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Analyse I – Corrigé de la Série 10

Exercice 1.

Q1) : VRAI.

Le résultat est évident si f(I) est réduit à un point. Sinon, soient y1 et y2 deux éléments
de f(I) avec y1 < y2. Il existe x1 et x2 dans I tels que f(x1) = y1 et f(x2) = y2.

D’après le théorème des valeurs intermédiaires, tout élément de [f(x1), f(x2)] est l’image
d’un élément de [x1, x2] ou de [x2, x1] et donc [y1, y2] = [f(x1), f(x2)] ⊂ f(I) qui est un
intervalle.

Q2) : VRAI.

par le théorème de la valeur intermédiaire démontré dans le cours, voir DZ 4.3.22.

Q3) : FAUX.

Prendre par exemple I =]0, 1] et f comme suit

f : ]0, 1] → R

x 7→ 1

x

On a alors
lim
x→0

= +∞

Q4) : FAUX.

Il suffit de prendre f une fonction constante pour s’en convaincre.

Q5) : FAUX.

D’après Q3)

Q6) : FAUX.

Posons
f : [a, b[ → R

x 7→
sin

(
1

x− b

)
x− b

Cette fonction n’atteint jamais son maximum et minimum (qui sont d’ailleurs infinis).

Q7) : FAUX.

Si l’on pose
f : [a, +∞[ → R

x 7→ x sin(x)

f n’atteint ni son minimum ni son maximum puisque la fonction n’est pas bornée.

Q8) : VRAI.

f étant continue, nous avons f(I) un intervalle.

Supposons que y0 ∈ f(I). Alors il existe x0 ∈ I tel que f(x0) = y0. Puisque I est ouvert, il
existe a > 0 tel que [x0−a, x0 +a] ∈ I, et comme f est continue et strictement croissante,
on a [f(x0 − a), f(x0 + a)] ⊂ f(I). Alors pour tout point y0 ∈ f(I) il existe un intervalle
]f(x0 − a), f(x0 + a)[⊂ f(I) qui contient y0, et donc f(I) est un intervalle ouvert.
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Exercice 2.

i) Comme l’expression de f n’est pas définie en x = 1, on doit calculer sa limite en ce point.
Pour x 6= 1, on peut écrire, en utilisant a que a2 − b2 = (a− b)(a+ b) :

lim
x→1

f(x) = lim
x→1

√
x+ 1−

√
2x

√
1 + 2x−

√
3

= lim
x→1

(√
x+ 1−

√
2x

√
1 + 2x−

√
3
·
√
x+ 1 +

√
2x

√
1 + 2x+

√
3
·
√

1 + 2x+
√

3
√
x+ 1 +

√
2x

)

= lim
x→1

(
1− x

2(x− 1)
·
√

1 + 2x+
√

3
√
x+ 1 +

√
2x

)
= −1

2
lim
x→1

√
1 + 2x+

√
3

√
x+ 1 +

√
2x

= −1

2
· 2
√

3

2
√

2
= −
√

6

4

et donc le prolongement par continuité de f est

f̃ : [0,∞[−→ R, f̃(x) =


√
x+ 1−

√
2x

√
1 + 2x−

√
3
, x 6= 1

−
√

6

4
, x = 1

Remarque : Le prolongement par continuité s’écrit en fait aussi sans distinction de cas :

f̃ : [0,∞[−→ R, f̃(x) = −1

2

√
1 + 2x+

√
3

√
x+ 1 +

√
2x
.

ii) Comme l’expression de f n’est pas définie pour x ∈ A∪{0}, il faut passer aux limites. Pour
ceci, remarquons qu’on obtient pour x /∈ A ∪ {0} avec un peu de trigonométrie

tan

(
1

x

)(
1− sin2

(
1

x

))
= tan

(
1

x

)
cos2

(
1

x

)
= sin

(
1

x

)
cos

(
1

x

)
.

