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Cadre

Dans ce chapitre, on commence l'étude des fonctions
numériques : f : A → B avec A,B ⊂ R.



Rappel : inf et sup d'ensemble

- supA est le plus petit majorant de A,

- inf A est le plus grand minorant de A,

- maxA est dé�nit seulement si supA ∈ A et est égal à supA,

- minA est dé�nit seulement si inf A ∈ A et est égal à inf A.



Rappel : inf et sup d'ensemble

On a alors que si A,B ⊂ R,
- sup(A ∪B) = max(supA, supB) (voir slide suivant pour
une preuve),

- inf(A ∪B) = min(inf A, inf B),

- si A ⊂ B, supA ≤ supB et inf A ≥ inf B.

En particulier, quand tous les max et min sont bien dé�nis,

max(A ∪B) = max(maxA,maxB),

min(A ∪B) = min(minA,minB).



sup(A ∪B) = max(supA, supB)

On montre l'égalité par double inégalités : x = y est équivalent à
x ≤ y ET x ≥ y.
Posons S = sup(A ∪B) et M = max(supA, supB).

Comme A,B ⊂ A ∪B, supA ≤ S et supB ≤ S, donc
S ≥ max(supA, supB) = M .

De l'autre côté, M est un majorant de A et de B car M ≥ supA
et M ≥ supB, donc M est un majorant de A ∪B et donc
M ≥ sup(A ∪B) = S.



Rappel

Si A,B ⊂ R, une fonction est une application f : A → B telle
que f(x) ∈ B pour tout x ∈ A.

A est appelé le domaine (ou domaine de dé�nition) de f et B le
co-domaine de f .

On rappelle aussi : pour C ⊂ A et D ⊂ B,

f(C) = {y ∈ B : ∃x ∈ C, f(x) = y},
f−1(D) = {x ∈ A : f(x) ∈ D},

l'image par f de C et la pré-image par f de D. On note
Image(f) = f(A) l'ensemble image de f .



Fonction dé�nie par morceaux

On utilisera souvent la notation suivante : si f : A → B est tel
que A = A1 ∪A2 ∪ · · · ∪An avec Ai ∩Aj = ∅ si i ̸= j (le
domaine de f est une union disjointe d'ensembles),

f(x) =


f1(x) si x ∈ A1,
...

...

fn(x) si x ∈ An,

avec fi : Ai → B pour tout i.



Somme et produit de fonctions

Soient f, g : A → R deux fonctions. On dé�nit les fonctions

(f + g) : A → R, (f + g)(x) = f(x) + g(x),

(f · g) : A → R, (fg)(x) = f(x)g(x).



Sup et Inf de fonctions



Sup et inf de fonctions

Si f : A → B (A,B ⊂ R), on dé�nit

- sup f := supx∈A f(x) := sup f(A) = sup Image(f),

- inf f := infx∈A f(x) := inf f(A) = inf Image(f).

Si f(A) n'est pas majoré, on pose sup f = +∞. Si f(A) n'est
pas minoré, on pose inf f = −∞.

Et, quand les quantités sont bien dé�nies,

- max f := maxx∈A f(x) := max f(A) = max Image(f),

- min f := minx∈A f(x) := min f(A) = min Image(f).

ATTENTION : dans la notation sup f , le domaine de f est
implicite ! D'où l'importance de bien faire attention à quel est le
domaine de la fonction que l'on étudie.



Exemples

Quels sont le sup et l'inf des fonctions

(a) f : R → R, f(x) = x2 ?

(b) f : R → R, f(x) = x ?

(c) f : [0, 1] → R, f(x) = x ?

(d) f : (0, 1) → R, f(x) = x2 ?

(e) f : R → R, f(x) = sin(x) ?

(e) f : [1,+∞) → R, f(x) = 1
x ?



Sup et inf de sommes

Theorem

Soient A ⊂ R, f, g : A → R. Alors,

(1) Si f ≤ g (∀x ∈ A, f(x) ≤ g(x)),

sup f ≤ sup g, inf f ≤ inf g.

(2) sup(f + g) ≤ sup f + sup g.

(3) inf(f + g) ≥ inf f + inf g.



Preuve de (1)

Supposons f ≤ g. Posons Sf = sup f , Sg = sup g, If = inf f et
Ig = inf g.

On montre que Sg est un majorant de f(A) (ce qui implique que
Sg ≥ Sf car Sf est le plus petit majorant de f(A)). Soit
y ∈ f(A). On a alors qu'il existe x ∈ A avec f(x) = y. Comme
f ≤ g,

y = f(x) ≤ g(x) ≤ Sg.

On a montré que pour n'importe quel y ∈ f(A), Sg ≥ y. Donc
Sg est un majorant de f(A).

On procède de la même manière pour montrer que If est un
minorant de g(A), ce qui implique que If ≤ Ig.



Preuve de (2)

On montre que sup f + sup g est un majorant de (f + g)(A).

Soit y ∈ (f + g)(A). Alors, il existe x ∈ A tel que

(f + g)(x) = y.

On a alors

y = (f + g)(x) = f(x) + g(x) ≤ sup f + sup g.

On a montré que pour n'importe quel y ∈ (f + g)(A),
y ≤ sup f + sup g. Donc, sup f + sup g est un majorant de
(f + g)(A).



Preuve de (3)

On montre que inf f + inf g est un minorant de (f + g)(A).

Soit y ∈ (f + g)(A). Alors, il existe x ∈ A tel que

(f + g)(x) = y.

On a alors

y = (f + g)(x) = f(x) + g(x) ≥ inf f + inf g.

On a montré que pour n'importe quel y ∈ (f + g)(A),
y ≥ inf f + inf g. Donc, inf f + inf g est un minorant de
(f + g)(A).



Fonctions bornées

De�nition

Soit f : A → R. On dit que f est

- majorée si Image(f) l'est,

- minoré si Image(f) l'est,

- bornée si elle est majorée et minorée.

En d'autres mots, f est majorée si sup f ̸= +∞ (il existe C ∈ R
tel que f(a) ≤ C pour tout a ∈ A) et f est minorée si
inf f ̸= −∞ (il existe c ∈ R tel que f(a) ≥ c pour tout a ∈ A).



Continuité



Continuité

De�nition

Soit I ⊂ R un intervalle. Soit f : I → R. Soit x ∈ I. On dit que
f est continue en x si pour tout ϵ > 0, il existe δ > 0 tel que
pour tout y ∈ I avec |x− y| ≤ δ,

|f(x)− f(y)| ≤ ϵ.

Si f n'est pas continue en x, elle est discontinue et x. On dit que
f est continue si elle est continue en tout point de son domaine
de dé�nition.



