EPFL Anna Lachowska
Sections IN, SC 21 novembre 2024

Analyse I — Corrigé de la Série 10

Exercice 1.

Q1) :

Q2) :

Q3) :

Q4) :
Q5) :

Q6) :

Q) :

Q8) :

VRAL

Le résultat est évident si f(I) est réduit & un point. Sinon, soient y; et y, deux éléments
de f(I) avec y; < ys. Il existe 1 et x5 dans [ tels que f(x1) = y1 et f(z2) = yo.

D’apres le théoreme des valeurs intermédiaires, tout élément de [f(x1), f(x2)] est 'image
d’un élément de [z1,x5] ou de [x2, 2] et donc [y1,ys] = [f(z1), f(x2)] C f(I) qui est un
intervalle.

VRAL

par le théoreme de la valeur intermédiaire démontré dans le cours, voir DZ 4.3.22.

FAUX.

Prendre par exemple I =|0, 1] et f comme suit

f 10,1 - R
1
r o =
x
On a alors
lim = +o00
z—0
FAUX.
Il suffit de prendre f une fonction constante pour s’en convaincre.
FAUX.
D’apres Q3)
FAUX.
Posons
f o [a, b — R
) 1
sin
xr — —l‘ —b
x—0b

Cette fonction n’atteint jamais son maximum et minimum (qui sont d’ailleurs infinis).

FAUX.
Si 'on pose
f o [a, 400 — R
x —  xsin(z)
f n’atteint ni son minimum ni son maximum puisque la fonction n’est pas bornée.

VRAL

f étant continue, nous avons f(I) un intervalle.

Supposons que yo € f(I). Alors il existe z¢ € I tel que f(zg) = yo. Puisque I est ouvert, il
existe a > 0 tel que [xg—a,zog+a] € I, et comme f est continue et strictement croissante,
on a [f(xg —a), f(xo+ a)] C f(I). Alors pour tout point yo € f(I) il existe un intervalle
1f(zog — a), f(xg + a)[C f(I) qui contient yo, et donc f(I) est un intervalle ouvert.
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Exercice 2.

)

i)

Comme 'expression de f n’est pas définie en x = 1, on doit calculer sa limite en ce point.
Pour z # 1, on peut écrire, en utilisant a que a* — b* = (a — b)(a +b) :

limf(;zc)—lim”g“r _m—lim v+ —x/%_\/x+1+\/%_\/1+72x+\/§
o1 el T4 22 —V3 i\ VI+22 -3 VI+t2e+v3 Va+rl++V2z

l—o  VI+204V3) 1. VI+2r+v3 1 2V3 V6
20 —1) Vr+1++V2 2 o=1/z+ 1+ V22 2 22 4

et donc le prolongement par continuité de f est

= lim
r—1

VaTl- Vi

, x#1
Frltoo[— R fay={ VIFE V3
—@ r=1

4 )
Remarque : Le prolongement par continuité s’écrit en fait aussi sans distinction de cas :

F: (0,00 — R, f@):—%V_V;ix:Jg_j

Comme 'expression de f n’est pas définie pour x € AU{0}, il faut passer aux limites. Pour
ceci, remarquons qu’on obtient pour x ¢ AU {0} avec un peu de trigonométrie

tan( — ) (1 —sin“{ = ] | =tan| — | cos*| = | =sin( = ) cos| — | .
x x x x x x
Soit a,, = (g + mr)fl € A. Alors on a

lim f(z)= lim sin(l) cos<l> = Siﬂ(% + mr) cos(% + mr) =(-1)"-0=0,

T—r0n T—r0n T T

c’est-a-dire f peut étre prolongée par continuité pour tout a € A. Pour x = 0 on a (en
utilisant la formule 2sin(t) cos(t) = sin(2t)) :

1 1 1 2
lim f(z) = lim sin<—) Ccos (—> = lim 3 sin(—) qui n’existe pas.

x—0 z—0 x X x—0 x

Comme la limite lir% sin(%) n’existe pas, f ne peut étre prolongé par continuité en x = 0.
T—