Soit an =
(
π
2

+ nπ
)−1 ∈ A. Alors on a

lim
x→an

f(x) = lim
x→an

sin

(
1

x

)
cos

(
1

x

)
= sin

(π
2

+ nπ
)

cos
(π

2
+ nπ

)
= (−1)n · 0 = 0,

c’est-à-dire f peut être prolongée par continuité pour tout a ∈ A. Pour x = 0 on a (en
utilisant la formule 2 sin(t) cos(t) = sin(2t)) :

lim
x→0

f(x) = lim
x→0

sin

(
1

x

)
cos

(
1

x

)
= lim

x→0

1

2
sin

(
2

x

)
qui n’existe pas.

Comme la limite lim
x→0

sin
(
1
x

)
n’existe pas, f ne peut être prolongé par continuité en x = 0.

Le prolongement par continuité de f est donc

f̃ : ]0, 1] −→ R, f̃(x) =

{
tan
(
1
x

) (
1− sin2

(
1
x

))
, x /∈ A

0 , x ∈ A

ou, sans séparation des cas, f̃ : ]0, 1]→ R, f̃(x) = sin
(
1
x

)
cos
(
1
x

)
.

2



iii) L’expression de f n’étant pas définie pour x = 1, on veut calculer la limite. Comme le
dénominateur de f s’écrit x3 − 3x+ 2 = (x− 1)2(x+ 2) on a

lim
x→1

f(x) = lim
x→1

x(x− 1)tan(x− 1)

x3 − 3x+ 2
= lim

x→1

x(x− 1)tan(x− 1)

(x− 1)2(x+ 2)

= lim
x→1

(
x

x+ 2
· tan(x− 1)

x− 1

)
= lim

x→1

x

x+ 2
· lim
x→1

tan(x− 1)

x− 1

= lim
x→1

x

x+ 2
· lim
x→1

(
sin(x− 1)

(x− 1)
· 1

cos(x− 1)

)
=

1

3
· 1 =

1

3

(Attention : La décomposition en produit de deux limites à la deuxième ligne est valable
parce que les deux limites existent.)
Ainsi le prolongement par continuité de f est

f̃ : [1, 2] −→ R, f̃(x) =


x(x− 1)tan(x− 1)

x3 − 3x+ 2
, x > 1

1
3
, x = 1

Notez que ce prolongement par continuité ne s’écrit pas sans séparation des cas.

Exercice 3.

i) On a f(−x) = f(x) . En dérivant les deux membres de cette égalité, on obtient
−f ′(−x) = f ′(x) , c’est-à-dire f ′ est impaire.

ii) On dérive f(−x) = −f(x) pour obtenir −f ′(−x) = −f ′(x) ⇔ f ′(−x) = f ′(x). Ainsi f ′

est paire.

iii) Pour f périodique, il existe T > 0 tel que f(x+ T ) = f(x) pour tout x ∈ R. En dérivant,
on a f ′(x+ T ) = f ′(x) et donc f ′ est aussi périodique.

Exercice 4.

i) f ′(x) =
5(3x2 − 1)− 6x(5x+ 2)

(3x2 − 1)2
= −15x2 + 12x+ 5

(3x2 − 1)2
; D(f) = D(f ′) = R \

{
− 1√

3
, 1√

3

}
ii) f ′(x) =

2x
√

1− x2 − x2 1
2
√
1−x2 (−2x)

1− x2
=

x(2− x2)
(1− x2)3/2

; D(f) = D(f ′) =]− 1, 1[

iii) f ′(x) = 2 sin(x) cos(x) · cos(x2) + sin(x)2 ·
(
− sin(x2)

)
· 2x

= 2 sin(x)
[

cos(x) cos(x2)− x sin(x) sin(x2)
]

; D(f) = D(f ′) = R.

iv) En appliquant la règle de dérivation d’un quotient à f(x) = tan(x) = sin(x)
cos(x)

, on obtient

f ′(x) =
cos(x)2 − sin(x) ·

(
− sin(x)

)
cos(x)2

=
1

cos(x)2

et donc D(f) = D(f ′) = R \ {x ∈ R : cos(x) = 0} = R \
{

(2k+1)π
2

: k ∈ Z
}

.
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v) Il s’agit de plusieurs composées de fonctions. Donc

f ′(x) =
1

2 ·
√

sin
(√

sin(x)
) cos

(√
sin(x)

) 1

2 ·
√

sin(x)
cos(x)

=
cos
(√

sin(x)
)

cos(x)

4 ·
√

sin
(√

sin(x)
)
·
√

sin(x)

.