Continuité : exemples

Lesquelles de ces fonctions sont continues ?

(1) f : R → R, f(x) = x ;

(2) f : R → R, f(x) = x2 ;

(3) f : R → R,

f(x) =

{
1 si x ≥ 0,

0 si x < 0;

(4) f : R → R,

f(x) =

{
x si x ̸= 1,

0 si x = 1;

(5) Soit c ∈ R, f : R → R, f(x) = c.

Preuves au tableau.



Continuité, dé�nition alternative

Theorem

Soit I ⊂ R un intervalle. Soit f : I → R. Soit x ∈ I. Alors f est

continue en x si et seulement si pour toute suite à valeurs dans

I, (xn)n≥1, telle que limn→∞ xn = x, on a que la suite(
f(xn)

)
n≥1

converge vers f(x) (limn→∞ f(xn) = f(x)).

Preuve de continue et xn → x implique f(xn) → f(x) au
tableau (ou sur le slide suivant).

En particulier, on peut �échanger� les fonctions continues et les
limites : si f est continue, limn→∞ f(xn) = f

(
limn→∞ xn

)
.



On montre que f continue en x et limn→∞ xn = x implique
limn→∞ f(xn) = f(x).

Soit ϵ > 0.

- Comme f est continue en x, il existe δ > 0 tel que
|y − x| ≤ δ implique |f(y)− f(x)| ≤ ϵ.

- Comme xn → x, il existe n0 ≥ 1 tel que pour tout n ≥ n0,
|xn − x| ≤ δ. En particulier, pour tout n ≥ n0,
|f(xn)− f(x)| ≤ ϵ.

ϵ > 0 étant arbitraire, on a montré que pour tout ϵ > 0 il existe
n0 ≥ 1 tel que pour tout n ≥ n0, |f(xn)− f(x)| ≤ ϵ ce qui est la
convergence de f(xn) vers f(x).



Application 1 : montrer la discontinuité

On veut montrer que f : R → R donnée par

f(x) =

{
x si x ≤ 2

x2 si x > 2
,

est discontinue en 2. On regarde la suite (xn)n≥1 :

xn =

{
2 + 1

n si n pair

2− 1
n si n impair

.

On a que xn → 2 mais,

f(xn) =

{
(2 + 1/n)2 ≥ 4 si n pair

2− 1
n ≤ 2 si n impair

ne converge pas vers f(2) = 2.



Application 2 : suites dé�nies par récurrence

Si on a une suite dé�nie par récurrence : x0 ∈ R et
xn+1 = f(xn), n ≥ 1 pour une fonction continue f : R → R.

On obtient que, si la suite converge vers une limite x, alors x est
solution de f(x) = x.

En e�et,

x = lim
n→∞

xn = lim
n→∞

xn+1 = lim
n→∞

f(xn) = f
(
lim
n→∞

xn
)
= f(x).

Exemples dans les séries 7 et 8.



Exemple

On regarde la suite, pour a, b ∈ R,

x0 ∈ R, xn+1 = axn + b.

I.e. : xn+1 = f(x), avec f(x) = ax+ b.

On a alors que (xn)n≥0 converge si et seulement si |a| < 1, et,
quand elle converge, la limite est

lim
n→∞

xn =
b

1− a
.



Exemple

Supposons que la suite converge vers une limite x. On a alors
x = ax+ b, ce qui donne

x =
b

1− a
,

ce qui est la limite voulue.

On regarde maintenant quand est-ce que la suite converge. On
montre par récurrence que pour tout n ≥ 1

xn = anx0 +

n−1∑
k=0

akb = anx0 + b
1− an

1− a
.

De là, on remarque que la suite converge si et seulement si
|a| < 1 (soit calcul exact, soit critère de Cauchy).



Application 2 : suites dé�nies par récurrence

On combine souvent cette observation avec de la monotonicité :

Theorem

Soit f : R → R une fonction, et x0 ∈ R, xn+1 = f(xn) une suite

dé�nie par récurrence. Si f est croissante (x ≤ y implique

f(x) ≤ f(y)), alors

- si x0 ≤ x1, la suite est croissante,

- si x0 ≥ x1, la suite est décroissante.

Au tableau. Idée : si xn ≤ xn+1, alors
xn+1 = f(xn) ≤ f(xn+1) = xn+2.



Application 2 : suites dé�nies par récurrence

Theorem

Soit f : R → R une fonction, et x0 ∈ R, xn+1 = f(xn) une suite

dé�nie par récurrence. Si f est décroissante (x ≤ y implique

f(x) ≤ f(y)), alors les suites

an = x2n, n ≥ 0, bn = x2n+1, n ≥ 0

sont monotones. De plus, (an)n≥1 est croissante si et seulement

si (bn)n≥1 est décroissante.

En exercice pour les motivés.



Application 2 : suites dé�nies par récurrence

Si on se trouve dans le cas monotone, on peut alors chercher à
borner la suite pour garantir sa convergence (ce qui est plus
simple que de calculer la limite). On trouve la limite en
résolvant x = f(x).

Voir séries.



Opérations sur les fonctions continues

Theorem

Soit I ⊂ R un intervalle et x0 ∈ I. Soient f, g : I → R deux

fonctions continues en x0 et λ ∈ R. Alors,

- f + g : I → R, (f + g)(x) = f(x) + g(x) est continue en x0,

- f · g : I → R, (f · g)(x) = f(x) · g(x) est continue en x0,

- λf : I → R, (λf)(x) = λ · f(x) est continue en x0,

- si f(x0) ̸= 0, il existe α > 0 tel que 1
f : I∩[x0−α, x0+α] → R,(

1
f

)
(x) = 1

f(x) est bien dé�nie et est continue en x0.

Preuves sur les slides suivants.



Pour la culture : f + g est continue en x0

Soit ϵ > 0. Par continuité de f, g en x0, il existe δ > 0 tel que
pour tout x ∈ I avec |x− x0| ≤ δ,

|f(x)− f(x0)| ≤ ϵ/2 et |g(x)− g(x0)| ≤ ϵ/2.

On a alors

|(f + g)(x)− (f + g)(x0)| = |f(x) + g(x)− f(x0)− g(x0)| ≤

|f(x)− f(x0)|+ |g(x)− g(x0)| ≤
ϵ

2
+

ϵ

2
= ϵ,

par l'inégalité du triangle.



Pour la culture : f · g est continue en x0

Soit ϵ > 0. Par continuité de f, g en x0, pour tout ϵ
′ > 0, il

existe δ > 0 tel que pour tout x ∈ I avec |x− x0| ≤ δ,

|f(x)− f(x0)| ≤ ϵ′ et |g(x)− g(x0)| ≤ ϵ′.

