
Kapitel 4

Komplexe Zahlen

Die Menge der komplexen Zahlen [nombres complexes] (oder auch: komplexe Ebene
[plan complexe]) ist definiert als

C = {x+ iy : x, y 2 R},

wobei i die imaginäre Einheit [l’unité imaginaire] ist mit i2 = �1.
Für eine komplexe Zahl z = x + iy heisst x Realteil [partie reelle] und y Ima-

ginärteil [partie imaginaire] von z. Wir schreiben x = Re(z) und y = Im(z).

4.1 Operationen mit komplexen Zahlen
Vom algebraischen Standpunkt betrachtet, sind komplexe Zahlen einfach Paare von
reellen Zahlen und die Bezeichnung x+ iy hilft lediglich, sich die folgenden Opera-
tionen besser merken zu können. Wir definieren auf C die folgenden Operationen
als Addition und Multiplikation:

+ : C⇥ C ! C, (x1 + iy1) + (x2 + iy2) := (x1 + x2) + i(y1 + y2),
· : C⇥ C ! C, (x1 + iy1) · (x2 + iy2) := (x1x2 � y1y2) + i(x1y2 + y1x2).

Es ist eine einfache (wenn auch lästige) Übung nachzuweisen, dass die üblichen
Rechenregeln für Addition und Multiplikation, also Axiom 1 a)–g) und Axiom 1 i),
auch für komplexe Zahlen gelten.

Die komplexeKonjugierte [le conjugué] einer komplexen Zahl z = x+iy entsteht
durch Wechsel des Vorzeichens vom Imaginärteil:

z := x� iy.

Die Konjugation verträgt sich gut mit der Addition und Multiplikation; es gelten

z1 + z2 = z1 + z2, z1 · z2 = z1 · z2, 8z1, z2 2 C. (4.1)
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Abbildung 4.1. Addition und Konjugation in der komplexen Zahlenebene

Bei der Addition sieht man dies sofort ein. Bei der Multiplikation lässt sich das auch
einfach nachrechnen:

z1 · z2 = (x1x2 � y1y2)� i(x1y2 + y1x2)

= (x1x2 � (�y1) · (�y2)) + i(x1 · (�y2) + (�y1) · x2)

= z1 · z2.

Mittels der Konjugierten lassen sich Real- und Imaginärteile einer komplexen Zahl
rekonstruieren. Aus

z + z = x+ iy + x� iy = 2x

z � z = x+ iy � x+ iy = 2iy

folgen die Beziehungen

Re(z) =
1

2
(z + z), i · Im(z) =

1

2
(z � z).

Der Betrag einer komplexen Zahl [module d’un nombre complexe] ist die eukli-
dische Länge des Vektors

�x
y

�
in der komplexen Zahlenebene:

|z| :=
p

x2 + y2.

Es gilt die Dreiecksungleichung

|z1 + z2|  |z1|+ |z2|.

Ausserdem gilt die wichtige Beziehung

z · z = x2 + y2 = |z|2.
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Für z 6= 0 (d.h., Real- und Imaginärteil sind nicht gleichzeitig Null) folgt also
z · z/|z|2 = 1 oder, anders ausgedrückt:

z�1 =
z

|z|2 =
x� iy

x2 + y2

Damit können wir die Division z1/z2 für z2 6= 0 wie folgt definieren

z1
z2

:= z1z
�1
2 =

x1x2 + y1y2
x2
2 + y22

+ i
x2y1 � x1y2
x2
2 + y22

.

Zusammenfassend ergibt sich die folgende Aussage.

Theorem 4.1 C ist ein Körper, d.h., alle Rechenregeln von Axiom 1 sind
erfüllt.

Es ist nicht möglich, zwei komplexe Zahlen z1, z2 sinnvoll zu vergleichen. Insbe-
sondere gibt es keine Ordnung, die alle Forderungen von Axiom 2 erfüllt. Daher
ist es auch nicht möglich, die Begri↵e des Supremums oder Infimums auf komplexe
Zahlen sinnvoll zu übertragen.