Le domaine de f est

D(f) =
{
x ∈ R : sin(x) ≥ 0 et sin

(√
sin(x)

)
≥ 0
}

=
⋃
k∈Z

[
2kπ, (2k + 1)π

]
.

En effet, sin(x) ≥ 0 ⇔ x ∈
[
2kπ, (2k + 1)π

]
et pour ces valeurs, on a

√
sin(x) ∈ [0, 1] si

bien que sin
(√

sin(x)
)
≥ 0 , c’est-à-dire f est bien définie.

Pour le domaine de f ′, il faut encore exclure les points où sin(x) = 0 , c’est-à-dire

D(f ′) =
⋃
k∈Z

]
2kπ, (2k + 1)π

[
.

vi) f ′(x) = 3
5

(
2x4 + e−(4x+3)

)−2/5 (
8x3 − 4e−(4x+3)

)
=

12
(
2x3 − e−(4x+3)

)
5

5

√
(2x4 + e−(4x+3))

2
;

D(f) = D(f ′) = R (Le dénominateur de f ′ ne s’annule jamais parce que e−(4x+3) > 0 et
x4 ≥ 0 pour tout x ∈ R.)

vii) En appliquant la formule de dérivation pour les fonctions composées

f ′(x) =
1

ln(3) log2(x)
× 1

x ln(2)

=
1

ln(3) ln(2) x log2(x)

=
1

ln(2) ln(3) x
· ln(2)

ln(x)
=

1

ln(3)x ln(x)

Alors, D(f) =]1,∞[ et D(f ′) = R∗+ \ {1}
viii) En observant que f(x) = sin(x) ln(4) ecos(4x), on obtient

f ′(x) = ln(4) cos(x) ecos(4x) + ln(4) sin(x) ·
(
− 4 sin(4x)

)
· ecos(4x)

= ln(4) ecos(4x)
(

cos(x)− 4 sin(x) sin(4x)
)
.

D(f) = D(f ′) = R
ix ) Avant d’utiliser la formule de la dérivation d’un quotient, posons séparément les fonctions

numérateur et dénominateur

n : R → R
x 7→ 3x cos(x)
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d : R → R
x 7→ 2

√
x2+1

n′(x) = ln(3)3x cos(x)− 3x sin(x)

et
d′(x) = ln(2)2

√
x2+1 × x√

x2 + 1

On peut ainsi calculer plus aisément f ′(x)

f ′(x) =
(ln(3)3x cos(x)− 3x sin(x)) 2

√
x2+1 −

(
ln(2)2

√
x2+1 × x√

x2+1

)
3x cos(x)

22
√
x2+1

=
ln(3)3x cos(x)− 3x sin(x)− ln(2) x√

x2+1
3x cos(x)

2
√
x2+1

= 3x
cos(x)

(
ln(3)− ln(2) x√

x2+1

)
− sin(x)

2
√
x2+1

On a D(f) = D(f ′) = R

Exercice 5.

i) Pour m ≤ 0, f n’est pas continue en x = 0 et donc pas dérivable non plus. En effet, on a

pour m = 0 : lim
x→0

f(x) = lim
x→0

f(x) = sin(1) 6= 0 = f(0),

pour m ≤ −1 : lim
x→0

sin

(
1

x|m|

)
n’existe pas.

Pour m ≥ 1, f est continue en x = 0 (car sin(0) = 0) et sa dérivée en ce point est

f ′(0) = lim
x→0

f(x)− f(0)

x− 0
= lim

x→0

sin(xm)

x
=
(

lim
x→0

xm−1
)
·
(

lim
x→0

sin(xm)

xm

)
︸ ︷︷ ︸

=1

=

{
1 , m = 1

0 , m ≥ 2

Ainsi f est dérivable en x = 0 pour tout m ≥ 1.

La dérivée de f pour x 6= 0 est f ′(x) = mxm−1 cos(xm) et donc pour m ≥ 1,

lim
x→0

f ′(x) =

{
1 , m = 1
0 , m ≥ 2

}
= f ′(0).