Fixons un tel ϵ′ > 0 (que l'on choisira plus tard en fonction de
ϵ), et le δ > 0 correspondant. On a alors pour tout x ∈ I avec
|x− x0| ≤ δ,

|(f · g)(x)− (f · g)(x0)| = |f(x) · g(x)− f(x0) · g(x0)| =
|(f(x)− f(x0)) · g(x) + f(x0) · g(x)− f(x0) · g(x0)| =

|(f(x)− f(x0)) · g(x) + f(x0) · (g(x)− g(x0))| ≤
|f(x)−f(x0)|·|g(x)|+|f(x0)|·|g(x)−g(x0)| ≤ ϵ′(|g(x)|+|f(x0)|)

par l'inégalité du triangle.



Pour la culture : f · g est continue en x0

Il nous reste à montrer que pour ϵ′ > 0 su�samment petit, on a
que pour tout x ∈ I avec |x− x0| ≤ δ,

ϵ′(|g(x)|+ |f(x0)|) ≤ ϵ.

Par le choix de δ, on a que pour tout x comme ci-dessus,

|g(x)− g(x0)| ≤ ϵ′.

On a alors par l'inégalité du triangle

ϵ′(|g(x)|+ |f(x0)|) ≤ ϵ′(ϵ′ + |g(x0)|+ |f(x0)|).

On choisit alors ϵ′ du sorte à ce que ϵ′(ϵ′ + |g(x0)|+ |f(x0)|) ≤ ϵ.



Pour la culture : λf est continue en x0

La fonction constante de R dans R donnée par x 7→ λ est
continue. Par la point précédent, le produit de fonctions
continues est continue, ce qui donne le résultat voulu.



Pour la culture : 1
f est continue en x0

Si f(x0) ̸= 0, on a |f(x0)| > 0. Par continuité de f en x0, il
existe α > 0 tel que pour tout x ∈ I avec |x− x0| ≤ α,

|f(x)− f(x0)| ≥ |f(x0)|/2 > 0.

En particulier,

|f(x)| ≥ |f(x0)| − |f(x0)|/2 = |f(x0)|/2 > 0.

Donc f(x) ̸= 0 pour x ∈ [x0 − α, x0 + α] ∩ I et donc 1
f est bien

dé�nie sur cet intervalle et satisfait f(x) ≥ |f(x0)|/2.



Pour la culture : 1
f est continue en x0

Montrons que 1
f est continue en x0. Comme f est continue en

x0, pour tout ϵ
′ > 0, il existe δ > 0 tel que pour tout

x ∈ [x0 − α, x0 + α] ∩ I avec |x− x0| ≤ δ,

|f(x)− f(x0)| ≤ ϵ′.

On a alors que pour de tels x,∣∣∣ 1

f(x)
− 1

f(x0)

∣∣∣ = 1

|f(x)f(x0)|
∣∣f(x0)− f(x)

∣∣ ≤
2

|f(x0)|2
∣∣f(x0)− f(x)

∣∣ ≤ 2

|f(x0)|2
ϵ′

(car x ∈ [x0 − α, x0 + α]∩ I). En prenant ϵ′ tel que 2
|f(x0)|2 ϵ

′ ≤ ϵ,

on obtient le résultat voulu.



Application : les polynômes sont continus

Comme application du théorème précédent, on obtient

Theorem

Soient n ∈ N, a0, . . . , an ∈ R, et p : R → R la fonction

polynômiale

p(x) =

n∑
k=0

akx
k.

Alors, p est continue.



Preuve, étape 1 : x 7→ xk est continue

On commence par montrer que pour tout k ≥ 0, la fonction
fk : R → R donnée par fk(x) = xk est continue.

On procède par récurrence sur k. On a déjà vu que c'est vrai
pour k = 0, 1, 2, ce qui donne l'initialisation. On montre le pas
de récurrence. Supposons que fk est continue. On a aussi que f1
est continue. Mais fk+1 = fk · f1. Donc, fk+1 est continue car
c'est le produit de deux fonctions continues.



Preuve, étape 2 : x 7→ cxk est continue

On montre que pour tout k ≥ 0, c ∈ R, la fonction f : R → R
donnée par f(x) = cxk est continue.

On a montré que x 7→ xk est continue. f est alors le produit
d'une fonction continue par un nombre, elle est donc continue.



Preuve, étape 3 : x 7→ p(x) est continue

On montre �nalement l'énoncé du théorème.

On procède par récurrence sur le degré de p (noté n). Pour
n = 0, p est une fonction constante, donc continue. Ceci donne
le pas d'initialisation. On montre le pas de récurrence. Si p a
degré n+ 1,

p(x) =

n+1∑
k=0

akx
k = an+1x

n+1 +

n∑
k=0

akx
k

︸ ︷︷ ︸
=:q(x)

q est alors un polynôme de degré n qui est continue par
l'hypothèse de récurrence.

p est la somme de q et d'un monôme, dont on a montré la
continuité dans les étapes 1 et 2. p est la somme de deux
fonctions continues, et est donc continue.



Continuité de fonction dé�nies par des séries

Theorem

Soient an ∈ R, n ∈ N. Soit r > 0. Supposons que

∞∑
n=0

|an|rn < ∞.

Alors, la fonction f : [−r, r] → R donnée par

f(x) =

∞∑
n=0

anx
n

est bien dé�nie et continue.



Preuve

Le fait que f soit bien dé�nie suit de la convergence absolue de
la série pour tout x ∈ [−r, r].

On montre qu'elle est continue. Pour tout n ≥ 0, on introduit
les fonctions An, Bn : [−r, r] → R données par

An(x) =

n∑
k=0

akx
k, Bn(x) =

∞∑
k=n+1

akx
k.

Comme toutes les séries converges absolument, An +Bn = f
pour tout n.



Preuve

Soit x ∈ [−r, r]. On montre la continuité en x. Soit ϵ > 0. On
peut montrer qu'il existe n0 ≥ 0 tel que

sup
y∈[−r,r]

|Bn(y)| ≤
ϵ

3

pour tout n ≥ n0 (voir slides suivants).

Maintenant, An0 est un polynôme, qui est donc continu. On peut
alors trouver δ > 0 tel que pour tout y ∈ [−r, r] avec |y − x| ≤ δ,∣∣An0(y)−An0(x)

∣∣ ≤ ϵ

3
.



Preuve

Par l'inégalité du triangle, on obtient que pour tout y ∈ [−r, r]
avec |y − x| ≤ δ,

|f(x)− f(y)| =
∣∣Bn0(x) +An0(x)−An0(y)−Bn0(y)

∣∣
≤

∣∣Bn0(x)
∣∣+ ∣∣An0(x)−An0(y)

∣∣+ ∣∣Bn0(y)
∣∣ ≤ ϵ

3
+

ϵ

3
+

ϵ

3
= ϵ.

