Kapitel 4

Komplexe Zahlen

Die Menge der komplexen Zahlen [nombres complexes] (oder auch: komplexe Ebene
[plan complexe]) ist definiert als

C={z+iy: =,y € R},

wobei i die imaginiire Einheit [l’unité imaginaire] ist mit i? = —1.
Fiir eine komplexe Zahl z = x + iy heisst « Realteil [partie reelle/ und y Ima-
gindrteil [partie imaginaire] von z. Wir schreiben z = Re(z) und y = Im(z).

4.1 Operationen mit komplexen Zahlen

Vom algebraischen Standpunkt betrachtet, sind komplexe Zahlen einfach Paare von
reellen Zahlen und die Bezeichnung z + iy hilft lediglich, sich die folgenden Opera-
tionen besser merken zu kénnen. Wir definieren auf C die folgenden Operationen
als Addition und Multiplikation:

+: CxC—=C, (x1+4iy)+ (z2+iy2) = (1 + z2) +i(y1 + y2),
CxC—C, (x1+iy)- (z2+iy) := (x122 — y1y2) +i(z1y2 + y122).

Es ist eine einfache (wenn auch listige) Ubung nachzuweisen, dass die iiblichen
Rechenregeln fiir Addition und Multiplikation, also Axiom 1 a)-g) und Axiom 1 i),
auch fiir komplexe Zahlen gelten.

Die komplexe Konjugierte [le conjugué] einer komplexen Zahl z = z+iy entsteht
durch Wechsel des Vorzeichens vom Imaginérteil:

Z:=x — iy.

Die Konjugation vertragt sich gut mit der Addition und Multiplikation; es gelten

21V 2 =7%14+%3, Z1 23=7%"22, Vz1,29 €C. (4.1)
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Abbildung 4.1. Addition und Konjugation in der komplexen Zahlenebene

Bei der Addition sieht man dies sofort ein. Bei der Multiplikation ldsst sich das auch
einfach nachrechnen:

Z1 - 22 = (1172 — y1y2) — i(@1y2 + Y122)
= (v122 — (=v1) - (—y2)) +i(z1 - (—y2) + (=y1) - 22)

Mittels der Konjugierten lassen sich Real- und Imaginérteile einer komplexen Zahl
rekonstruieren. Aus

z+z=cs+iyt+ax—iy=2x
z—Z=x+iy—x+iy = 2iy

folgen die Beziehungen

Re(z) = %(z—i—?), i Tm(z) = %(z—?).

Der Betrag einer komplexen Zahl [module d’un nombre compleze] ist die eukli-
dische Lénge des Vektors (z) in der komplexen Zahlenebene:

2] = Va2 1 2.
Es gilt die Dreiecksungleichung
|21 + 22| < |z1] + |22].
Ausserdem gilt die wichtige Beziehung

z-Z=a>+y* = 2%
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Fir z # 0 (d.h., Real- und Imaginérteil sind nicht gleichzeitig Null) folgt also
z-Z/|z|* = 1 oder, anders ausgedriickt:

1 z T —1y

REERREET

Damit konnen wir die Division z1 /22 fiir zo # 0 wie folgt definieren

AL, o1 T2 +Y1y2 | . T2Y1 — T1Y2
T Al T 2 2 2 2
29 Ty + Ya )

Zusammenfassend ergibt sich die folgende Aussage.

Theorem 4.1 C ist ein Kérper, d.h., alle Rechenregeln von Aziom 1 sind
erfillt.

Es ist nicht moglich, zwei komplexe Zahlen z1, zo sinnvoll zu vergleichen. Insbe-
sondere gibt es keine Ordnung, die alle Forderungen von Axiom 2 erfiillt. Daher
ist es auch nicht moglich, die Begriffe des Supremums oder Infimums auf komplexe
Zahlen sinnvoll zu tibertragen.