Le prolongement par continuité de f est donc

Fl0a—R f@)= {gan@) (=), g

ou, sans séparation des cas, f: 10,1] —» R, f(x) = sin(l) cos(%).

x



ii1) L’expression de f n’étant pas définie pour z = 1, on veut calculer la limite. Comme le
dénominateur de f s’écrit 23 — 3z +2 = (z —1)*(z +2) on a

— 1)t -1 — 1)t -1
lim f(z) = lig “& ~ Dtan( = 1) e~ Dian(z — 1)
a1 a1 a3 —31x+2 a1 (x—1)2(x +2)

— im ( r  tan(z — 1)> i tan(z — 1)

z—1 x+2' z—1 z=1gx +2 z=1 r—1

, x . (sin(z —1) 1 1 1
= lim - lim : =--1=c
el 42 a—=1\ (z—1) cos(z—1) 3 3
(Attention : La décomposition en produit de deux limites a la deuxiéme ligne est valable

parce que les deux limites existent.)
Ainsi le prolongement par continuité de f est

z(x — 1)tan(z — 1)
FilL2—R  fa)={ sosaiz o 71

1
3

r=1

Notez que ce prolongement par continuité ne s’écrit pas sans séparation des cas.

Exercice 3.

i) Ona f(—xz)= f(z). En dérivant les deux membres de cette égalité, on obtient
—f'(—z) = f'(z), c’est-a-dire f’ est impaire.
i) On dérive f(—z) = —f(x) pour obtenir —f'(—x) = —f'(x) & f'(—z) = f'(z). Ainsi f
est, paire.
iii) Pour f périodique, il existe T' > 0 tel que f(x +T) = f(x) pour tout x € R. En dérivant,
ona f'(x+T)= f'(x) et donc f’ est aussi périodique.

Exercice 4.

s 5(3z*—=1)—6z(bx+2)  152*4+12x+5 I L1
)@ =T T =g P =D =R\ {5 55}
o 21‘\/1—1‘2—3322\/1177(—2:6) z(2 — 22 /
i) () = . - 2B D)= D) -]
iti) f'(z) = 2sin(z) cos(z) - cos(z?) + sin(z)? - (— sin(a?)) - 2z
= 2sin(z) | cos(z) cos(x?) — x sin(z) sin(2?)] ; D(f)=D(f")=R.
iv) En appliquant la régle de dérivation d'un quotient a f(z) = tan(z) = :;r;(é)), on obtient
,+cos(x)® —sin(x) - (—sin(z)) 1
) = cos(x)?  cos(x)?

et donc D(f):D(f/):R\{[L’GRZCOS($):O}:R\{(%+1)7r ; kEZ}.



v) Il s’agit de plusieurs composées de fonctions. Donc

1 1
f(z) = cos(y/sin(z) ) ———
2. sin( sin(m)) < ) 2+ V/sin(z)

cos(x)
_ cos( sin(ac)) cos(x)

4. ,/sin(\/sin(x)) - y/sin(x)
Le domaine de f est

D(f) = {:p € R:sin(z) >0 et Sin<\/m> > O} = U [2km, (2k + 1)7] .

kEZ

En effet, sin(z) >0 < x € [2km, (2k 4+ 1)7] et pour ces valeurs, on a y/sin(z) € [0,1] si
bien que sin(x/sin(x) > 0, c’est-a-dire f est bien définie.

Pour le domaine de f’, il faut encore exclure les points ou sin(x) = 0, c’est-a-dire

D(f") = J]2km, 2k + Vx|

kEZ
12 (21.3 _ 67(4x+3))

5V(2x4 + 6—(4x+3))2

I

vi) fl(a) =2 (20t 4 e 9) 70 (83 — g n ) =

D(f) = D(f') = R (Le dénominateur de f’ ne s’annule jamais parce que e~(4**3) > 0 et
x* > 0 pour tout z € R.)

vii) En appliquant la formule de dérivation pour les fonctions composées

, 1 |
Jlw) = In(3) logy(x) “ 7 In(2)
1
- In(3) In(2) x log,(x)
B 1 @) 1
C In(2)In(3)x In(z) In(3)xrIn(x)