Donc f est continue en x.



Preuve de la première majoration

On a que pour tout y ∈ [−r, r],

|Bn(y)| ≤
∞∑

k=n+1

|ak||y|k ≤
∞∑

k=n+1

|ak|rk.

Mais on sait que
∑∞

k=0 |ak|rk =: C ∈ R, et que

n∑
k=0

|ak|rk
n→∞−−−→ C.

En particulier, il existe n0 ≥ 0 tel que pour tout n ≥ n0,

ϵ

3
≥

∣∣∣C −
n∑

k=0

|ak|rk
∣∣∣ = ∞∑

k=n+1

|ak|rk,

ce qui est la majoration voulue.



Application

On obtient que la fonction exp : R → R est continue ! De même
pour les fonctions sinus et cosinus.



Composition de fonctions continues

Theorem

Soit I, J ⊂ R deux intervalles. Soit f : I → R et g : J → R deux

fonctions continues telles que f(I) ⊂ J . Alors, leur composition

g ◦ f : I → R, (g ◦ f)(x) = g(f(x))

est continue.



Composition de fonctions continues, preuve

Soit x0 ∈ I. Montrons que g ◦ f est continue en x0.

Soit ϵ > 0.

- comme g est continue en f(x0) (g continue sur J et
f(x0) ∈ J), il existe δ′ > 0 tel que pour tout y avec
|y − f(x0)| ≤ δ′, |g(y)− g(f(x0))| ≤ ϵ ;

- comme f est continue en x0, il existe δ > 0 tel que pour
tout x avec |x− x0| ≤ δ, |f(x)− f(x0)| ≤ δ′.

On a alors que pour tout x tel que |x− x0| ≤ δ,
|f(x)− f(x0)| ≤ δ′ et donc

|(g ◦ f)(x)− (g ◦ f)(x0)| = |g(f(x))− g(f(x0))| ≤ ϵ.



Continuité à gauche et à droite

De�nition

Soit I ⊂ R un intervalle. Soit f : I → R. Soit x ∈ I. On dit que
f est

- continue à droite en x si pour tout ϵ > 0, il existe δ > 0 tel
que pour tout y ∈ I avec y ≥ x, |y − x| ≤ δ,

|f(x)− f(y)| ≤ ϵ,

- continue à gauche en x si pour tout ϵ > 0, il existe δ > 0 tel
que pour tout y ∈ I avec y ≤ x, |y − x| ≤ δ,

|f(x)− f(y)| ≤ ϵ.



Exemple

On regarde les fonctions f, g : R → R données par

f(x) =

{
1 si x ≥ 0

0 si x < 0
, g(x) =


1 si x > 0

0 si x = 0

−1 si x < 0

.

Est-ce qu'elles sont continues à droite/gauche en 0 ?



Remarque

On a que f : I → R est continue en x0 ∈ I si et seulement si elle
est continue à droite et à gauche en x0.



Quelques familles de fonctions



Observation

La continuité est une propriété locale : pour que f : I → R soit
continue en x0 ∈ I, il faut regarder comment se comporte f(x)
pour des x in�niment proches de x0.

En particulier, on remarque que si on a f : I → R, a < b avec
(a, b) ⊂ I, et f : (a, b) → R continue, alors f : I → R est
continue en tout point de (a, b).

Que peut-on dire si f : [a, b] → R est continue ? Et pour
f : [a, b) → R et f : (a, b] → R ?



On va voir comment cette propriété de �localité� peut être
combinée avec des symétries pour déduire la continuité d'une
fonction.



Fonctions paires, impaires

De�nition

Soit f : R → R une fonction. On dit que

- f est paire si pour tout x ∈ R, f(−x) = f(x),

- f est impaire si pour tout x ∈ R, f(−x) = −f(x).

Notons que si f est impaire, f(0) = 0 car f(0) = f(−0) = −f(0)
car 0 = −0.



Parité et continuité

Theorem

Soit f : R → R une fonction paire ou impaire. Supposons que la

fonction g : [0,+∞) → R donnée par g(x) = f(x) soit continue

(g est la restriction de f à R+). Alors f est continue.



Preuve du cas f impaire

On procède en trois étapes :

(1) on montre que pour tout x ∈ (0,+∞) f est continue en x,

(2) on montre que pour tout x ∈ (−∞, 0) f est continue en x,

(3) on montre que f est continue en 0.



Preuve du cas f impaire, (1)

Soit x0 ∈ (0,+∞). Montrons que f est continue en x0.

Soit ϵ > 0. Comme g est continue en x0, il existe δ′ > 0 tel que
pour tout x ∈ [0,+∞) avec |x0 − x| ≤ δ′, |g(x)− g(x0)| ≤ ϵ.

Posons δ = min(δ′, |x0|). On a alors que pour tout x ∈ R tel que
|x0 − x| ≤ δ, x ∈ [0,+∞). Ceci nous donne que pour
|x0 − x| ≤ δ,

|f(x)− f(x0)| = |g(x)− g(x0)| ≤ ϵ

car |x0 − x| ≤ δ ≤ δ′.



Preuve du cas f impaire, (2)

Soit x0 ∈ (−∞, 0). Montrons que f est continue en x0.

Soit ϵ > 0. Comme g est continue en −x0, il existe δ′ > 0 tel que
pour tout y ∈ [0,+∞) avec |x0 − y| ≤ δ′, |g(y)− g(x0)| ≤ ϵ.

Posons δ = min(δ′, |x0|). On a alors que pour tout x ∈ R tel que
|x0 − x| ≤ δ, −x ∈ [0,+∞). Ceci nous donne que pour
|x0 − x| ≤ δ,

|f(x)− f(x0)| = | − f(−x) + f(−x0)| = |g(−x)− g(−x0)| ≤ ϵ

car | − x0 − (−x)| = |x0 − x| ≤ δ ≤ δ′.



Preuve du cas f impaire, (3)

Montrons la continuité en 0.

Soit ϵ > 0. Comme g est continue en 0, il existe δ > 0 tel que
pour tout y ∈ [0, δ], |g(y)− g(0)| ≤ ϵ.

On a alors que pour tout x ∈ R avec |x| ≤ δ,

|f(x)− f(0)| =

{
|g(x)− g(0)| ≤ ϵ si x ≥ 0,

| − g(−x) + g(0)| ≤ ϵ si x < 0.