4.2 Polarform
Komplexe Zahlen können als Vektoren in der Ebene aufgefasst werden; siehe auch
Abbildung 4.1. Die Polarform [forme polaire] des Vektors ergibt die Darstellung

z = ⇢(cos'+ i sin'),

wobei ⇢ = |z| =
p
x2 + y2 der Betrag von z = x + iy ist und man den Winkel

' auch als Argument [argument] (oder Phase) von z bezeichnet. Wir schreiben
' = arg(z); es ist aber zu beachten dass das Argument nur bis auf 2k⇡ mit k 2 Z ein-
deutig bestimmt ist. Manchmal wird das Argument auf ein Intervall eingeschränkt,
z. B. ' 2]� ⇡,⇡], um es eindeutig festzulegen.

Für z 6= 0 berechnet man das Argument ' von z = x+ iy mittels der trigonome-
trischen Beziehungen aus

' =

8
>>>><

>>>>:

arctan(y/x) für x > 0 und y 2 R,
⇡/2 für x = 0 und y > 0,
arctan(y/x) + ⇡ für x < 0 und y � 0,
arctan(y/x)� ⇡ für x < 0 und y < 0,
�⇡/2 für x = 0 und y < 0.

Für z = 0 lässt man das Argument einfach undefiniert.
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Die Multiplikation zweier komplexer Zahlen in Polarform lässt sich mit Hilfe der
Additionstheoreme wie folgt schreiben:

z1z2 = ⇢1(cos'1 + i sin'1) · ⇢2(cos'2 + i sin'2)

= ⇢1⇢2
�
cos('1 + '2) + i sin('1 + '2)

�
. (4.2)

Also ist das Argument von z1z2 die Summe der Argumente von z1 und z2, bis auf
Addition/Subtraktion von 2k⇡ mit k 2 Z.

Geometrisch bedeutet (4.2): Die Multiplikation mit z2 verlängert z1 um den
Faktor ⇢2 und dreht den Winkel von z1 im entgegensetzten Uhrzeigersinn um '2.
Aus dieser Multiplikationsregel ergibt sich die folgende bequeme Formel für die
Potenzierung komplexer Zahlen:

Formel von Moivre: zn =
⇥
⇢(cos'+ i sin')

⇤n
= ⇢n(cosn'+ i sinn').

Umgekehrt sind die n Zahlen

!k = n
p
⇢


cos

✓
'+ 2k⇡

n

◆
+ i sin

✓
'+ 2k⇡

n

◆�
, k = 0, 1, . . . , n� 1,

allesamt n-te Wurzeln von z = ⇢(cos'+i sin'), das heisst, sie erfüllen die Beziehung
!n = z.

4.3 Folgen und Reihen von komplexen Zahlen
Eine Folge komplexer Zahlen (zn) entspricht zwei Folgen reeller Zahlen (xn) und
(yn) mit

zn = xn + iyn .

Somit können wir sagen, dass (zn) gegen z1 = x1 + y1i konvergiert genau dann
wenn lim

n!1
xn = x1 und lim

n!1
yn = y1. Alternativ kann man auch Definition 2.3

entsprechend anpassen.

Definition 4.2 Eine Folge (zn) von komplexen Zahlen konvergiert genau dann
gegen ein z1 2 C, wenn für jedes (noch so kleine) " > 0 ein N = N" existiert, so
dass

|z1 � zn|  " für alle n � N.

Wir nennen z1 Grenzwert von (zn) und schreiben z1 = lim
n!1

zn oder auch

zn
n!1! z1.

Beide Definitionen (Definition 4.2 vs. Konvergenz Real+Imaginärteil) sind äqui-
valent. Von den Konvergenzkriterien für Folgen von reellen Zahlen lassen sich nur
das Quotientenkriterium und das Cauchy-Kriterium direkt übertragen. Die anderen
Kriterien (Konvergenz monotoner Folgen, zwei Polizisten, lim inf = lim sup) können
aufgrund der fehlenden Vergleichsmöglichkeit nicht direkt auf komplexe Zahlen son-
dern nur auf Real- und Imaginärteil separat angewendet werden.

Anhand der obigen Definition lässt sich nun auch eine Reihe von komplexen
Zahlen als Partialsummenfolge mit dem entsprechenden Grenzwert definieren.
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Beispiel 4.3 Für eine komplexe Zahl z = 0+ iy 2 C mit y 2 R betrachten wir die
Reihe, d.h., die Partialsummenfolge (Sn) von

eiy =
1X

k=0

(iy)k

k!
.