Alors, D(f) =]1,00[ et D(f') =R \ {1}
viii) En observant que f(x) = sin(z)In(4) e«*“*) on obtient
f'(x) =In(4) cos(z) <) 4 In(4) sin(x) - ( — 4sin(4z)) - e«()
— In(4) eco*(4®) ( cos(z) — 4sin(z) sin(4x)) .
D(f) = D(f") =R

iz) Avant d’utiliser la formule de la dérivation d’un quotient, posons séparément les fonctions
numérateur et dénominateur



et
T

d'(z) = In(2)2V" ! x ——
2+ 1

On peut ainsi calculer plus aisément f'(x)

(In(3)37 cos(z) — 37 sin(z)) 2V**+1 — (111(2)2\/@ X L> 3* cos(x)

! . “/$2+1
fla) = 22Vr24+1
B In(3)3% cos(x) — 3% sin(z) — In(2) il cos(x)
o V241
o cos(x) (111(3) - ln(2)ﬁ> — sin(x)
- Vil

Oua D(f) = D(f) = R

Exercice 5.

i) Pour m <0, f n’est pas continue en x = 0 et donc pas dérivable non plus. En effet, on a

pourm =0 lim f(z) = lim f(x) = sin(1) # 0 = £(0),
pour m < —1: lim sin L n’existe pas.
z—0 zlml

Pour m > 1, f est continue en z = 0 (car sin(0) = 0) et sa dérivée en ce point est

- in(z™ in(z" 1, m=1
£0) = iy LSO _ ST _ (i gy (hm sin(z >) _ { . om
z—0 x—0 z—0 xT z—0 z—=0 ™ 0, m>2

=1

Ainsi f est dérivable en z = 0 pour tout m > 1.
La dérivée de f pour z # 0 est f'(x) = ma™ ! cos(z™) et donc pour m > 1,
. , 1, m
hmf(x)—{ 0. m

z—0

;}zﬂw

AVANI

Ainsi f’ est continue en x = 0 pour tout m > 1.

it) On a

=0  x — z—0 x n’existe pas, sim <1

f'(0) = lim L{J;(O) = lim xm—lsm<l> _ {07 sim > 2

Donc f admet une dérivée au point x = 0 si et seulement si m > 2 et on va seulement
considérer ce cas ci-apres.



La dérivée pour = # 0 est donnée par

f'(x) = ma™? sin(l) — 2™ 2 cos <1) :
T T

Pour m = 2, la limite lim f’(z) n’existe pas car lim cos (1) n’existe pas (cf. Ex. 6iii Série 9).
z—0 z—0 z
Ainsi f’ existe partout mais n’est pas continue en z = 0 dans ce cas.

Pour m > 3, la limite existe et on a liH(l] f'(x) =0= f(0). Donc f" est continue en x = 0.
T—

Exercice 6.

(a) En tant que fonction polynomiale, f est dérivable sur R\ {1}. Il reste donc a étudier la
dérivabilité de f en z = 1.
Une condition nécessaire pour la dérivabilité en x = 1 est la continuité en ce point,
c’est-a-dire,

lm f() = f(1) & a+p=3 1)
La fonction f est dérivable en x = 1 si les dérivées a gauche et a droite en ce point sont
égales.
fl)—f) o —a+3-3
! — _— = — —
fgauche(]') - glgliq T —1 glcllﬁ z—1 }:IHIT%ZL’ 1
=3 par (1)
—~
/ _ fl@)—f1) . ax+pf-3 . ar—a+ atf -3
fdroite(l) = lim =1 = lim = q,
z—1 r—1 z—1 r—1 z—1 r—1

Done fiuene(1) = fhoie(1) & a = 1. Il suit alors de (1) que 8 = 2.
?—-z+3, <1

ar + f3, x>1

Ainsi la fonction f: R — R, f(x) = { est dérivable sur R si et

seulement si a = 1 est § = 2.