Quelques propriétés des fonctions paires et impaires

Theorem

Soient p1, p2 : R → R deux fonctions paires, q1, q2 : R → R deux

fonctions impaires et f : p1(R) → R une fonction. Alors,

- p1 + p2, p1 · p2 et q1 · q2 sont paires ;

- q1 + q2 et p1 · q1 sont impaires ;

- q1 ◦ q2 est impaire ;

- p1 ◦ q1 est paire ;

- f ◦ p1 est paire.

Preuve dans la série 8.



Fonctions périodiques

De�nition

Soit f : R → R une fonction et T ∈ R∗. On dit que f est
T -périodique si pour tout x ∈ R, f(x+ T ) = f(x). De façon
équivalente, f est T -périodique si et seulement si
f(x+ nT ) = f(x) pour tout n ∈ Z.

EXEMPLES : sin et cos sont 2π-périodiques.



Périodicité et continuité

Theorem

Soit T ∈ R∗ et f : R → R une fonction T -périodique. Alors f est

continue si et seulement si f : [0, T ] → R (la restriction de f à

une période fermée) est continue.

Qu'est-ce qui peut rater si on demande seulement f : [0, T ) → R
continue ?

Preuve similaire à celle du Théorème sur la continuité des
fonctions paires et impaires.



Limites de fonctions et
extension par continuité



Un problème comme motivation

On regarde la fonction f : R → R

f(x) =

{
x2 si x ̸= 0

−1 si x = 0
.

Est-ce qu'elle est continue en 0 ? Si on la regarde comme
fonction f : (0,+∞) → R, est-elle continue ? et comme fonction
de f : (−∞, 0) → R ?



Un problème comme motivation

On peut voir f : R∗ → R comme la fonction dé�nie par
morceaux

f(x) =

{
f1(x) = x2 si x ∈ (0,+∞)

f2(x) = x2 si x ∈ (−∞, 0)
,

avec f1 : (0,+∞) → R, f2 : (−∞, 0) → R continues. Comment
�compléter� f de sorte à la rendre continue sur tout R ?



Point d'accumulation

De�nition

Soit E ⊂ R. x ∈ R est un point d'accumulation de E si il existe
une suite an ∈ E,n ≥ 1 telle que

- (an)n≥1 converge vers x (an → x),

- an ̸= x pour tout n.

En mots : un point d'accumulation d'un ensemble E est un
point dont on peut s'approcher arbitrairement près sans le

toucher en restant dans l'ensemble E. Notez que le point
d'accumulation n'appartient pas forcément à l'ensemble.



Point d'accumulation : exemples

Quels sont les points d'accumulations des ensembles suivants :

(a) E = (0, 1) ?

(b) E = {0, 2, 5} ?
(c) E = N ?

(d) E = Q ?

(e) E = [0, 1] ?



Ne pas confondre

On regarde ici les points d'accumulation d'un ensemble et non
d'une suite. Pour une suite, les points d'accumulations sont
toutes les limites de sous-suite convergentes :

De�nition

Soit (an)n≥1 une suite. x ∈ R est un point d'accumulation de

(an)n≥1 si il existe une sous-suite de (an)n≥1 qui converge vers
x :

∃n1 < n2 < . . . , (ank
)k≥1 converge vers x.



On a déjà rencontré (implicitement) le concept de point
d'accumulation pour des suites : pour démontrer qu'une suite ne
converge pas, on peut montrer qu'elle possède au moins deux
points d'accumulation distincts.

Par exemple,

- an = (−1)n,

- an = sin(πn/8),

possèdent toutes deux −1 et 1 comme points d'accumulation.

Voir slide suivant pour comment formaliser ceci en général.



Si (an)n≥1 est une suite et que l'on peut trouver (ank
)k≥1 et

(amk
)k≥1 deux sous-suites telles que

lim
k→∞

ank
= b < c = lim

k→∞
amk

.

On a alors que par convergence de (ank
)k≥1 et (amk

)k≥1, on
peut trouver k0 ≥ 1 tel que pour tout k ≥ k0,

|ank
− b| ≤ α, |amk

− c| ≤ α,

où α = (c− b)/4. Ce qui implique que pour k ≥ k0,

ank
≤ b+ α, amk

≥ c− α.

En particulier, pour tout k ≥ k0

|amk
− ank

| ≥ amk
− ank

≥ c− α− b− α = (c− b)/2 > 0,

ce qui implique que (an)n≥1 n'est pas de Cauchy.



Limite de fonction en un point d'accumulation

De�nition

Soit E ⊂ R un ensemble. Soit f : E → R une fonction et x ∈ R
un point d'accumulation de E. On dit que f admet une limite

en x si il existe L ∈ R tel que pour tout ϵ > 0, il existe δ > 0 tel
que pour tout y ∈ E satisfaisant 0 < |y − x| ≤ δ,

|L− f(y)| ≤ ϵ.

L est alors appelée la limite de f en x. On notera alors

lim
y→x

f(y) = L.



Exemples

Est-ce que les fonctions suivantes admettent des limites en x0 ?
Si oui, quelle est la limite ?

(a) x0 = 0, f : (0,+∞) → R, f(x) = x2 ;

(b) x0 = 0, f : R∗ → R, f(x) = 3x+ 2 ;

(c) x0 = 0, f : R → R,

f(x) =

{
x si x ≤ 0

x2 + 1 si x > 0
;

(d) x0 = 1, f : (−1, 1) → R, f(x) = (1− x)−1 ;

(e) x0 = −1, f : (−1, 1) → R, f(x) = (1− x)−1 ;

(f) x0 = 0, f : R → R,

f(x) =

{
x si x ̸= 0

1 si x = 0
.



Limite de fonction en un point d'accumulation

ATTENTION no 1 : il n'est pas vrai en général que
limy→x f(y) = f(x). La caractérisation de la continuité par les
suites nous dit que limy→x f(y) = f(x) si et seulement si f est
continue en x.

ATTENTION no 2 : pour écrire �limy→x f(y) = L� il ne su�t

pas de trouver une suite (xn)n≥1 qui converge vers x telle que
f(xn) → L.



Divergence vers ±∞

De�nition

Soit E ⊂ R un ensemble. Soit f : E → R une fonction et x ∈ R
un point d'accumulation de E. On dit que f diverge vers +∞
(−∞) en x si pour tout R > 0, il existe δ > 0 tel que pour tout
y ∈ E satisfaisant 0 < |y − x| ≤ δ,

f(y) ≥ R (≤ −R).

On notera alors

lim
y→x

f(y) = +∞ (−∞).



Limite de fonction en ±∞

De�nition

Soit f : R → R une fonction. On dit que f admet une limite en

+∞ si il existe L ∈ R tel que pour tout ϵ > 0, il existe R ∈ R tel
que pour tout x ≥ R,

|L− f(x)| ≤ ϵ.

