MUSTERLOSUNG 12 - Analyse T (Allemand) E PFL

(A1) Multiple Choice Herbst/Winter ‘24

(A2)

Prof. J. Krieger

a) g(z) =1+ x + 222 + o(2?). (Durch Rechnung, siehe b)) T Sehmid

b) g(z) =5+ 8(x — 1) + 5(x — 1)2 + o((x — 1)?). Rechnung:
f)=5

fl(x) =32 +4x+1, f(1)=8
[(z)=6x+4, f'(1)=10
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d) a=0.6. Aus der Vorlesung wissen wir

|$ _ 0|3+1 x4
! maX&E[—a,a]'f(3+1)(£)| =57

‘f(x)_pS(xNSW o

4
Auflésen von % < 1072 nach z gibt die Losung.

e) es ist keine Aussage moglich, vergleiche z.B. fi(z) = (z — 1)3, fo(z) =

f(@), f3(z) = —f2(z) wobei f(z) = (z — 3)*.
Stetige Differenzierbarkeit

Zeigen Sie, dass die Funktion f ist stetig und differenzierbar, aber nicht stetig
differenzierbar ist

FIRSR, oo x%cos(%) fir = # 0,
' ’ 0 fir z =0.

Die Funktion f ist auf ganz R differenzierbar (und damit auch stetig). In den
Punkten x # 0 ist f(z) gegeben durch 3 cos (%) , was klar differenzierbar ist
mit den iiblichen Rechenregeln. Der Punkt z = 0 muss genauer untersucht

werden. f ist in z = 0 differenzierbar, wenn der Grenzwert

1o 1) = 1(0)
x—0 z—0
existiert. Es gilt
_ 3 1 .
lim 1)~ f(0) = lim Te o8 (m) = lim 3 cos <1> =0.

z—0 x—0 z—0 x z—0

Somit ist die Ableitung f’(x) gegeben durch

f,(x):{éﬁcos(i)—i—g/%sin(i), z #0,
0, z=0.

Die Funktion f’ ist nun aber nicht mehr stetig im Punkt 0. Der erste Summand
konvergiert gegen 0 fiir x — 0,

4, 1\
whi%g\/icos (x) =



Der zweite Summand besitzt aber keinen Grenzwert an der Stelle x = 0. Wir
konnen zwei Folgen
1 1

T — by ——
i 2n — /2’ " 2mn+ /2

konstruieren, fiir die gilt

n—oo n— oo
Aber es gilt
1 1
lim sin () = lim sin (27mn — 7/2)
n—oo 3/q Ap n—oo 3 (2 1 /2)
1
= lim — — —00
n—oo 3 ( 1 ; )2
2tn—m/2
und
1 1 1
lim ——sin( — | = lim ——— sin (2 2
Jim 2 sin (bn> jm msm( ™+ 7/2)
Tn+m
. 1
= lim T 7 X
n—oo
3\/ (27rn—li-7r/2)

(A3) Klausuraufgabe von 2012

Bestimmen Sie a € R so dass die folgende Funktion fiir z € [0, 2] stetig ist

f(LL') _ lfxeri)z(z) fir © 6]17 2]a
a fir = €[0,1].

Nutzen sie dazu die Regel von L’Hopital.

Damit f eine stetige Fuktion auf [0, 2] ist, muss gelten, dass lim,_,,+ f(z) = a
Wir haben

zlog(xz) _
lim f(z)=1 ¢ ’

rz—1t wlgl‘*' 1—xz+ IOg(I)

und konnen die Regel von L’Hopital anwenden. Damit erhalten wir

zlog(z) __ x log(z) _
lim € x . e (log(z) + 1) 1.

a—1+ 1 — x + log(z) T ot -1+1

Wir koénnen die Regel von L’Hopital erneut anwenden

. erloe@)(log(z) 4+ 1) — 1 Cerloe®@)(log(z) + 1)% — Lerlos(@)
lim T = lim T z
T—1+ -1+ P z—1t -2z

Somit miissen wir a = —2 wihlen.

(A4) Unendlich oft differenzierbare Funktion
Zeigen Sie, dass die Funktion
R

x

f+ R
x e

%
H

unendlich oft differenzierbar ist, und dass fiir alle n € N ein Polynom p,, vom
Grad n existiert so dass

f(") =pn(x) - f(z) Vo € R.

Wir beweisen die Aussage mittels Induktion.



Induktionsverankerung Die Funktion f ist differenzierbar. Ihre erste Ablei-
tung ist mittels der Kettenregel

flz) = 2z ™
=:p1

wobei p; ein Polynom vom Grad 1 ist.

Induktionsschritt Wir nehmen an, dass f n-mal differenzierbar ist, mit

f = pu(2) - f(2),

wobei p,, ein Polynom vom Grad n ist. Es gilt, dass sowohl das Polynom p,,
wie auch die Funktion f differenzierbar ist, und damit auch ihr Produkt. Fiir
die (n + 1)-te Ableitung gilt

£ (@) = (1) @) = (ala) - F@)) = Fo@) - £@) +pala) - £/ (@)
= (@) € +pale) - 20e” =" (p(2) + 2apa(a)).

