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(A1) Multiple Choice

a) g(x) = 1 + x+ 2x2 + o(x2). (Durch Rechnung, siehe b))

b) g(x) = 5 + 8(x− 1) + 5(x− 1)2 + o((x− 1)2). Rechnung:

f(1) = 5

f ′(x) = 3x2 + 4x+ 1, f ′(1) = 8

f ′′(x) = 6x+ 4, f ′′(1) = 10

c) g(x) = 1− 1
2

(
x− π

2

)2
+ 1

24

(
x− π

2

)4
+ o

((
x− π

2

)5)
. Rechnung:

f (1)(x) = cos(x), f (2)(x) = − sin(x), f (3)(x) = − cos(x)

f (4)(x) = sin(x), f (2)(x) = cos(x), cos(
π

2
) = 0, sin(

π

2
) = 1

d) a=0.6. Aus der Vorlesung wissen wir

|f(x)− p3(x)| ≤
|x− 0|3+1

(3 + 1)!
maxξ∈[−a,a]|f (3+1)(ξ)| = x4

24
.

Auflösen von
x4

24
< 10−2 nach x gibt die Lösung.

e) es ist keine Aussage möglich, vergleiche z.B. f1(x) = (x − 1
2 )

3, f2(x) =
f(x), f3(x) = −f2(x) wobei f(x) = (x− 1

2 )
4.

(A2) Stetige Differenzierbarkeit

Zeigen Sie, dass die Funktion f ist stetig und differenzierbar, aber nicht stetig
differenzierbar ist

f : R → R, x 7→

{
x

4
3 cos

(
1
x

)
für x ̸= 0,

0 für x = 0.

Die Funktion f ist auf ganz R differenzierbar (und damit auch stetig). In den

Punkten x ̸= 0 ist f(x) gegeben durch x
4
3 cos

(
1
x

)
, was klar differenzierbar ist

mit den üblichen Rechenregeln. Der Punkt x = 0 muss genauer untersucht
werden. f ist in x = 0 differenzierbar, wenn der Grenzwert

lim
x→0

f(x)− f(0)

x− 0

existiert. Es gilt

lim
x→0

f(x)− f(0)

x− 0
= lim

x→0

x
4
3 cos

(
1
x

)
x

= lim
x→0

x
1
3 cos

(
1

x

)
= 0.

Somit ist die Ableitung f ′(x) gegeben durch

f ′(x) =

{
4
3

3
√
x cos

(
1
x

)
+ 1

3√
x2

sin
(
1
x

)
, x ̸= 0,

0, x = 0.

Die Funktion f ′ ist nun aber nicht mehr stetig im Punkt 0. Der erste Summand
konvergiert gegen 0 für x → 0,

lim
x→0

4

3
3
√
x cos

(
1

x

)
= 0.
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Der zweite Summand besitzt aber keinen Grenzwert an der Stelle x = 0. Wir
können zwei Folgen

an =
1

2πn− π/2
, bn =

1

2πn+ π/2

konstruieren, für die gilt

lim
n→∞

an = lim
n→∞

bn = 0.

Aber es gilt

lim
n→∞

1
3
√

a2n
sin

(
1

an

)
= lim

n→∞

1

3

√
( 1
2πn−π/2 )

2
sin (2πn− π/2)

= lim
n→∞

− 1

3

√
( 1
2πn−π/2 )

2
→ −∞.

und

lim
n→∞

1
3
√
b2n

sin

(
1

bn

)
= lim

n→∞

1

3

√
( 1
2πn+π/2 )

2
sin (2πn+ π/2)

= lim
n→∞

1

3

√
( 1
2πn+π/2 )

2
→ ∞.

(A3) Klausuraufgabe von 2012

Bestimmen Sie a ∈ R so dass die folgende Funktion für x ∈ [0, 2] stetig ist

f(x) =

{
xx−x

1−x+log(x) für x ∈]1, 2],
a für x ∈ [0, 1].

Nutzen sie dazu die Regel von L’Hôpital.

Damit f eine stetige Fuktion auf [0, 2] ist, muss gelten, dass limx→1+ f(x) = a
Wir haben

lim
x→1+

f(x) = lim
x→1+

ex log(x) − x

1− x+ log(x)

und können die Regel von L’Hôpital anwenden. Damit erhalten wir

lim
x→1+

ex log(x) − x

1− x+ log(x)
= lim

x→1+

ex log(x)(log(x) + 1)− 1

−1 + 1
x

.

Wir können die Regel von L’Hôpital erneut anwenden

lim
x→1+

ex log(x)(log(x) + 1)− 1

−1 + 1
x

= lim
x→1+

ex log(x)(log(x) + 1)2 − 1
xe

x log(x)

− 1
x2

= −2.