L est alors appelée la limite de f en +∞. On notera alors

lim
x→∞

f(x) = L.



Limite de fonction en ±∞

De la même manière, on dé�nit

De�nition

Soit f : R → R une fonction. On dit que f admet une limite en

−∞ si il existe L ∈ R tel que pour tout ϵ > 0, il existe R ∈ R tel
que pour tout x ≤ R,

|L− f(x)| ≤ ϵ.

L est alors appelée la limite de f en −∞. On notera alors

lim
x→−∞

f(x) = L.



Limite de fonction en ±∞

De�nition

Soit f : R → R une fonction. On dit que f diverge vers +∞
(−∞) en +∞ si pour tout s ∈ R, il existe R ∈ R tel que pour
tout x ≥ R,

f(x) ≥ s (f(x) ≤ s).

On notera alors
lim
x→∞

f(x) = +∞(−∞).



Limite de fonction en ±∞

De la même manière

De�nition

Soit f : R → R une fonction. On dit que f diverge vers +∞
(−∞) en −∞ si pour tout s ∈ R, il existe R ∈ R tel que pour
tout x ≤ R,

f(x) ≥ s (f(x) ≤ s).

On notera alors

lim
x→−∞

f(x) = +∞(−∞).



Limites de fonctions : propriétés

Theorem

Soit E ⊂ R un ensemble. Soit x0 ∈ R un point d'accumulation

de E. Soient f, g : E → R deux fonctions qui admettent des

limites en x0. Soit λ ∈ R. Alors

- limx→x0(f + g)(x) = limx→x0 f(x) + limx→x0 g(x) ;

- limx→x0(f · g)(x) =
(
limx→x0 f(x)

)
·
(
limx→x0 g(x)

)
;

- limx→x0(λf)(x) = λ
(
limx→x0 f(x)

)
;

- si limx→x0 g(x) ̸= 0, limx→x0

f
g (x) =

limx→x0 f(x)

limx→x0 g(x) ;

Notations : (f + g)(x) := f(x) + g(x), (λf)(x) := λf(x),

(f · g)(x) := f(x)g(x), f
g (x) :=

f(x)
g(x) .



On ne prouvera pas ce théorème. Ce résultat est l'analogue
�fonctions� des résultats de convergences pour les sommes,
produit etc. de suites.



Extension par continuité en un point

La notion de limite de fonctions nous permet de voir notre
exemple de �compléter la fonction en un point pour la rendre
continue sur un domaine plus grand� dans un cadre plus général.

Soit f : E → R une fonction qui admet une limite en tout point
d'accumulation x de E, dénotée Lx. Si Lx = f(x) quand x ∈ E,
on peut dé�nir l'extension de f par continuité via

f̃(x) =

{
f(x) si x ∈ E,

Lx si x est un point d'accumulation de E.



Extension continue de fonctions continues sur un
intervalle

Comme exemple, on considère a < b ∈ R et

f : (a, b) → R.

Si f admet une limite en a et en b (notées La et Lb), on peut
étendre f à [a, b] en posant

f̃(x) =


f(x) si x ∈ (a, b),

La si x = a,

Lb si x = b.

f̃ est alors continue en a et en b.



Extrema de fonctions
continues



Pour la culture : Bolzano-Weierstrass

Theorem

Toute suite à valeurs réelles bornée admet une sous-suite

convergente.

Sans preuve. Idée de la preuve pour les intéressés : on extrait une
sous-suite qui converge vers la lim sup de la suite en utilisant la
caractérisation alternative du supremum vue au début du cours.



Extrema de fonctions continues

Theorem

Soient a < b ∈ R. Soit f : [a, b] → R une fonction continue.

Alors, f est bornée et il existe x+, x− ∈ [a, b] tels que

sup f = f(x+), inf f = f(x−).

En d'autres mots, max f et min f sont bien dé�nis.

Est-ce que le résultat est vrai si [a, b] est remplacé par (a, b) ?



Divergence au bord

On regarde le cas suivant : f : (0, 1] → R, donnée par

f(x) =
1

x
.

On a alors que la fonction f n'est pas majorée car f(x) diverge
quand x tend vers 0.

Morale : pour les fonctions continues dé�nies sur un intervalle,
les problèmes surviennent aux bords !



Pour la culture : une partie de la preuve

Soit f : [a, b] → R une fonction continue. On montre que f est
majorée. On va raisonner par l'absurde et utiliser
Bolzano-Weierstrass.

Par l'absurde, supposons que f n'est pas majorée. Alors, pour
tout n ∈ N, il existe xn ∈ [a, b] tel que f(xn) ≥ n.

La suite (xn)n≥0 étant à valeurs dans [a, b], elle est majorée par b
et minorée par a. Elle est donc bornée. Par Bolzano-Weierstrass,
la suite (xn)n≥0 admet une sous-suite convergente, notons la
(xnk

)k≥1. Notons x = limk→∞ xnk
la limite de cette sous-suite.

Comme a ≤ xnk
≤ b pour tout k, x ∈ [a, b].



Pour la culture : une partie de la preuve

D'un côté, comme f est continue, donc

lim
k→∞

f(xnk
) = f

(
lim
k→∞

xnk

)
= f(x) ∈ R,

car x ∈ [a, b] qui est le domaine de dé�nition de f .

D'un autre côté, par construction de la suite (xn)n≥0, on a que
f(xnk

) ≥ nk pour tout k. Donc,

lim
k→∞

f(xnk
) ≥ lim

k→∞
nk = +∞,

ce qui amène à une contradiction. Notre hypothèse de départ,
�f n'est pas majorée� est donc fausse, et f est donc majorée.



Théorème des valeurs
intermédiaires



Théorème des valeurs intermédiaires

Theorem

Soient a < b ∈ R et f : [a, b] → R une fonction continue. Alors,

pour tout y entre f(a) et f(b), il existe x ∈ [a, b] tel que
f(x) = y.



�Preuve par l'image�

x

f(x)

a b

[a, b]
Image(f)



Pour la culture : preuve du Théorème

On traite le cas f(a) ≤ f(b). Soit y ∈ [f(a), f(b)]. On cherche
x ∈ [a, b] tel que f(x) = y.

On va construire deux suites (un)n≥1, (vn)n≥1 à valeurs dans
[a, b] telles que

- un ≤ vn pour tout n,

- |vn − un| ≤ (b− a)21−n

- f(un) ≤ y ≤ f(vn) pour tout n,

- (un)n≥1 est une suite croissante et (vn)n≥1 est une suite
décroissante,

- (un)n≥1 et (vn)n≥1 vont converger vers le point x voulu.



