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(A1) Multiple Choice

a) Die erste Aussage ist falsch und ein Gegenbeispiel ist gegeben durch:

xn =

{
1
n n gerade
1√
n

n ungerade

Die zweite Aussage ist ebenfalls falsch. Gilt limn→∞ qn < 1, so konvergiert∑∞
n=1 xn absolut nach dem Quotientenkriterium. Ist aber limn→∞ qn = 1, so

gibt es sowohl Beispiele für Konvergenz, etwa xn = 1
n2 , als auch Divergenz,

etwa xn = 1
n .

b) richtig. Wenn R = 0 konvergiert die Potenzreihe lediglich für x = x0, wie
zum Beispiel für

∑∞
k=0 k!(x− x0)

k.

c) richtig. Da nun gilt (x− x0)
k = 0 falls k > 0.

d) Der Konvergenzradius besagt, dass die originale Potenzreihe für x innerhalb
des Intervalls ]π − 2, π + 2[ konvergiert, bzw. wenn die Werte innerhalb der
Klammer mit der Potenz zwischen -2 und 2 liegen. Die Konvergenz in den
Randpunkten x = π − 2, x = π + 2 kann sowohl war als auch falsch sein.
Nur in der letzten Aussage ligen alle x im Konvergenzinterval, da

∞∑
k=0

bk(x− 3)k =

∞∑
k=0

bk((x+ π − 3)︸ ︷︷ ︸
=y

−π)k, ∀x ∈]2, 3]

=

∞∑
k=0

bk(y − π)k, ∀y ∈]π − 1, π] ⊂]π − 2, π + 2[.

In allen anderen Fällen ist die Konvergenz dagegen nicht garantiert, da der
Konvergenzradius alleine keine Aussagen über den Rand ermöglicht.

(A2) Grenzwerte mittels Partialbruchzerlegung

a) Finden Sie A und B, so dass

1

k(k + 4)
=

A

k
+

B

k + 4
, ∀k > 0.

Dies ist eine sogenannte Partialbruchzerlegung.

Wir haben

A

k
+

B

k + 4
=

(k + 4)A+ kB

k(k + 4)
=

k(A+B) + 4A

k(k + 4)

!
=

1

k(k + 4)
.

Daraus folgt, dass

k(A+B) + 4A = 1,

⇒ A+B = 0 und 4A = 1.

Dies führt zu A = 1
4 und B = − 1

4 .
Somit ergibt sich

1

k(k + 4)
=

1

4k
− 1

4(k + 4)
, ∀k > 0.

b) Berechnen Sie mit Hilfe von (a) denWert für n ≥ 5 der Summe

n∑
k=1

1

k(k + 4)
.

1



Mit Hilfe von (a) haben wir für n ≥ 5

n∑
k=1

1

k(k + 4)
=

n∑
k=1

(
1

4k
− 1

4(k + 4)

)

=
1

4

(
n∑

k=1

1

k
−

n∑
k=1

1

k + 4

)

=
1

4

(
n∑

k=1

1

k
−

n+4∑
k=5

1

k

)
∗
=

1

4

(
4∑

k=1

1

k
−

n+4∑
k=n+1

1

k

)

=
1

4

(
1

1
+

1

2
+

1

3
+

1

4
− 1

n+ 1
− 1

n+ 2
− 1

n+ 3
− 1

n+ 4

)
=

25

48
− 1

4

(
1

n+ 1
+

1

n+ 2
+

1

n+ 3
+

1

n+ 4

)
.

Das Gleichheit an der Stelle ∗ ergibt sich dadurch, dass die Terme von 1
5

bis 1
n in der linken Summe von den Termen − 1

5 bis − 1
n der rechten Summe

gelöscht werden. Übrig bleibt also in der linken Summe 1
1 bis 1

4 und in der
rechten Summe − 1

n+1 bis − 1
n+4 .

c) Berechnen Sie mit Hilfe von (b) den Grenzwert

∞∑
k=1

1

k(k + 4)
.

Benutzen wir (b), so gilt

∞∑
k=1

1

k(k + 4)
= lim

n→∞

n∑
k=1

1

k(k + 4)

= lim
n→∞

(
25

48
− 1

4

(
1

n+ 1
+

1

n+ 2
+

1

n+ 3
+

1

n+ 4

))
=

25

48
.

(A3) Induktionsbeweise II

Die Folge (xn) sei rekursiv definiert durch

x1 = 5, xn+1 = 2xn.

Beweisen Sie, dass die Folge explizit gegeben ist durch

xn = 2n−1 · 5

Induktionsverankerung Laut expliziter Berechnung ist

x1 = 21−1 · 5 = 20 · 5 = 5,

was mit der rekursiven Darstellung übereinstimmt.

