
| n’est pas dérivable en x = −1

4
, la fonction f n’est pas dérivable en ce point.

De plus f ′′(x) = 2 pour tout x ∈
]
−1,−1

4

[
∪
]
−1

4
, 1
[
.

Les extremums locaux et absolus sont donc parmi les points suivants :

(a) Points stationnaires : f ′(x) = 0 ⇒ x1 = −1
2

ou x2 = 1
2

. Comme f ′′(x1) =
f ′′(x2) > 0, x1 et x2 sont des minimums locaux. On a f(x1) = 1 et f(x2) = 1

2
.

(b) Points où f ′ n’existe pas : Le seul point à examiner est x0 = −1
4

On déduit des signes
de f ′ au voisinage de x0 que x0 est un maximum local. On a f(x0) = 17

16
.

(c) Extrémités du domaine de f : Comme f est continue sur [−1, 1], on déduit des signes de
f ′ au voisinage des extrémités (négatif vers −1 et positif vers 1) que f a des maximums
locaux en a = −1 et b = 1. On a f(a) = 5

4
et f(b) = 3

4
.

(a), (b), (c) ⇒

{
maximum global en x = −1, f(−1) = 5

4

minimum global en x = 1
2
, f

(
1
2

)
= 1

2

(cf. Fig. 4)

ii) Comme 2− x < 0 pour tout x ∈ ]2, 3[ =: I, il ne faut pas distinguer deux cas pour f . On a
en effet

f(x) = (x− 1)2 + 2(2− x) = x2 − 4x+ 5 et f ′(x) = 2(x− 2) pour tout x ∈ I

Les extremums locaux et globaux se trouvent de nouveau parmi les points suivants :

(a) Points stationnaires : f ′(x) 6= 0 pour tout x ∈ I, donc aucun.

(b) Points où f ′ n’existe pas : f ′ existe sur tout I, donc aucun.

(c) Extrémités du domaine de f : Le domaine I est un intervalle ouvert et n’a donc pas
d’extrémités.

Ainsi la fonction f ne possède ni d’extremum local ni absolu sur I (cf. Fig. 5).

Exercice 9.

Q1 : VRAI.
Résultat du cours (voir DZ § 5.2.16).
Preuve : Soient x1, x2 ∈ [a, b], x1 < x2. Par le théorème des accroissements finis il
existe u ∈ ]x1, x2[ tel que f(x2)− f(x1) = f ′(u)(x2− x1). Puisque f ′(u) ≥ 0 il suit que
f(x2)− f(x1) ≥ 0, c.-à-d. f est croissante.
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Figure 4 – Ex. 6(i)
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Figure 5 – Ex. 6(ii)

Q2 : VRAI.
Pour tout x ∈ ]a, b[ , la dérivée de f est par définition

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

Comme f est croissante sur [a, b], f(x + h) − f(x) est du même signe que h. Ainsi le
quotient dans la limite est toujours positif et donc f ′(x) ≥ 0 .

Q3 : FAUX.
Prendre par exemple f : [−1, 1]→ R définie par f(x) = x3. Cette fonction est stricte-
ment croissante sur [−1, 1] mais f ′(0) = 0.

Q4 : VRAI.
Résultat du cours (voir DZ § 5.2.16). Preuve comme à la Q1 en remplaçant ≥ par >.

Q5 : FAUX.
Prendre par exemple f : [−1, 1] → R définie par f(x) = x3. Alors f a une tangente
horizontale en c = 0 car f ′(0) = 0 mais elle n’admet pas d’extremum en ce point car
pour tout ε > 0 on a f(−ε) = −ε3 < f(0) = 0 < ε3 = f(ε).
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