Pour la culture : preuve du Théorème

On va construire les deux suites par récurrence : on pose
u1 = a, v1 = b. On a bien que

- u1 ≤ v1,

- |v1 − u1| = b− a,

- f(u1) = f(a) ≤ y ≤ f(b) = f(v1).



Pour la culture : preuve du Théorème

Si un, vn sont dé�nis et satisfont un ≤ vn,
|vn − un| ≤ (b− a)21−n, f(un) ≤ y ≤ f(vn), on pose wn = un+vn

2
le point milieu entre un et vn, et on dé�nit

un+1 =

{
wn si f(wn) ≤ y

un si f(wn) > y
, vn+1 =

{
wn si f(wn) > y

vn si f(wn) ≤ y
.

On a alors bien que

- un ≤ un+1 ≤ vn+1 ≤ vn,

- |un+1 − vn+1| = |un − vn| ≤ (b− a)2−n,

- f(un+1) ≤ y ≤ f(vn+1),

ce qui donne les quatres premières propriétés voulues.



Pour la culture : preuve du Théorème

On montre maintenant que ces deux suites convergent vers la
même limite.

(un)n≥1 est croissante et majorée par b, donc elle converge.
Notons un → u.

(vn)n≥1 est décroissante et minorée par a, donc elle converge.
Notons vn → v.

Comme vn ≥ un pour tout n, v ≥ u.



Pour la culture : preuve du Théorème

Montrons que u = v. Par monotonicité, pour tout n ≥ 1, on a

|u− v| = v − u ≤ vn − un ≤ (b− a)21−n.

On a alors que comme (b− a)21−n n→∞−−−→ 0, |u− v| est plus petit
que n'importe quel nombre positif et est donc = 0.

Donc
u = v =: x.



Pour la culture : preuve du Théorème

On montre �nalement que f(x) = y comme voulu. Comme f est
continue et un → x,

f(x) = lim
n→∞

f(un) ≤ y,

et, comme vn → x,

f(x) = lim
n→∞

f(vn) ≥ y.

Donc f(x) ≤ y et f(x) ≥ y, d'où f(x) = y.



Remarque

La preuve nous donne un algorithme pour trouver un point x
qui satisfait f(x) = y !



Application : point �xe de Brouwer

Une conséquence directe du Théorème des valeurs
intermédiaires est

Theorem

Soit f : [0, 1] → [0, 1] une fonction continue. Alors, il existe

x ∈ [0, 1] tel que f(x) = x.



Application : point �xe de Brouwer, preuve

Si f(0) = 0 ou f(1) = 1, le résultat est directement vrai.
Supposons que f(0) > 0 et f(1) < 1.

On regarde alors g : [0, 1] → R dé�nie par g(x) = f(x)− x. g est
continue (somme de fonctions continues). On cherche alors
x ∈ [0, 1] tel que g(x) = 0.

Mais comme f(0) > 0 et f(1) < 1, g(0) > 0 et g(1) < 0. Donc 0
est un nombre entre g(0) et g(1).

Le Théorème des valeurs intermédiaires nous dit donc qu'il
existe x ∈ [0, 1] tel que g(x) = 0, ce qui est le résultat voulu.



Applications

En général, on applique le Théorème des valeurs intermédiaires
(souvent abrégé TVI) pour montrer qu'il existe des solutions à
des équations de la forme f(x) = g(x) pour x ∈ [a, b] et f, g
continues.

De plus, comme la preuve vue est algorithmique, on peut
l'utiliser pour trouver des (approximations de) solutions à ces
équations.



Continuité et bijectivité



Fonctions monotones et bijectivité

Theorem

Soit E ⊂ R et f : E → R une fonction strictement croissante :

pour tous x, y ∈ E, si x < y alors f(x) < f(y). Alors

f : E → f(E) est bijective, et sa réciproque, f−1 : f(E) → E,

est strictement croissante.

Le même énoncé est vrai en remplaçant �strictement croissante�
par �strictement décroissante� (pour tous x, y ∈ E, si x < y alors
f(x) > f(y)).



Preuve du théorème

On montre que f : E → f(E) est bijective.

On commence par remarquer que par choix du co-domaine, f
est surjective (chaque point du co-domaine et atteint).

On montre ensuite que f est injective (si x ̸= y, alors
f(x) ̸= f(y)). Soient x, y ∈ E tels que x ̸= y. Alors, soit x < y et
donc f(x) < f(y) ce qui entraine f(x) ̸= f(y), soit x > y et
donc f(x) > f(y) et donc f(x) ̸= f(y).



Preuve du théorème

On montre �nalement que f−1 : f(E) → E est strictement
croissante.

Soient x < y ∈ f(E). Alors, il existe u, v ∈ E tels que u ̸= v et
f(u) = x, f(v) = y. Comme u ̸= v, on sait que soit u < v, soit
v < u. Comme f(u) = x < y = f(v), et f est strictement
croissante, v < u est impossible (car cela impliquerait que
f(v) < f(u)). Donc u < v.

On a alors que

f−1(x) = f−1(f(u)) = u < v = f−1(f(v)) = f−1(y),

ce qui est la monotonicité voulue.



Fonctions monotones et bijectivité

Theorem

Soit a < b ∈ R et f : [a, b] → R une fonction continue et

strictement croissante. Alors, f : [a, b] → f([a, b]) est

bijective, sa réciproque est continue, et f([a, b]) = [f(a), f(b)].

Le même énoncé est vrai en remplaçant �strictement croissante�
par �strictement décroissante�.



Fonctions monotones et bijectivité : cas général

Theorem

Soit I ⊂ R un intervalle et f : I → R une fonction continue et

strictement croissante. Alors, f : I → f(I) est bijective, sa

réciproque est continue, f(I) est un intervalle qui est donné par :

f(I) =


[La, Lb] si I = [a, b]

(La, Lb] si I = (a, b]

[La, Lb) si I = [a, b)

(La, Lb) si I = (a, b)

,

avec a ∈ R ∪ {−∞}, b ∈ R ∪ {+∞} (±∞ autorisé dans les cas

(semi-)ouverts), et La = limx→a f(x), Lb = limx→b f(x).



Fonctions monotones et bijectivité : cas général

REMARQUE 1 : Par le résultat précédent, f : I → f(I) est
bijective car strictement croissante.

REMARQUE 2 : Notons que les limites sont bien dé�nies
(possiblement ±∞) par monotonicité de f , et que dans le cas
I = [a, b], La = f(a), Lb = f(b) par continuité de f .



Pour la culture : preuve du théorème dans le cas I = [a, b]

Par le résultat précédent, f : I → f(I) est bijective car
strictement croissante.

Montrons que f([a, b]) = [f(a), f(b)]. On procède par double
inclusions.