Induktionsschritt Wir nehmen an, dass die explizite Darstellung korrekt
ist für ein n ≥ 1, d.h. xn = 2n−1 · 5 ist wahr. Es gilt zu zeigen, dass die
explizite Darstellung von xn+1 mit der rekursiven Darstellung übereinstimmt.
Es gilt

xn+1 = 2xn = 2 · (2n−1 · 5) = 2n · 5.

Somit ist die Aussage wahr für n+ 1.

(A4) Alternierende Reihe

a) Zeigen Sie, dass für alle n ∈ N gilt:

n∑
k=1

(−1)k+1k

k2 − 1
4

= 1 +
(−1)n+1

2n+ 1
.
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Wir führen den Beweis mittels vollständiger Induktion.
Induktionsverankerung: n = 1

1∑
k=1

(−1)k+1k

k2 − 1
4

=
4

3
= 1 +

(−1)2

2 + 1
.

Induktionsschritt: n → (n+ 1)
Wir wollen zeigen, dass

n+1∑
k=1

(−1)k+1k

k2 − 1
4

= 1 +
(−1)n+2

(2(n+ 1) + 1)

n+1∑
k=1

(−1)k+1k

k2 − 1
4

=

n∑
k=1

(−1)k+1k

k2 − 1
4

+
(−1)n+2(n+ 1)

(n+ 1)2 − 1
4

(IV )
= 1 +

(−1)n+1

2n+ 1
+

(−1)n+2(n+ 1)

n2 + 2n+ 3
4

= 1 +
(−1)n+1

2n+ 1
+

(−1)n+24(n+ 1)

4n2 + 8n+ 3

= 1− (−1)n+2

(2n+ 1)
+

(−1)n+24(n+ 1)

(2n+ 1)(2n+ 3)

= 1− (−1)n+2(2n+ 3)

(2n+ 1)(2n+ 3)
+

(−1)n+24(n+ 1)

(2n+ 1)(2n+ 3)

= 1 +
(−1)n+2(−(2n+ 3) + 4(n+ 1))

(2n+ 1)(2n+ 3)

= 1 +
(−1)n+2(2n+ 1)

(2n+ 1)(2n+ 3)

= 1 +
(−1)n+2

(2n+ 3)
= 1 +

(−1)n+2

(2(n+ 1) + 1)
.

b) Berechnen Sie mit Hilfe von a) den Grenzwert der Reihe

lim
n→∞

n∑
k=1

(−1)k+1k

k2 − 1
4

.

Wir erhalten

lim
n→∞

n∑
k=1

(−1)k+1k

k2 − 1
4

= lim
n→∞

(
1 +

(−1)n+1

2n+ 1

)
= 1 + lim

n→∞

(−1)n+1

2n+ 1
= 1,

da die Folge (an) mit

an =
(−1)n+1

2n+ 1
=

{
− 1

2n+1 für n gerade
1

2n+1 für n ungerade

gegen 0 konvergiert.

c) Konvergiert die Reihe absolut?
Die Reihe konvergiert nicht absolut. Wir sehen dies mit dem Majorantenkri-

terium, welches wir auf die Reihe
∑∞

k=1

∣∣∣∣ (−1)k+1k

k2 − 1
4

∣∣∣∣︸ ︷︷ ︸
yk

anwenden. Wir suchen

eine Folge (xk) mit
0 ≤ |xk| ≤ yk,

für welche die Reihe
∑∞

k=1 xk divergiert. Aus der Divergenz dieser Reihe
folgt dann die Divergenz der Reihe

∑∞
k=1 yk. Es gilt

yk =

∣∣∣∣ (−1)k+1k

k2 − 1
4

∣∣∣∣ = k

k2 − 1
4

≥ k

k2
=

1

k︸︷︷︸
xk

.
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Die harmonische Reihe
∑∞

k=1
1
k divergiert, und damit divergiert auch die

Reihe
∑∞

k=1

∣∣∣ (−1)k+1k

k2− 1
4

∣∣∣.
(A5) Absolute Konvergenz

Bestimmen Sie, ob die folgenden Reihen konvergieren und ob sie absolut
konvergieren.

a)
∑∞

k=1(−1)k+1 k
2k

Wir benutzen das Leibniz-Kriterium (Theorem 3.8). Die Eigenschaften i)
ist erfüllt, da k

2k
> 0 für alle k. Da k

2k
→ 0 ist Eigenschaft iii) erfüllt.

Eigenschaft ii) ist erfüllt, da

|xk+1|
|xk|

=
2kk + 1

2k+1k
=

1

2

k + 1

k
→ 1

2
< 1.