Somit müssen wir a = −2 wählen.

(A4) Unendlich oft differenzierbare Funktion

Zeigen Sie, dass die Funktion

f : R → R
x 7→ ex

2

unendlich oft differenzierbar ist, und dass für alle n ∈ N ein Polynom pn vom
Grad n existiert so dass

f (n) = pn(x) · f(x) ∀x ∈ R.

Wir beweisen die Aussage mittels Induktion.
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Induktionsverankerung Die Funktion f ist differenzierbar. Ihre erste Ablei-
tung ist mittels der Kettenregel

f ′(x) = 2x︸︷︷︸
=:p1

ex
2

wobei p1 ein Polynom vom Grad 1 ist.

InduktionsschrittWir nehmen an, dass f n-mal differenzierbar ist, mit

f (n) = pn(x) · f(x),

wobei pn ein Polynom vom Grad n ist. Es gilt, dass sowohl das Polynom pn,
wie auch die Funktion f differenzierbar ist, und damit auch ihr Produkt. Für
die (n+ 1)-te Ableitung gilt

f (n+1)(x) =
(
f (n)

)′
(x) = (pn(x) · f(x))′ = p′n(x) · f(x) + pn(x) · f ′(x)

= p′n(x) · ex
2

+ pn(x) · 2xex
2

= ex
2

(p′n(x) + 2xpn(x))︸ ︷︷ ︸
=:pn+1

.

Das Polynom pn+1 hat den Grad n+ 1.

(A5) Taylorentwicklung

Die Taylorentwicklung von Ordnung 5 von tan(x) an der Stelle x0 = 0 ist
gegeben durch

tan(x) = x+
1

3
x3 +

2

15
x5 + o(x5).

a) Berechnen Sie die Taylorentwicklung von Ordnung 5 von tan
(
x− π

4

)
an der

Stelle x0 = π
4 .

Wir substituieren y = x− π
4 . Die Taylorentwicklung von

tan
(
x− π

4

)
an der Stelle x0 =

π

4

entspricht der Taylorentwicklung von

tan (y) an der Stelle y0 = x0 −
π

4
= 0.

Diese Taylorentwicklung kennen wir aus der Aufgabenstellung. Sie ist gege-
ben durch

tan(y) = y +
1

3
y3 +

2

15
y5 + o(y5).

Durch Rücksubstitution erhalten wir

tan
(
x− π

4

)
=
(
x− π

4

)
+

1

3

(
x− π

4

)3
+

2

15

(
x− π

4

)5
+ o

((
x− π

4

)5)
.

b) Berechnen Sie die Taylorentwicklung von Ordnung 3 von tan(x) an der
Stelle x0 = π

4 .

Hier können wir nicht einfach substituieren. Wir erhalten durch explizites
Ausrechnen der Ableitungen mit den Ableitungsregeln

tan′(x) =
1

cos2(x)
, tan′′(x) = −2

1

cos3(x)
(− sin(x)) = 2 tan(x) · tan′(x),

tan′′′(x) = 2(tan′(x)) + 2 tan(x) · tan′′(x) = 2

cos4(x)
+ 4 tan2(x) · 1

cos2(x)
.
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Damit folgt mit dem Satz von Taylor

tan(x) = tan
(π
4

)
+ tan′

(π
4

)(
x− π

4

)
+

tan′′
(
π
4

)
2

(
x− π

4

)2
+

tan′′′
(
π
4

)
6

(
x− π

4

)3
+ o

((
x− π

4

)3)

= tan
(π
4

)
+

1

cos2
(
π
4

) (x− π

4

)
+

2 sin(π
4 )

cos3(π
4 )

2

(
x− π

4

)2

+

2+4 sin2(π
4 )

cos4(π
4 )

6

(
x− π

4

)3
+ o

((
x− π

4

)3)
= 1 + 2

(
x− π

4

)
+ 2

(
x− π

4

)2
+

8

3

(
x− π

4

)3
+ o

((
x− π

4

)3)

c) Mit dem Satz von Taylor und tan′
(
π
4

)
= 2 gilt

tan(x) = tan
(π
4

)
+ 2

(
x− π

4

)
+ o

((
x− π

4

))
Weiter können wir das o

((
x− π

4

))
schreiben als

tan′′(ξ) · 1

2!
(x− π

4
)2,

wobei ξ ein zwischenstelle zwischen x0 = π
4 und x ist. Wir müssen daher

das Maximum ausrechen

max
z∈[ 3π16 , 5π16 ]

tan′′(z) = max
z∈[ 3π16 , 5π16 ]

(
2
tan(z)

cos2(z)