Pour la culture : preuve du théorème dans le cas I = [a, b]

On montre que f([a, b]) ⊂ [f(a), f(b)].

Soit y ∈ f([a, b]). Alors, il existe x ∈ [a, b] tel que f(x) = y. On
a alors que comme f est croissante, et a ≤ x ≤ b,

f(a) ≤ f(x) ≤ f(b),

et donc y = f(x) ∈ [f(a), f(b)]. D'où f([a, b]) ⊂ [f(a), f(b)].



Pour la culture : preuve du théorème dans le cas I = [a, b]

On montre �nalement que [f(a), f(b)] ⊂ f([a, b]).

Soit y ∈ [f(a), f(b)]. Alors, par le Théorème de valeurs
intermédiaires, il existe x ∈ [a, b] tel que f(x) = y. On a alors
que

y = f(x) ∈ f([a, b])

par dé�nition de l'ensemble image de f . D'où
[f(a), f(b)] ⊂ f([a, b]).



Pour la culture : preuve du théorème dans le cas I = [a, b]

Il reste à montrer que la réciproque de f ,
f−1 : [f(a), f(b)] → [a, b], est continue. Soit y ∈ [f(a), f(b)].
Montrons que f−1 est continue en y. Notons x = f−1(y).

Soit ϵ > 0. Prenons δ = min(f(x+ ϵ)− f(x), f(x)− f(x− ϵ)) > 0
car f est strictement croissante. On a alors que pour tout
y′ ∈ [y − δ, y + δ] (i.e. : tout y tel que |y − y′| ≤ δ),∣∣f−1(y)− f−1(y′)

∣∣ ={
f−1(y)− f−1(y′) ≤ x− f−1(f(x− ϵ)) = ϵ si y ≥ y′

f−1(y′)− f−1(y) ≤ f−1(f(x+ ϵ))− x = ϵ si y ≥ y′
,

car dans le premier cas
y′ ≥ y − δ ≥ y − f(x) + f(x− ϵ) = f(x− ϵ) et dans le second,
y′ ≤ y + δ ≤ y + f(x)− f(x+ ϵ) = f(x+ ϵ).



Application 1 : x 7→ x2

f : [0,+∞) → [0,+∞), f(x) = x2 : on a déjà vu que f est
continue. On montre que f est strictement croissante sur R+ :
soit 0 ≤ x < y,

y2 − x2 = (y + x)(y − x) > 0,

car x+ y ≥ y > 0 et y − x > 0 (car y > x ≥ 0). On obtient que
f est une bijection entre [0,+∞) et f([0,+∞)) = [0,+∞).



Application 2 : x 7→ ex

exp : R → (0,+∞), exp(x) = ex : on a vu que cette fonction est
continue, on montre que exp est strictement croissante sur R :
soit x < y,

ey − ex = ex(ey−x − 1) > 0,

car si δ > 0,

eδ − 1 =

∞∑
k=1

δk

k!
≥ δ > 0.

On obtient que exp est une bijection entre R et
exp(R) = (0,+∞).



Application 3 : x 7→ ln(x)

Comme exp : R → (0,+∞) est bijective et continue, sa
réciproque, ln, est bijective et continue. De plus, comme exp est
strictement croissante, ln est aussi strictement croissante.

En particulier, comme Image(ln) = R, on obtient que

lim
x→+∞

ln(x) = +∞, lim
x→0

ln(x) = −∞.



Notions plus fortes de
continuité



Continuité uniforme

De�nition

Soit I un intervalle et f : I → R. On dit que f est uniformément

continue si pour tout ϵ > 0, il existe δ > 0 tel que pour tout
x ∈ I et tout y ∈ I tel que |x− y| ≤ δ

|f(x)− f(y)| ≤ ϵ.

La di�érence avec la continuité usuelle est que dans le cas de la
continuité usuelle en un point x, δ est autorisé à dépendre du
point x.



Continuité uniforme : exemple 1

La fonction f : R → R donnée par f(x) = 3x+ 2 est
uniformément continue : si |x− y| ≤ δ,

|f(x)− f(y)| = |3x− 3y| = 3|x− y| ≤ 3δ.

On peut donc prendre δ = δ(ϵ) = ϵ
3 dans la dé�nition.



Continuité uniforme : exemple 2

La fonction f : R → R donnée par f(x) = x2 n'est pas
uniformément continue : on a

|f(x)− f(y)| = |x2 − y2| = |x+ y| · |x− y|.

Si on prend ϵ > 0, δ > 0 et que l'on suppose δ
2 ≤ |x− y| ≤ δ, on

a que pour x, y > 0 assez grands (p. ex. : x, y ≥ 10ϵ
δ ),

|f(x)− f(y)| ≥ δ

2
|x+ y| ≥ 10ϵ > ϵ.

On ne peut donc pas trouver de δ = δ(ϵ) > 0 tel que |x− y| ≤ δ
implique |f(x)− f(y)| ≤ ϵ.



Versions quantitatives de la continuité

De�nition

Soit I un intervalle et f : I → R. Soit C > 0. On dit que f est
C-lipschitzienne si pour tout x, y ∈ I,

|f(x)− f(y)| ≤ C|x− y|.

En prenant δ = ϵ/C, on obtient que C-lipschitzienne implique
uniformément continue.



Versions quantitatives de la continuité

On peut généraliser cette notion.

De�nition

Soit I un intervalle et f : I → R. Soit C > 0, α > 0. On dit que
f est (α,C)-höldérienne si pour tout x, y ∈ I,

|f(x)− f(y)| ≤ C|x− y|α.

En prenant δ = (ϵ/C)1/α, on obtient que (α,C)-höldérienne
implique uniformément continue.



Application : calcul d'erreur

On imagine que l'on connait la masse d'un objet, m > 0, et que
l'on mesure sa hauteur depuis le sol, hmes, avec une précision
δ = 0.01. On calcule alors l'énergie potentielle de gravitation de
l'objet via

Epot = 9.81 ·masse · hauteur.

On veut savoir à quel point la valeur obtenue peut être loin de
la valeur réelle de l'énergie de l'objet.



Application : calcul d'erreur

En math : on a une fonction Epot : R → R, donnée par
Epot(h) = 9.81 ·m · h. On sait que la hauteur réelle, hre, est
dans l'intervalle [hmes − δ, hmes + δ]. La fonction Epot est
9.81m-lipschitzienne car,∣∣Epot(x)− Epot(y)

∣∣ = 9.81m|x− y|.

On obtient alors que comme |hre − hmes| ≤ δ,∣∣Epot(hre)− Epot(hmes)
∣∣ ≤ 9.81mδ = 0.0981m,

ce qui nous donne une borne sur l'erreur commise.