=Pn+1

Das Polynom p,,4+1 hat den Grad n + 1.

(A5) Taylorentwicklung

Die Taylorentwicklung von Ordnung 5 von tan(z) an der Stelle o = 0 ist
gegeben durch

1 2
tan(z) = 2 4+ —2> + —2° + o(z).

3 15
a) Berechnen Sie die Taylorentwicklung von Ordnung 5 von tan (x — %) an der
Stelle xg = 7.

Wir substituieren y = z — 7. Die Taylorentwicklung von
tan (9: — g) an der Stelle xg = %

entspricht der Taylorentwicklung von

tan (y) an der Stelle yo = zp — % =0.

Diese Taylorentwicklung kennen wir aus der Aufgabenstellung. Sie ist gege-
ben durch

1 2
t _ L3, 4 5 5y
an(y) =y + AT +o(y”)

Durch Riicksubstitution erhalten wir
I R o Y (o
4) 4 3 4 15 4 4 '

b) Berechnen Sie die Taylorentwicklung von Ordnung 3 von tan(z) an der

Stelle xg = 7.

Hier kénnen wir nicht einfach substituieren. Wir erhalten durch explizites
Ausrechnen der Ableitungen mit den Ableitungsregeln

tan’(z) = @, tan” (z) = — m(—sin(m‘)) = 2tan(z) - tan’(z),
tan”’(z) = 2(tan’(z)) + 2 tan(z) - tan” (z) = cost (@) + 4tan?(z) - @.



Damit folgt mit dem Satz von Taylor

) =t ) (5) - 5

2
A D) (- ))

)+Egiﬁ(x_zf

2+4sin2(%
cost (4 T\ 3 m™?
6( ! (+-7) +0<(m‘4))
2 m\3 T3
el el D) S 1) o (- 0))

%) = 2 gilt

Drel-3)

tan(e) = tan (7 ) +2 (2= §

™ )) schreiben als

¢) Mit dem Satz von Taylor und tan’ (

Weiter konnen wir das o ((x -1

tan’(€) o

wobei § ein zwischenstelle zwischen xo = 7 und z ist. Wir miissen daher

das Maximum ausrechen
t tan(5%
max tan”(z) = max (2 ar;(z) ) = 2( 1567T)
=€, %5 seliz.gal 0 cos?(2)” cos?(5F)
das tan(x) strikt monoton wichst und cos?(x) strikt monoton fillt. Also

tan(3T) /7 \? 3r 5w

t — R R , €=, =

[tan(z) = p2(2)] < cos?(2Z) <16> * €l 161

(A6) Grenzwerte von Funktionen 1
(a) Berechnen Sie folgende Grenzwerte. Benutzen Sie Taylorentwicklung oder

L’Hopital.
i) i 1 (sinx 1
V25022 \Sinbz 5

Wir berechnen die Taylorentwicklung von sin(z) und sin(5z) von

Ordnung 3 um den Punkt zg = 0,

3

sin(z) =z — % + o(z?)

und
(52)°

sin(bx) = bz

77+0

((52)")
——

=o(x?)

( Variablelsubstitution y = 5z bei Taylorentwicklung von sin(y)).

Dann gilt



I 1 [ sinz 1 i dsinz — sin 5z Tavl twickl ot
lm s\ sy ~5) S0 e aylorentwicklungen einsetzen
. 5 (z—ga®) — (5r — 12223) 4 o(2?)
= lim
=0 522 (5 + o(x))
« . 2023 + o(z?)
=lim ————=
x—0 2523 + o(x3)
23(20 + %2
T oBb 308 4 o)y
w—ﬂ)£3(25_+ 3 )
20 +1lim, %5 20 4
25 + lim, o 420 25 5
An der Stelle * haben wir verwendet, dass z2o(x) = o(x3) gilt.

Aufgrund der Definition ist r(z) = o(z), wenn @ — 0 fiir x — 0.

Wenn wir nun Zahler und Nenner mit 22 multiplizieren, so gilt

z2r(x)
3

— 0 fiir 2 — 0, und somit ist 2%r(x) gleich o(3).

2 2
ii) lim r —am ) .sm (z)
e—0 22 sin®(z)
Wir betrachten die Taylorentwicklung von sin(z) vom Grad 3 um
den Punkt zg = 0,
3
sin(z) = x — % + o(z?).

Durch Quadrieren erhalten wir

23 x>
sin?(z) = (z — 5 + o(z3))(x — 5 + o(x?))
1 1 1 1
=% - 6:24 + zo(x3) — 6x4 + %xG - 61:30(333)

) - )

1
S — §x4 +r(x),

wobei r(z) = zo(z?) + 41 — tzPo(a®) + wo(2?) — Lado(a®) +
o(x®)o(z?). Die Terme von r(z) sind in der Landau Notation

— zo(x®) = o(x?)

— 3535 = o(a?)

- %x%(mg) = o(x%)

— o(z%)o(x?) = o(x").