)
= 2

tan( 5π16 )

cos2( 5π16 )
,

das tan(x) strikt monoton wächst und cos2(x) strikt monoton fällt. Also

| tan(x)− p2(x)| ≤
tan( 5π16 )

cos2( 5π16 )

(
π

16

)2

, x ∈] 3π
16

,
5π

16
[

(A6) Grenzwerte von Funktionen 1

(a) Berechnen Sie folgende Grenzwerte. Benutzen Sie Taylorentwicklung oder
L’Hôpital.

i) lim
x→0

1

x2

(
sinx

sin 5x
− 1

5

)
Wir berechnen die Taylorentwicklung von sin(x) und sin(5x) von
Ordnung 3 um den Punkt x0 = 0,

sin(x) = x− x3

6
+ o(x3)

und

sin(5x) = 5x− (5x)
3

6
+ o((5x)

3
)︸ ︷︷ ︸

=o(x3)

( Variablelsubstitution y = 5x bei Taylorentwicklung von sin(y)).

Dann gilt
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lim
x→0

1

x2

(
sinx

sin 5x
− 1

5

)
= lim

x→0

5 sinx− sin 5x

5x2 sin 5x
Taylorentwicklungen einsetzen

= lim
x→0

5
(
x− 1

6x
3
)
−
(
5x− 125

6 x3
)
+ o(x3)

5x2(5x+ o(x))

∗
= lim

x→0

20x3 + o(x3)

25x3 + o(x3)

= lim
x→0

x3(20 + o(x3)
x3 )

x3(25 + o(x3)
x3 )

=
20 + limx→0

o(x3)
x3

25 + limx→0
o(x3)
x3

=
20

25
=

4

5
.

An der Stelle * haben wir verwendet, dass x2o(x) = o(x3) gilt.

Aufgrund der Definition ist r(x) = o(x), wenn r(x)
x → 0 für x → 0.

Wenn wir nun Zähler und Nenner mit x2 multiplizieren, so gilt
x2r(x)

x3 → 0 für x → 0, und somit ist x2r(x) gleich o(x3).

ii) lim
x→0

x2 − sin2(x)

x2 sin2(x)

Wir betrachten die Taylorentwicklung von sin(x) vom Grad 3 um
den Punkt x0 = 0,

sin(x) = x− x3

6
+ o(x3).

Durch Quadrieren erhalten wir

sin2(x) = (x− x3

6
+ o(x3))(x− x3

6
+ o(x3))

= x2 − 1

6
x4 + xo(x3)− 1

6
x4 +

1

36
x6 − 1

6
x3o(x3)

+ xo(x3)− 1

6
x3o(x3) + o(x3)o(x3)

= x2 − 1

3
x4 + r(x),

wobei r(x) = xo(x3) + 1
36x

6 − 1
6x

3o(x3) + xo(x3) − 1
6x

3o(x3) +
o(x3)o(x3). Die Terme von r(x) sind in der Landau Notation

– xo(x3) = o(x4)

– 1
36x

6 = o(x5)

– 1
6x

3o(x3) = o(x6)

– o(x3)o(x3) = o(x6).

Für den letzten Term haben wir die Tatsache aus den Multiple
Choice Fragen verwendet, dass wenn f(x) = o(xp) und g(x) = o(xq),
dann ist f(x)g(x) = o(xp+q).

Die Summe r(x) ist dann gleich o(x4), was der tiefsten Potenz
entspricht (wieder Multiple Choice Frage).

Somit ist

sin2(x) = x2 − 1

3
x4 + o(x4).
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Damit folgt

lim
x→0

x2 − sin2(x)

x2 sin2(x)
= lim

x→0

x2 − (x2 − 1
3x

4 + o(x4))

x2(x2 − 1
3x

4 + o(x4))

= lim
x→0

1
3x

4 + o(x4)

x4 − 1
3x

6 + o(x4)

= lim
x→0

1
3x

4 + o(x4)

x4 + o(x4)

= lim
x→0

x4( 13 + o(x4)
x4 )

x4(1 + o(x4)
x4 )

=
1
3 + limx→0

o(x4)
x4

1 + limx→0
o(x4)
x4

=
1

3
.

iii) lim
x→0

x4 tan(x2)− x4 sin2(x)

1− cos(x4)

Die Taylorentwicklung von tan(y) von Ordnung 2 ist

tan(y) = y + o(y2).

Durch Substitution y = x2 erhalten wir die Taylorentwicklung von
tan(x2),

tan(x2) = x2 + o(x4).

Die Taylorentwicklung von sin2(x) von Ordnung 4 ist mit Aufgabe
b),

sin2(x) = x2 − 1

3
x4 + o(x4).