Damit konvergiert die Reihe. Sie konvergiert auch absolut, da für
∑∞

k=1 |(−1)k+1 k
2k
|

das Quotientenkiterium erfüllt ist:

2kk + 1

2k+1k
=

1

2

k + 1

k
→ 1

2
< 1.

b)
∑∞

k=1(−1)k+1

√
k+ 1

k

k
Wir benutzen erneut das Leibniz-Kriterium. Die Eigenschaft i) ist erfüllt,

da

√
k+ 1

k

k > 0 für alle k. Da limk→∞

√
k+ 1

k

k = limk→∞

√
k2+1
k3 = 0, ist

Eigenschaft iii) erfüllt. Eigenschaft ii) gilt, da

|xk+1|
|xk|

=

√
(k + 1 + 1

k+1 )k
2

(k + 1)2(k + 1
k )

≤

√
(k + 2)k

(k + 1)2
=

√
k2 + 2k

k2 + 2k + 1
< 1.

Damit konvergiet die Reihe. Das Quotientenkriterium lässt sich jedoch nicht
anwenden. Es gilt |xk| > 1√

k
. Damit divergiert nach Theorem 3.4 die Reihe∑∞

k=1 |xk|, d.h. die Reihe konvergiert nicht absolut.

(A6) Potenzreihen

Bestimmen Sie den Konvergenzradius und das Konvergenzintervall (inkl. Rand-
verhalten!) der folgenden Potenzreihen. Hierbei ist x ∈ R.

Laut Theorem 3.15 können wir den Konvergenzradius einer Potenzreihe wie
folgt berechen. Gegeben sei eine Potenzreihe

∑∞
k=0 ak(x− x0)

k mit ak ̸= 0 für
genügend grosse k. Existiert der Grenzwert

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = q∞,

dann ist der Konvergenzradius der Potenzreihe R = 1
q∞

.

a)

∞∑
k=0

ak(x+ 2)k, mit a0 = 0, ak =
7k − 22

k2(55k + 94)
für k ∈ N\{0}.

Es gilt
ak+1

ak
=

385k4 − 167k3 − 1410k2

385k4 + 603k3 − 3227k2 − 6723k − 3278
.

Daher ist

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

385k4 − 167k3 − 1410k2

385k4 + 603k3 − 3227k2 − 6723k − 3278
= 1.

Der Konvergenzradius R der dazugehörigen Potenzreihe ist somit gegeben
durch den Kehrwert des Grenzwertes, also

R =
1

1
= 1.
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Die Potenzreihe konvergiert absolut für alle x ∈]x0 − R, x0 + R[=] − 2 −
1,−2 + 1[=] − 3,−1[. Es gilt noch die Randpunkte x = −1 und x =
−3 zu betrachten. In diesen Punkten ist die Potenzreihe definiert durch∑∞

k=0 ak(−1 + 2)k =
∑∞

k=0 ak · 1k︸ ︷︷ ︸
xk

respektive
∑∞

k=0 ak(−1)k︸ ︷︷ ︸
x̃k

. Wir zeigen

mittels des Majorantenkriteriums, dass beide Reihen konvergieren. Betrachte
dazu |xk| bzw. |x̃k|. In beiden Fällen erhalten wir |ak|. Es gilt

|ak| =
∣∣∣∣ 7k − 22

55k3 + 94k2

∣∣∣∣ ≤ 7k

55k3 + 94k2
≤ 7k

55k3
=

7

55

1

k2
,

dh. wir haben eine konvergente Majorante gefunden.
Somit ist der Konvergenzradius [−3,−1].

b)

∞∑
k=0

bk(x+ 6)k, bk =
4

(k + 5)!
, für k ∈ N.

Es gilt
bk+1

bk
=

1

k + 6
.

Daher ist

lim
k→∞

∣∣∣∣bk+1

bk

∣∣∣∣ = lim
k→∞

1

k + 6
= 0.

Der Konvergenzradizus R der dazugehörigen Potenzreihe ist somit gegeben

R = ∞.

Die Potenzreihe konvergiert überall absolut.

c)

∞∑
k=0

ck(x− 1)k, ck =
k · k!

k4 + 3k2
, für k ∈ N.

Es gilt

ck+1

ck
=

(k+1)(k+1)!
(k+1)4+3(k+1)2

k·k!
k4+3k2

=
k3 + 3k

k2 + 2k + 4
.

Daher ist

lim
k→∞

∣∣∣∣ck+1

ck

∣∣∣∣ = lim
k→∞

k3 + 3k

k2 + 2k + 4
= lim

k→∞

k2(k + 3k−1)

k2(1 + 2k−1 + 4k−2)
= ∞.

Der Konvergenzradius R der dazugehörigen Potenzreihe ist daher gegeben
durch

R = 0.

Die Potenzreihe konvergiert also nur für x0 = 1 und divergiert sonst.
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