Fiir den letzten Term haben wir die Tatsache aus den Multiple
Choice Fragen verwendet, dass wenn f(z) = o(a?) und g(x) = o(x?),
dann ist f(z)g(x) = o(xPT9).

Die Summe r(x) ist dann gleich o(z*), was der tiefsten Potenz
entspricht (wieder Multiple Choice Frage).

Somit ist

sin?(z) = 2% — —2* + o(z?).



Damit folgt

2? —sin®(z) . x?— (2% — fat +o(z?))
2 =T 2 1,4 1
z—0 g4sin ((E) z—0 o (.’17 — ga: + 0(.'17 ))

1 . o
1 lim,p %)

1+ hmx_w =

rttan(z?) — z*sin?(z)

G
i) 250 1 — cos(z4)

Die Taylorentwicklung von tan(y) von Ordnung 2 ist

tan(y) =y + o(y?).

Durch Substitution y = 22 erhalten wir die Taylorentwicklung von
tan(z?),

tan(z?) = 2% + o(z?).
Die Taylorentwicklung von sin?(z) von Ordnung 4 ist mit Aufgabe

b),

1
2 §x4 + o(z*).

Die Taylorentwicklung von cos(y) von Ordnung 2 ist

sin®(z) = x

cos(y) =1— % + o(y?).

Durch Substitution y = 2* erhalten wir die Taylorentwicklung von

cos(x?),
8
cos(z?) =1 — % + o(z®).

Daraus folgt

. z*tan(z?) — 2% sin®(x) . at(a® + o(z?) — 2(2? — 2 + o(a?))
lim = lim T
0 1 — cos(z*) =0 1 —(1—352%+0(2®))
. zto(z?) + 128 + z'o(x?)
= lim T
z—0 528 4 o(x8)

328 + o(2®)
z—0 %xS + o(x8®)

8
o8(5 + =52 ))

= lim ——F=
20 z8(1 ¢ 0(;%8))
8
. % + 11ml—>0 O(;S ) 2
= lim o o = 3
#2044 lim, 0 %52 3

(b) Berechnen Sie folgende Grenzwerte.

22 log cosh(z)

D I loa(1 + 22))2



Wir betrachten zuerst den Nenner. Die Taylorentwicklung des Cosi-
nus hyperbolicus an der Stelle 0 von Ordnung 4 ist

" n "
cosh” (0 cosh™ (0 cosh™" (0
cosh(z) = cosh(0) + cosh’(0) x © x? + © z3 + cosh(0) z* + o(z?)
——— 2 6 24
. —_— ——— ——
=sinh(0) _ cosh(0) _ sinh(0) cosh(0)
2 - 6 24

1
=1+ -2? +—ac + o(z)

2 24
1
:1—}—5952—&—0(95 )-

Die Taylorentwicklung von log(1 + y) ist aus dem Skript bekannt,
y? 2 2
log(1+y) =y~ 5 +oly’) =y +0@y)

Zusammen erhalten wir fiir den Zihler

2
x?log(cosh(z)) = z*log | 1 + % +0(z") | =2° (y+ O(y?))

| S
=y

=22 (9;2 + 0" +0 <(x; + O(x4)>2>>

= z? <x22 + O(a:4)> = % + O(x5).

Fiir den Nenner verwenden wir erneut die Taylorentwicklung von
log(1 + 2z). Damit gilt

log(l—&-\xf/) =log(1+2) = 24+0(2?) = 224+ 0((2?)?) = 22+ 0(z*).

Quadrieren ergibt
(log(1+ z%))? = (2% + O(z*))? = 2* + O(a5).

Zusammengesetzt ergibt sich

o a?logcosh(z) . % + O(x ) - 2t (3 OfcﬁG))
z—0 (log(l —+ gj2))2 - z—)O IE4 + O( ) z—0 1’4(1 + %ﬂis))
hlim 2
14 lim, o 282 2
An der Stelle * bemerken wir, dass ngf) = O(”g”;)m O G)x und

da Ogﬁ-ﬁ) beschrinkt ist konvergiert der Ausdruck (gj )y 2 gegen 0
fiir = gegen 0.
log(1 + 22
i) 1 180+
=0 ginh”(z)

Wir gehen wie im Teil i) vor. Es gilt
log(1 + 22) = 2% + O(z*)

und die Taylorentwicklung von sinh von Ordnung 3 um die Stelle 0

fithrt zu
sinh” (0 inh” (0
sinh(x) = sinh(0) + sinh’(0) x + sinh (0) 2?4+ 2 ©) 23+ o(z?)
——— 2 6
—— ———
cosh(0) _ sinh(0) cosh(0)
- 2 6

1
=z+ 61‘3 +o(x®) = 2+ O(z?).



Durch quadrieren ergibt sich
sinh?(z) = (z + O(2%))? = 22 + O(z*).

Somit gilt fiir den Grenzwert

4
log(1+2?) . 22+ O(a?) (1 + %)
m—— = lim — oy = m s
2=0  sinh*(z) z—0 22 + O(z?) 20 22(1+ xﬂg )
C14lim, L, 280 :
14 limg 0 252

x