Wir sehen, dass die Terme für gerades k reell sind, während die Terme für ungerades
k rein imaginär sind. Wir können also für jedes n 2 N schreiben:

Sn =
nX

k=0

(iy)k

k!
=

nX

k=0
k gerade

(iy)k

k!
+

nX

k=1
k ungerade

(iy)k

k!

=
nX

k=0
k gerade

(�1)
k
2 yk

k!
+ i

nX

k=1
k ungerade

(�1)
k�1
2 yk

k!

=

n
2X

m=0

(�1)m
y2m

(2m)!
+ i

n�1
2X

m=0

(�1)m
y2m+1

(2m+ 1)!

=: an + bni

Also sind an = Re(Sn) und bn = Im(Sn) Partialsummen der konvergenten Reihen
(Quotientenkriterium)

1X

m=0

(�1)m
y2m

(2m)!
und

1X

m=0

(�1)m
y2m+1

(2m+ 1)!
.

Insgesamt haben wir die folgende wichtige Beziehung für y 2 R:

eiy =
1X

k=0

(iy)k

k!
=

1X

m=0

(�1)m
y2m

(2m)!
+ i

1X

m=0

(�1)m
y2m+1

(2m+ 1)!
. (4.3)

⇧

Definition 4.4 Die Exponentialfunktion [fonction exponentielle] einer komple-
xen Zahl z 2 C ist durch die Potenzreihe

exp(z) = ez =
1X

k=0

zk

k!

definiert. Diese Potenzreihe konvergiert für jedes z 2 C.

Man kann auch zeigen, dass

exp(z) = lim
n!1

⇣
1 +

z

n

⌘n

für jede komplexe Zahl z 2 C gilt. Die bereits für reelle Zahlen bekannte Beziehung
(siehe Lemma 3.18)

ez1+z2 = ez1 · ez1

gilt auch für komplexe Zahlen z1, z2 2 C.



38 Version 3. Oktober 2022 Kapitel 4. Komplexe Zahlen

4.4 Potenzreihen von trigonometrischen Funktionen
Die beiden Potenzreihen in (4.3) haben eine besondere Bedeutung; der Cosinus
und Sinus von komplexen Zahlen werden so definiert:

cos z :=
1X

m=0

(�1)m
z2m

(2m)!
, sin z :=

1X

m=0

(�1)m
z2m+1

(2m+ 1)!
.

Man rechnet leicht nach, dass

cos z =
eiz + e�iz

2
, sin z =

eiz � e�iz

2i
. (4.4)

Ausserdem lässt sich die Beziehung (4.3) jetzt kürzer schreiben:

eiy = cos y + i sin y, y 2 R.
Die rechte Seite dieser sogenannten Euler’schen Formel [Formule d’Euler] kennen
wir bereits von der Polarform einer komplexen Zahl. Es gilt insbesondere

z = ⇢(cos'+ i sin') = ⇢ei'.

Ähnlich zu Cosinus und Sinus lassen sich auch der Cosinus Hyperbolicus [co-
sinus hyperbolique] und Sinus Hyperbolicus [sinus hyperbolique] einer komplexen
(oder auch reellen) Zahl z definieren:

cosh z =
ez + e�z

2
=

1X

m=0

z2m

(2m)!

sinh z =
ez � e�z

2
=

1X

m=0

z2m+1

(2m+ 1)!

Man kann zeigen, dass diese Potenzreihen für jedes z 2 C konvergieren (d.h. der
Konvergenzradius ist unendlich).

Die üblichen Eigenschaften sind im folgenden Theorem zusammengefasst und
schnell nachgerechnet.

Theorem 4.5 Für reelles r 2 R sind

cos r ; sin r ; cosh r ; sinh r

reelle Zahlen und es gelten die folgenden Identitäten (z, w 2 C;x, y 2 R):
cos(z) = cosh(i z) und i sin(z) = sinh(i z)

cos(�z) = cos z und sin(�z) = � sin z

cos(z ± w) = cos(z) cos(w)⌥ sin(z) sin(w)

sin(z ± w) = sin(z) cos(w)± cos(z) sin(w)

1 = cos2 z + sin2 z

eiz = cos z + i sin z

ex+iy = ex(cos y + i sin y)

|ex+iy| = ex

(cos z + i sin z)n = cos(nz) + i sin(nz) wenn n 2 N
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cosh(z) = cos(i z) und i sinh(z) = sin(i z)

cosh(�z) = cosh z und sinh(�z) = � sinh z

cosh(z ± w) = cosh(z) cosh(w)± sinh(z) sinh(w)

sinh(z ± w) = sinh(z) cosh(w)± cosh(z) sinh(w)

1 = cosh2 z � sinh2 z

ez = cosh z + sinh z

4.5 Der Logarithmus?

Für gegebenes z 2 C betrachten wir die Gleichung

z = ew (4.5)

und stellen uns die üblichen Fragen: Für welche z gibt es Lösungen in C, sind sie
eindeutig etc. Wenn eine solche Lösung w existiert, nennen wir sie Logarithmus
[logarithme] von z.