4.2 Polarform

Komplexe Zahlen kénnen als Vektoren in der Ebene aufgefasst werden; siehe auch
Abbildung 4.1. Die Polarform [forme polaire] des Vektors ergibt die Darstellung

z = p(cos p + isin p),

wobei p = |z| = /22 4+ y? der Betrag von z = z + iy ist und man den Winkel
¢ auch als Argument [argument]/ (oder Phase) von z bezeichnet. Wir schreiben
p = arg(z); es ist aber zu beachten dass das Argument nur bis auf 2k7 mit k € Z ein-
deutig bestimmt ist. Manchmal wird das Argument auf ein Intervall eingeschrankt,
z. B. ¢ €] — 7, 7], um es eindeutig festzulegen.

Fiir z # 0 berechnet man das Argument ¢ von z = = + iy mittels der trigonome-
trischen Beziehungen aus

arctan(y/x) fir x >0 und y € R,
w/2 fir x =0 und y > 0,
p =1 arctan(y/z)+ 7 firz <0undy >0,
arctan(y/xz) — 7 fiir x < 0 und y < 0,
—m/2 fir z =0 und y < 0.

Fiir z = 0 ldsst man das Argument einfach undefiniert.
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Die Multiplikation zweier komplexer Zahlen in Polarform ldsst sich mit Hilfe der
Additionstheoreme wie folgt schreiben:

2122 = p1(cos p1 +1isinpy) - pa(cos pa + isin pg)
= p1p2(cos(p1 + p2) +isin(pr + ¢2)). (4.2)

Also ist das Argument von z;zo die Summe der Argumente von z; und 2o, bis auf
Addition/Subtraktion von 2k7 mit k € Z.

Geometrisch bedeutet (4.2): Die Multiplikation mit 2z, verlingert z; um den
Faktor py und dreht den Winkel von z; im entgegensetzten Uhrzeigersinn um ¢s.
Aus dieser Multiplikationsregel ergibt sich die folgende bequeme Formel fiir die
Potenzierung komplexer Zahlen:

Formel von Moivre: 2" = [p(cos ¢ + isin <p)]n = p"(cosny +isinny).

Umgekehrt sind die n Zahlen
2k 2k
wr = Yp {cos (W> + isin (Wﬂ , k=0,1,...,n—1,
n n

allesamt n-te Wurzeln von z = p(cos p+isin ¢), das heisst, sie erfiillen die Beziehung

w" = z.

4.3 Folgen und Reihen von komplexen Zahlen

Eine Folge komplexer Zahlen (z,) entspricht zwei Folgen reeller Zahlen (z,) und
(yn) mit

Zn = Ty +1Yn -
Somit konnen wir sagen, dass (z,,) gegen zoo = Too + Yool konvergiert genau dann

wenn lim x, = T und lim ¥, = Yoo. Alternativ kann man auch Definition 2.3
n— oo n—00

entsprechend anpassen.

Definition 4.2 FEine Folge (z,) von komplexen Zahlen konvergiert genau dann
gegen ein zo € C, wenn fir jedes (noch so kleine) ¢ > 0 ein N = N, existiert, so
dass
|200 — 2n| <€ fiir allen > N.

Wir nennen zo, Grenzwert von (z,) und schreiben zoo = nlgrolo zn oder auch

n—oo
Zn Zoo-
Beide Definitionen (Definition 4.2 vs. Konvergenz Real+Imaginérteil) sind dqui-
valent. Von den Konvergenzkriterien fiir Folgen von reellen Zahlen lassen sich nur
das Quotientenkriterium und das Cauchy-Kriterium direkt iibertragen. Die anderen
Kriterien (Konvergenz monotoner Folgen, zwei Polizisten, lim inf = lim sup) kénnen
aufgrund der fehlenden Vergleichsmoglichkeit nicht direkt auf komplexe Zahlen son-
dern nur auf Real- und Imaginérteil separat angewendet werden.