(b) Une condition nécessaire pour la dérivabilité en z = 0 est la continuité en ce point.

4 cas se présentent selon « :

1) a=0:
: (1 : (1 (1
x%sin(z) sin (—)' = |sin(x) sin (—)‘ < |x| |sin (—)‘ <lz| —0
x x x 2—0
2) a>1
: (1
% sin(z) sin (—>‘ < |z — 0
€T x—0
3) a=—1
1 i 1
% sin(x) sin (—) ‘ = sin(x) sin (—) ‘
x x x
Or .
lim S0
z—0 x
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Mais
(1 .
sin | — | n’a pas de limite en 0
x

1

x) ‘ n’a pas de limite

Ainsi, d’apres les propriétés des limites, on a que ‘xo‘ sin(x) sin (

en 0 pour a = —1.
4) a<—-2:
1 1 i 1
% sin(z) sin (—)‘ = - sin(z) sin (—) on —a—1>1
x T T T
La suite a,, = ﬁ, n € N* nous donne la limite lim f(a,) = 0, et la suite b, =

n—oo
n € N* est telle que la suite |f(b,)| n’est pas bornée lorsque n tend vers
1

T

1
w/242mn?

I'infini. Alors ‘xa sin(x) sin ( )‘ n’a pas de limite en 0 pour a < —2.

Finalement, f ne peut étre continue que si & > 0 et 5 = 0. Posons une fonction auxiliaire

g . . 1 .
o) = {sm(x) sin (1) siz#0

0 sinon

OnaVe#0:
g'(x) = cos(z) sin (l) _ sin(z) cos (1) 1

T x) a?
On remarque que pour o = 0, f(z) = g(z). Etudions donc la valeur de la dérivée en 0 de

g
lim M = lim sin(z) sin (%) —0 = lim sin(z) sin (1)

z—0 x z—0 x z—=0 T

sin(x
Cette derniere limite n’existe pas puisque lim (z) = 1 et lim sin (l) n’existe pas. Et
x—0 €T z—0 z
ainsi, f n’est pas dérivable en x = 0 si @ = 0.

Posons maintenant aw > 1, Vo # 0 on a

f(x) = ax®g(z) + 2°¢ (z)

e (1) oo () s (1) )
ot () o) -2 ()

ce qui est une fonction bien définie et continue pour tout x # 0. Etudions donc la
dérivabilité de f en O :
2®sin(z) sin (2) — 0

lim ) = 1(0) = lim = = lim 27! <sin(az‘) sin (l>) =0
z—0 x z—0 x z—0 x

pour tout o > 1, car on a déja vu que lin% sin(z) sin (%) = 0. Finalement, f est dérivable
z—

sur R pour 8 =0 et tout a > 1, avec la dérivée continue sur R*.
Enfin pour étudier la continuité de la dérivée f’ en 2 = 0, on calcule la limite

ili% f,(l') _ ig% xo‘_l (a Sin({[’) sin (é) + $COS(J)) sin (i) - S'H;ﬂ COs (é)) .
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En utilisant que

sin(x) 1

Ve € R, |sin(z)| < 1, |cos(x)| < 1, |sin(z)| < |z| et lim
z—0 €T

On trouve que les deux premiers termes du membre entre parentheses tendent vers 0 mais

que le dernier terme n’a pas de limite en 0 mais est borné en valeur absolue par 1.

Ainsi, si @« = 1, f' n’a pas de limite en 0.

sin(x)

Si a > 2, on a pour le dernier terme lim ( ) (xa_l cos (%)) =1-0 =0, donc

z—0 €T

hH(l) f'(x) =0= f(0), et la dérivée f’ est continue en x = 0.
z—

Donc f'(z) est continue sur R pour 8 = 0 et tout o > 2.

Exercice 7.
Comme on a (go f)(0) = ¢'(f(0)) - £/(0), il faut calculer les dérivées de f et g dans les points
concernés.

i) Pour calculer f’(x), écrivons f(z) = 2z+34 (e — 1) u(z) ot u(z) = sin(z)” cos(x)*. Alors
fl(@) =2+ u(z) + (" —1)u'(z) et (x)=Tsin(x)®cos(x)® — 4sin(z)® cos(z)>.