Ainsi f ′ est continue en x = 0 pour tout m ≥ 1.

ii) On a

f ′(0) = lim
x→0

f(x)− f(0)

x− 0
= lim

x→0
xm−1 sin

(
1

x

)
=

{
0, si m ≥ 2

n’existe pas, si m ≤ 1

Donc f admet une dérivée au point x = 0 si et seulement si m ≥ 2 et on va seulement
considérer ce cas ci-après.
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La dérivée pour x 6= 0 est donnée par

f ′(x) = mxm−1 sin

(
1

x

)
− xm−2 cos

(
1

x

)
.

Pour m = 2, la limite lim
x→0

f ′(x) n’existe pas car lim
x→0

cos
(
1
x

)
n’existe pas (cf. Ex. 6iii Série 9).

Ainsi f ′ existe partout mais n’est pas continue en x = 0 dans ce cas.

Pour m ≥ 3, la limite existe et on a lim
x→0

f ′(x) = 0 = f ′(0). Donc f ′ est continue en x = 0.

Exercice 6.

(a) En tant que fonction polynomiale, f est dérivable sur R \ {1}. Il reste donc à étudier la
dérivabilité de f en x = 1.

Une condition nécessaire pour la dérivabilité en x = 1 est la continuité en ce point,
c’est-à-dire,

lim
x→1

f(x) = f(1) ⇔ α + β = 3. (1)

La fonction f est dérivable en x = 1 si les dérivées à gauche et à droite en ce point sont
égales.

f ′gauche(1) = lim
x→1

f(x)− f(1)

x− 1
= lim

x→1

x2 − x+ 3− 3

x− 1
= lim

x→1
x = 1

f ′droite(1) = lim
x→1

f(x)− f(1)

x− 1
= lim

x→1

αx+ β − 3

x− 1
= lim

x→1

αx− α +

=3 par (1)︷ ︸︸ ︷
α + β −3

x− 1
= α,

Donc f ′gauche(1) = f ′droite(1) ⇔ α = 1. Il suit alors de (1) que β = 2.

Ainsi la fonction f : R → R, f(x) =

{
x2 − x+ 3 , x ≤ 1

αx+ β , x > 1
est dérivable sur R si et

seulement si α = 1 est β = 2.

(b) Une condition nécessaire pour la dérivabilité en x = 0 est la continuité en ce point.

4 cas se présentent selon α :

1) α = 0 : ∣∣∣∣xα sin(x) sin

(
1

x

)∣∣∣∣ =

∣∣∣∣sin(x) sin

(
1

x

)∣∣∣∣ ≤ |x| ∣∣∣∣sin(1

x

)∣∣∣∣ ≤ |x| −→x→0
0

2) α ≥ 1 : ∣∣∣∣xα sin(x) sin

(
1

x

)∣∣∣∣ ≤ |xα| −→x→0
0

3) α = −1 : ∣∣∣∣xα sin(x) sin

(
1

x

)∣∣∣∣ =

∣∣∣∣sin(x)

x

∣∣∣∣ ∣∣∣∣sin(1

x

)∣∣∣∣
Or

lim
x→0

sin(x)

x
= 1
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Mais

sin

(
1

x

)
n’a pas de limite en 0

Ainsi, d’après les propriétés des limites, on a que
∣∣xα sin(x) sin

(
1
x

)∣∣ n’a pas de limite
en 0 pour α = −1.

4) α ≤ −2 : ∣∣∣∣xα sin(x) sin

(
1

x

)∣∣∣∣ =

∣∣∣∣ 1

x−α−1

∣∣∣∣ ∣∣∣∣sin(x)

x
sin

(
1

x

)∣∣∣∣ où − α− 1 ≥ 1

La suite an = 1
2πn

, n ∈ N∗ nous donne la limite lim
n→∞

f(an) = 0, et la suite bn =
1

π/2+2πn
, n ∈ N∗ est telle que la suite |f(bn)| n’est pas bornée lorsque n tend vers

l’infini. Alors
∣∣xα sin(x) sin

(
1
x

)∣∣ n’a pas de limite en 0 pour α ≤ −2.