Anhand der obigen Definition ldsst sich nun auch eine Reihe von komplexen
Zahlen als Partialsummenfolge mit dem entsprechenden Grenzwert definieren.
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Beispiel 4.3 Fiir eine komplexe Zahl z = 0 + iy € C mit y € R betrachten wir die
Reihe, d.h., die Partialsummenfolge (.5,) von

-y

k=0

Wir sehen, dass die Terme fiir gerades k reell sind, wiahrend die Terme fiir ungerades
k rein imaginér sind. Wir koénnen also fiir jedes n € N schreiben:

k=0 k=0 k=1
k gerade k ungerade
n k n E—1
Sl S LT S s
N k! k!
k=0 k=1
k gerade k ungerade
n n 1
2 2m+1
(-1 2m 1
m=0 + )
=:a, + b,

Also sind a, = Re(Sy,) und b, = Im(S,,) Partialsummen der konvergenten Reihen
(Quotientenkriterium)

0 2m 0 2m—+1

Z(—Um% und Z(—umi(;iw o

m=0 m=0

Insgesamt haben wir die folgende wichtige Beziehung fiir y € R:

. 0 2m+1
iy _ _ 4.3
€ 2 mz:: 2m N (4.3)

<&

Definition 4.4 Die Exponentialfunktion [fonction exponentielle] einer komple-
zen Zahl z € C ist durch die Potenzreihe

2, 2k
e il
w) ==
k=0
definiert. Diese Potenzreihe konvergiert fiir jedes z € C.

Man kann auch zeigen, dass

n—oo

exp(z) = lim (1 + %)n

fiir jede komplexe Zahl z € C gilt. Die bereits fiir reelle Zahlen bekannte Beziehung
(siche Lemma 3.18)

621+22 — el . g%l

gilt auch fiir komplexe Zahlen z1, 25 € C.
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4.4 Potenzreihen von trigonometrischen Funktionen

Die beiden Potenzreihen in (4.3) haben eine besondere Bedeutung; der Cosinus
und Sinus von komplexen Zahlen werden so definiert:

oo 2m o0 22m+1

z
cosz i= E (=)™ T sinz := g (-)m—.
|
— (2m)! — (2m + 1)!
Man rechnet leicht nach, dass
cosz = ﬁ, sinz = i. (4.4)
2 2i

Ausserdem lésst sich die Beziehung (4.3) jetzt kiirzer schreiben:

e = cosy +isiny, yeR.
Die rechte Seite dieser sogenannten Euler’schen Formel [Formule d’Euler] kennen
wir bereits von der Polarform einer komplexen Zahl. Es gilt insbesondere

2 = p(cosp +isin @) = pe'?

Ahnlich zu Cosinus und Sinus lassen sich auch der Cosinus Hyperbolicus [co-
sinus hyperbolique] und Sinus Hyperbolicus [sinus hyperbolique] einer komplexen
(oder auch reellen) Zahl z definieren:

e? —z &0
cosh z = + ¢
2m
m=0
€% — e % > »2m+1

sinhz = —— = —_
|
2 = (2m +1)!

Man kann zeigen, dass diese Potenzreihen fiir jedes z € C konvergieren (d.h. der
Konvergenzradius ist unendlich).

Die iiblichen Eigenschaften sind im folgenden Theorem zusammengefasst und
schnell nachgerechnet.

Theorem 4.5 Fir reelles r € R sind
cosT ; sinr ; coshr; sinhr
reelle Zahlen und es gelten die folgenden Identititen (z,w € C;z,y € R):

cos(z) = cosh(iz) und i sin(z) = sinh(i 2)

cos(—z) = cos z und sin(—z) = —sinz
cos(z £ w) = cos(z)cos(w) F sin(z) sin(w)
sin(z £w) = sin(z) cos(w) £ cos(z) sin(w)
1 = cos®z+sinz
e = cosz+isinz
"W = ¢%(cosy + isiny)
Y| = "

(cosz+1isinz)” = cos(nz)+isin(nz) wenn n € N
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cosh(z) = cos(iz) und i sinh(z) = sin(i z)
cosh(—z) = cosh z und sinh(—z) = —sinh 2z
cosh(z £ w) = cosh(z)cosh(w) =+ sinh(z) sinh(w)

sinh(z £ w) = sinh(z)cosh(w) =+ cosh(z) sinh(w)
1 = cosh?z—sinh®z
e®* = coshz+sinhz

4.5 Der Logarithmus
Fiir gegebenes z € C betrachten wir die Gleichung
z=e" (4.5)

und stellen uns die iiblichen Fragen: Fiir welche z gibt es Losungen in C, sind sie
eindeutig etc. Wenn eine solche Losung w existiert, nennen wir sie Logarithmus
[logarithme] von z.