Die Taylorentwicklung von cos(y) von Ordnung 2 ist

cos(y) = 1− y2

2
+ o(y2).

Durch Substitution y = x4 erhalten wir die Taylorentwicklung von
cos(x4),

cos(x4) = 1− x8

2
+ o(x8).

Daraus folgt

lim
x→0

x4 tan(x2)− x4 sin2(x)

1− cos(x4)
= lim

x→0

x4(x2 + o(x4))− x4(x2 − 1
3x

4 + o(x4))

1− (1− 1
2x

8 + o(x8))

= lim
x→0

x4o(x4) + 1
3x

8 + x4o(x4)
1
2x

8 + o(x8)

= lim
x→0

1
3x

8 + o(x8)
1
2x

8 + o(x8)

= lim
x→0

x8( 13 + o(x8)
x8 )

x8( 12 + o(x8)
x8 )

= lim
x→0

1
3 + limx→0

o(x8)
x8

1
2 + limx→0

o(x8)
x8

=
2

3
.

(b) Berechnen Sie folgende Grenzwerte.

i) lim
x→0

x2 log cosh(x)

(log(1 + x2))2
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Wir betrachten zuerst den Nenner. Die Taylorentwicklung des Cosi-
nus hyperbolicus an der Stelle 0 von Ordnung 4 ist

cosh(x) = cosh(0) + cosh′(0)︸ ︷︷ ︸
=sinh(0)

x+
cosh′′(0)

2︸ ︷︷ ︸
=

cosh(0)
2

x2 +
cosh′′′(0)

6︸ ︷︷ ︸
=

sinh(0)
6

x3 +
cosh′′′′(0)

24︸ ︷︷ ︸
cosh(0)

24

x4 + o(x4)

= 1 +
1

2
x2 +

1

24
x4 + o(x4)

= 1 +
1

2
x2 +O(x4).

Die Taylorentwicklung von log(1 + y) ist aus dem Skript bekannt,

log(1 + y) = y − y2

2
+ o(y2) = y +O(y2)

Zusammen erhalten wir für den Zähler

x2 log(cosh(x)) = x2 log

1 +
x2

2
+O(x4)︸ ︷︷ ︸
=:y

 = x2
(
y +O(y2)

)

= x2

(
x2

2
+O(x4) +O

((
x2

2
+O(x4)

)2
))

= x2

(
x2

2
+O(x4)

)
=

x4

2
+O(x6).

Für den Nenner verwenden wir erneut die Taylorentwicklung von
log(1 + z). Damit gilt

log(1+ x2︸︷︷︸
=:z

) = log(1+z) = z+O(z2) = x2+O((x2)2) = x2+O(x4).

Quadrieren ergibt

(log(1 + x2))2 = (x2 +O(x4))2 = x4 +O(x6).

Zusammengesetzt ergibt sich

lim
x→0

x2 log cosh(x)

(log(1 + x2))2
= lim

x→0

x4

2 +O(x6)

x4 +O(x6)
= lim

x→0

x4( 12 + O(x6)
x4 )

x4(1 + O(x6)
x4 )

=
1
2 + limx→0

O(x6)
x4

1 + limx→0
O(x6)
x4

∗
=

1

2
.

An der Stelle ∗ bemerken wir, dass O(x6)
x4 = O(x6)x2

x6 = O(x6)
x6 x2 und

da O(x6)
x6 beschränkt ist konvergiert der Ausdruck O(x6)

x6 x2 gegen 0
für x gegen 0.

ii) lim
x→0

log(1 + x2)

sinh2(x)

Wir gehen wie im Teil i) vor. Es gilt

log(1 + x2) = x2 +O(x4)

und die Taylorentwicklung von sinh von Ordnung 3 um die Stelle 0
führt zu

sinh(x) = sinh(0) + sinh′(0)︸ ︷︷ ︸
cosh(0)

x+
sinh′′(0)

2︸ ︷︷ ︸
=

sinh(0)
2

x2 +
sinh′′′(0)

6︸ ︷︷ ︸
cosh(0)

6

x3 + o(x3)

= x+
1

6
x3 + o(x3) = x+O(x3).
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Durch quadrieren ergibt sich

sinh2(x) = (x+O(x3))2 = x2 +O(x4).

Somit gilt für den Grenzwert

lim
x→0

log(1 + x2)

sinh2(x)
= lim

x→0

x2 +O(x4)

x2 +O(x4)
= lim

x→0

x2(1 + O(x4)
x2 )

x2(1 + O(x4)
x2 )

=
1 + limx→0

O(x4)
x2

1 + limx→0
O(x4)
x2

= 1.
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