Finalement, f ne peut être continue que si α ≥ 0 et β = 0. Posons une fonction auxiliaire
g

g(x) =

{
sin(x) sin

(
1
x

)
si x 6= 0

0 sinon

On a ∀x 6= 0 :

g′(x) = cos(x) sin

(
1

x

)
− sin(x) cos

(
1

x

)
1

x2

On remarque que pour α = 0, f(x) = g(x). Étudions donc la valeur de la dérivée en 0 de
g

lim
x→0

g(x)− g(0)

x
= lim

x→0

sin(x) sin
(
1
x

)
− 0

x
= lim

x→0

sin(x)

x
sin

(
1

x

)
.

Cette dernière limite n’existe pas puisque lim
x→0

sin(x)

x
= 1 et lim

x→0
sin
(
1
x

)
n’existe pas. Et

ainsi, f n’est pas dérivable en x = 0 si α = 0.

Posons maintenant α ≥ 1, ∀x 6= 0 on a

f ′(x) = αxα−1g(x) + xαg′(x)

= αxα−1 sin(x) sin

(
1

x

)
+ xα

(
cos(x) sin

(
1

x

)
− sin(x) cos

(
1

x

)
1

x2

)
= xα−1

(
α sin(x) sin

(
1

x

)
+ x cos(x) sin

(
1

x

)
− sin(x)

x
cos

(
1

x

))
ce qui est une fonction bien définie et continue pour tout x 6= 0. Étudions donc la
dérivabilité de f en 0 :

lim
x→0

f(x)− f(0)

x
= lim

x→0

xα sin(x) sin
(
1
x

)
− 0

x
= lim

x→0
xα−1

(
sin(x) sin

(
1

x

))
= 0

pour tout α ≥ 1, car on a déjà vu que lim
x→0

sin(x) sin
(
1
x

)
= 0. Finalement, f est dérivable

sur R pour β = 0 et tout α ≥ 1, avec la dérivée continue sur R∗.
Enfin pour étudier la continuité de la dérivée f ′ en x = 0, on calcule la limite

lim
x→0

f ′(x) = lim
x→0

xα−1
(
α sin(x) sin

(
1

x

)
+ x cos(x) sin

(
1

x

)
− sin(x)

x
cos

(
1

x

))
.
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En utilisant que

∀x ∈ R, | sin(x)| ≤ 1, | cos(x)| ≤ 1, | sin(x)| ≤ |x| et lim
x→0

sin(x)

x
= 1

On trouve que les deux premiers termes du membre entre parenthèses tendent vers 0 mais
que le dernier terme n’a pas de limite en 0 mais est borné en valeur absolue par 1.

Ainsi, si α = 1, f ′ n’a pas de limite en 0.

Si α ≥ 2, on a pour le dernier terme lim
x→0

(
sin(x)

x

) (
xα−1 cos

(
1
x

))
= 1 · 0 = 0, donc

lim
x→0

f ′(x) = 0 = f ′(0), et la dérivée f ′ est continue en x = 0.

Donc f ′(x) est continue sur R pour β = 0 et tout α ≥ 2.

Exercice 7.
Comme on a (g ◦ f)′(0) = g′(f(0)) · f ′(0), il faut calculer les dérivées de f et g dans les points
concernés.

i) Pour calculer f ′(x), écrivons f(x) = 2x+3+(ex − 1)u(x) où u(x) = sin(x)7 cos(x)4. Alors

f ′(x) = 2 + ex u(x) + (ex − 1)u′(x) et u′(x) = 7 sin(x)6 cos(x)5 − 4 sin(x)8 cos(x)3.

Ainsi u(0) = u′(0) = 0 et donc f ′(0) = 2.

Ensuite on a g′(x) =
3 ln(x)2

x
. Puisque f(0) = 3 on trouve finalement

(g ◦ f)′(0) = g′(3) · f ′(0) =
3 ln(3)2

3
· 2 = 2 ln(3)2.

ii) Pour calculer f ′(0), il faut utiliser la définition de la dérivée :

f ′(0) = lim
x→0

f(x)− f(0)

x− 0
= lim

x→0

x2 sin
(
1
x

)
+ 2x− 0

x
= lim

x→0

(
x sin

(
1
x

)
+ 2
)

= 2

car lim
x→0

(
x sin

(
1
x

))
= 0 comme on a montré dans le cours.