Wir betrachten zunéchst den Logarithmus von reellen Zahlen, also die Gleichung

r=e", mit r,z € R. (4.6)

Es ist leicht zu sehen, dass fiir x € R, z > 0 gilt
e = lm (1+5) 21
n

und e~® = L. Somit kann es keine Losung der Gleichung (4.6) fiir r = 0 geben. Es
kann auch keine reelle Losung fiir r < 0 geben. Wie wir gleich sehen werden, existiert
fiir alle anderen Fille, also r > 0, genau eine reelle Losung x. Diese bezeichnen wir

als (natiirlichen) Logarithmus von z mit
x = logr.

Oft schreibt man auch Inr anstatt von logr.
Aus e™11%2 = %1 . %2 folgt

logry + logre = log(ry - r2), r1,T9 € R. (4.7)
Lemma 4.6 Fiir jedes r € R, r > 0 existiert ein eindeutiges x € R das die Bezie-

hung

e =r oder auch x=logr

erfillt. Wenn r €]0, 2] erhdlt man dieses x aus der Potenzreihe

N (r—1)F
x = *g(’l)kT

k=1


Tobias

Tobias

Tobias
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k
Insbesondere gilt also log2 = — > 77, (_g) . Wenn r > 2, so existiert n € N, so

dass r €]2", 2" ] und man setzt

> (r— 2”)k
xXr = n10g2 — Z(*l)kw
k=1

Der Konvergenzradius dieser Reihe ist 2"; sie konvergiert also fiir jedes r €]0,271].

Hier treffen wir fiir » = 2 unsere alte Freundin, die alternierende harmonische Reihe,
wieder.

Wie lédsst sich Lemma 4.6 auf komplexe Zahlen erweiteren? Wir zerlegen dazu
w = Re(w) +1i-Im(w):

z =" = ) (cosIm(w) + isin Im(w)). (4.8)

Dies ist (fast) die Polarform von z, ausser dass Im(w) nicht notwendigerweise auf
| — m, 7] eingeschriinkt ist. Nehmen wir die Einschrinkung —7 < Im(w) < 7 noch
vor, so erhélt man den komplexen Logarithmus.

Definition 4.7 Der Hauptwert des Logarithmus [détermination principale
du logarithme] einer komplezen Zahl z € C\ {0} ist gegeben durch

log z :=log |z| +iarg(z), arg(z) €] —m,m].

Man sieht leicht, dass sich die Gleichung (4.8) nicht veréndert, wenn der Ima-
ginérteil von w um 2k7 fiir ein k& € Z verschoben wird. Also erfiillt

wy, = log |z| +i( arg(z) + 2kn)

ebenfalls e”* = z. Diese Losung wird als k-ter Nebenwert (fiir k& # 0) oder k-ter
Zweig der Logarithmusfunktion bezeichnet.

Man muss bei Logarithmen von komplexen Zahlen ein wenig aufpassen. Zum
Beispiel gilt die Beziehung (4.7) nur nachdem das Argument von log w; +log ws um
entsprechende ganzzahlige Vielfache von 27 verschoben wurde. So ist

log(i%) = log(—i) = log(1) — ig = —ig, 3logi = 137”.

Also gilt die Beziehung log(i*) = 3logi nur nachdem das Argument von 3logi um
—2m verschoben wurde.
Der Logarithmus erlaubt es rationale und sogar komplexe Potenzen zu definieren.

Definition 4.8 Seien z € C\ {0} und o € C. Dann definieren wir

SO . ealogz'