Ainsi u(0) = «/(0) = 0 et donc f/(0) = 2.
_ 31n(z)?

Ensuite on a  ¢/(z) . Puisque f(0) = 3 on trouve finalement

_ 31In(3)2

(g0 f)(0)=4'(3)- f(0) +2=2In(3)"

it) Pour calculer f(0), il faut utiliser la définition de la dérivée :

F0) = limg JE SO B #2000y ) o

z—0 x—0 z—0 €T z—0 B

1

car lim (x sin (;)) =0 comme on a montré dans le cours.

x—0

Comme ¢'(z) = 4(z — 1)* et f(0) = 0, on obtient

(go f)(0)=g'(0)- f(0)=(—4) 2= -8.

Exercice 8.

Q1 : FAUX. { :

z WS
Prendre par exemple f(z) = ’ Q . Cette fonction est continue en z = 0

0, zeR\Q
parce qu’on a
0< f(z) < a2?
pour tout z € R. Il suit par le théoreme des deux gendarmes que hH(l) f(z) =0= f(0).
T—

Par contre f n’est pas continue ailleurs qu’en 0. En effet, soit xy € R, xy # 0. Pour n €
N*, I'intervalle ouvert ]:Eo — %7 To + %[ contient des nombres rationnels et irrationnels.
En prenant a,, € ]xo — %,xo + Hﬂ@ et b, € ]xo — %,xo + %[ﬂ (R\ Q) pour chaque
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Q2 :

Q3 :

Q4 :

Q5 :

Q6 :

Q7 :

n € N*, on obtient deux suites (a,) C Q et (b,) C R\ Q qui convergent les deux vers
o quand n — oo. Mais

lim f(a,) = lim a? =22 > 0= lim f(b,),
n—00 n—00 n—00

et donc f n’est pas continue en xg.
Pour voir que f est dérivable en = = 0, observer que

@)~ 0) _ f() _ [z v€Q
0, z€R\Q

x—0 T

et ainsi —|z| < @ < |z| pour tout x € R. De nouveau par le théoréeme des deux
gendarmes on conclut que

- fz)
/ = prmm—
1(0) = Hm T 0.
FAUX.
Prendre par exemple f(z) = |z| qui n’est pas dérivable en 0 (cf. contre-exemple du

§5.3 du cours). Les dérivées unilatérales en 0 existent mais elles ne sont pas égales.

FAUX.

. . 1
Prendre par exemple la fonction f de 'Ex. 7, f(x) = vsin(z) sm( )’ z7#0

0, z=0"
Alors f est dérivable sur | — 1,1 (en fait sur R) mais sa dérivée n’est pas continue en
0 (cf. Ex. 7).

FAUX.
En prenant f(z) = z, on a g(x) = V22 = |z| qui n’est pas dérivable en 0 (cf. cours).
FAUX.
En posant f = €%, on sait que f~! = In(z).
Or L1
—1\/ _ -
(7 @)=t # =

En général, on connait la vraie expression de la dérivée d'une fonction réciproque

1
@) = =y
0= 5w
FAUX.
1
La formule pour la dérivée de la fonction réciproque est (f~1)(z) = )
Iciona f/(z) =1+¢€" et f~!(1) = 0 puisque f(0) = 1. Ainsi
1 1 1
-1y 1 = = = -,
(@ f1(0) 14 2
FAUX.
En posant f(z) = —|z + 3|, f est dérivable en x = 0, puisque f(x) = —z — 3 pour
xr > —3.
> | = —Ie
_ ) -2 =343 =—|z|, x> =3
Foft@) ==l ~le+3/+3={ Z|-rm ST o 2

Cette fonction n’est pas dérivable en z = 0.
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Q8 : VRAL
Puisque f est dérivable pour tout z € R, et f'(a) =0, on a

(fofofofof)la)=f SN USS@NFff(a))f (f(a)f (a)=0.

10