Wir betrachten zunächst den Logarithmus von reellen Zahlen, also die Gleichung

r = ex, mit r, x 2 R . (4.6)

Es ist leicht zu sehen, dass für x 2 R, x � 0 gilt

ex = lim
n!1

⇣
1 +

x

n

⌘n
� 1

und e�x = 1
ex . Somit kann es keine Lösung der Gleichung (4.6) für r = 0 geben. Es

kann auch keine reelle Lösung für r < 0 geben. Wie wir gleich sehen werden, existiert
für alle anderen Fälle, also r > 0, genau eine reelle Lösung x. Diese bezeichnen wir
als (natürlichen) Logarithmus von z mit

x = log r.

Oft schreibt man auch ln r anstatt von log r.
Aus ex1+x2 = ex1 · ex2 folgt

log r1 + log r2 = log(r1 · r2), r1, r2 2 R. (4.7)

Lemma 4.6 Für jedes r 2 R, r > 0 existiert ein eindeutiges x 2 R das die Bezie-
hung

ex = r oder auch x = log r

erfüllt. Wenn r 2]0 , 2] erhält man dieses x aus der Potenzreihe

x := �
1X

k=1

(�1)k
(r � 1)k

k

Tobias

Tobias

Tobias
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Insbesondere gilt also log 2 = �
P1

k=1
(�1)k

k . Wenn r > 2, so existiert n 2 N, so
dass r 2]2n, 2n+1] und man setzt

x := n log 2�
1X

k=1

(�1)k
(r � 2n)k

2nkk

Der Konvergenzradius dieser Reihe ist 2n; sie konvergiert also für jedes r 2]0, 2n+1].

Hier tre↵en wir für r = 2 unsere alte Freundin, die alternierende harmonische Reihe,
wieder.

Wie lässt sich Lemma 4.6 auf komplexe Zahlen erweiteren? Wir zerlegen dazu
w = Re(w) + i · Im(w):

z = ew = eRe(w)
�
cos Im(w) + i sin Im(w)

�
. (4.8)

Dies ist (fast) die Polarform von z, ausser dass Im(w) nicht notwendigerweise auf
] � ⇡,⇡] eingeschränkt ist. Nehmen wir die Einschränkung �⇡ < Im(w)  ⇡ noch
vor, so erhält man den komplexen Logarithmus.

Definition 4.7 Der Hauptwert des Logarithmus [détermination principale
du logarithme] einer komplexen Zahl z 2 C \ {0} ist gegeben durch

log z := log |z|+ i arg(z), arg(z) 2]� ⇡,⇡].

Man sieht leicht, dass sich die Gleichung (4.8) nicht verändert, wenn der Ima-
ginärteil von w um 2k⇡ für ein k 2 Z verschoben wird. Also erfüllt

wk = log |z|+ i
�
arg(z) + 2k⇡

�

ebenfalls ewk = z. Diese Lösung wird als k-ter Nebenwert (für k 6= 0) oder k-ter
Zweig der Logarithmusfunktion bezeichnet.

Man muss bei Logarithmen von komplexen Zahlen ein wenig aufpassen. Zum
Beispiel gilt die Beziehung (4.7) nur nachdem das Argument von logw1+logw2 um
entsprechende ganzzahlige Vielfache von 2⇡ verschoben wurde. So ist

log(i3) = log(�i) = log(1)� i
⇡

2
= �i

⇡

2
, 3 log i = i

3⇡

2
.

Also gilt die Beziehung log(i3) = 3 log i nur nachdem das Argument von 3 log i um
�2⇡ verschoben wurde.

Der Logarithmus erlaubt es rationale und sogar komplexe Potenzen zu definieren.

Definition 4.8 Seien z 2 C \ {0} und ↵ 2 C. Dann definieren wir

z↵ := e↵ log z.