Comme g′(x) = 4(x− 1)3 et f(0) = 0, on obtient

(g ◦ f)′(0) = g′(0) · f ′(0) = (−4) · 2 = −8.

Exercice 8.

Q1 : FAUX.

Prendre par exemple f(x) =

{
x2, x ∈ Q
0 , x ∈ R \Q

. Cette fonction est continue en x = 0

parce qu’on a
0 ≤ f(x) ≤ x2

pour tout x ∈ R. Il suit par le théorème des deux gendarmes que lim
x→0

f(x) = 0 = f(0).

Par contre f n’est pas continue ailleurs qu’en 0. En effet, soit x0 ∈ R, x0 6= 0. Pour n ∈
N∗, l’intervalle ouvert

]
x0− 1

n
, x0 + 1

n

[
contient des nombres rationnels et irrationnels.

En prenant an ∈
]
x0 − 1

n
, x0 + 1

n

[
∩Q et bn ∈

]
x0 − 1

n
, x0 + 1

n

[
∩ (R \Q) pour chaque

8



n ∈ N∗, on obtient deux suites (an) ⊂ Q et (bn) ⊂ R \Q qui convergent les deux vers
x0 quand n→∞. Mais

lim
n→∞

f(an) = lim
n→∞

a2n = x20 > 0 = lim
n→∞

f(bn),

et donc f n’est pas continue en x0.

Pour voir que f est dérivable en x = 0, observer que

f(x)− f(0)

x− 0
=
f(x)

x
=

{
x, x ∈ Q

0, x ∈ R \Q

et ainsi −|x| ≤ f(x)
x
≤ |x| pour tout x ∈ R. De nouveau par le théorème des deux

gendarmes on conclut que

f ′(0) = lim
x→0

f(x)

x
= 0 .

Q2 : FAUX.
Prendre par exemple f(x) = |x| qui n’est pas dérivable en 0 (cf. contre-exemple du
§ 5.3 du cours). Les dérivées unilatérales en 0 existent mais elles ne sont pas égales.

Q3 : FAUX.

Prendre par exemple la fonction f de l’Ex. 7, f(x) =

{
x sin(x) sin

(
1
x

)
, x 6= 0

0 , x = 0
.

Alors f est dérivable sur ]− 1, 1[ (en fait sur R) mais sa dérivée n’est pas continue en
0 (cf. Ex. 7).

Q4 : FAUX.
En prenant f(x) = x, on a g(x) =

√
x2 = |x| qui n’est pas dérivable en 0 (cf. cours).

Q5 : FAUX.

En posant f = ex, on sait que f−1 = ln(x).

Or (
f−1
)′

(x) =
1

x
6= 1

ex

En général, on connâıt la vraie expression de la dérivée d’une fonction réciproque(
f−1
)′

(x) =
1

f ′(f−1(x))

Q6 : FAUX.

La formule pour la dérivée de la fonction réciproque est (f−1)′(x) =
1

f ′(f−1(x))
.

Ici on a f ′(x) = 1 + ex et f−1(1) = 0 puisque f(0) = 1. Ainsi

(f−1)′(1) =
1

f ′(0)
=

1

1 + e0
=

1

2
.

Q7 : FAUX.

En posant f(x) = −|x + 3|, f est dérivable en x = 0, puisque f(x) = −x − 3 pour
x ≥ −3.

Or

f ◦ f(x) = −| − |x+ 3|+ 3| =
{
−| − x− 3 + 3| = −|x|, x ≥ −3
−|x+ 3 + 3| = −|x+ 6|, x < −3

Cette fonction n’est pas dérivable en x = 0.
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Q8 : VRAI.
Puisque f est dérivable pour tout x ∈ R, et f ′(a) = 0, on a

(f ◦ f ◦ f ◦ f ◦ f)′(a) = f ′(f(f(f(f(a)))))f ′(f(f(f(a))))f ′(f(f(a)))f ′(f(a))f ′(a) = 0.
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