Chapitre IV : Fonctions
numeériques et continuite

Sup et Inf de fonctions

- Continuité

Quelques familles de fonctions
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- Extrema de fonctions continues

- Valeurs intermédiaires

- Continuité et bijectivité

- Notions plus fortes de continuité



Dans ce chapitre, on commence ’étude des fonctions
numeériques : f: A — B avec A, B C R.



Rappel : inf et sup d’ensemble

- sup A est le plus petit majorant de A,
- inf A est le plus grand minorant de A,
- max A est définit seulement si sup A € A et est égal 4 sup A,

- min A est définit seulement si inf A € A et est égal & inf A.



Rappel : inf et sup d’ensemble

On a alors que si A, B C R,
- sup(A U B) = max(sup 4, sup B) (voir slide suivant pour
une preuve),
- inf(AU B) = min(inf A, inf B),
-si AC B,supA <supB et inf A > inf B.

En particulier, quand tous les max et min sont bien définis,

max(A U B) = max(max A, max B),
min(A U B) = min(min A, min B).



sup(A U B) = max(sup A, sup B)

On montre 1’égalité par double inégalités : x = y est équivalent a
r<yETz>y.
Posons S = sup(A U B) et M = max(sup A, sup B).

Comme A,BC AUB,supA < SetsupB <5, donc
S > max(sup A,sup B) = M.

De lautre coté, M est un majorant de A et de B car M > sup A
et M > sup B, donc M est un majorant de AU B et donc
M >sup(AUB) = 5S.



Si A, B C R, une fonction est une application f: A — B telle
que f(x) € B pour tout z € A.

A est appelé le domaine (ou domaine de définition) de f et B le
co-domaine de f.

On rappelle aussi : pour C C Aet D C B,
f(C)={yeB: JxeC, f(x) =1y},
fUD)={z e A: f(z)e D},

l'tmage par f de C et la pré-image par f de D. On note
Image(f) = f(A) l’ensemble image de f.



Fonction définie par morceaux

On utilisera souvent la notation suivante : si f : A — B est tel
que A=A1UAU---UA, avec A;NA;j =@ sii#j(le
domaine de f est une union disjointe d’ensembles),
filz) six € Ay,
flx) =4 :
falz) sixe A,

avec f; : A; — B pour tout 1.



Somme et produit de fonctions

Soient f,g: A — R deux fonctions. On définit les fonctions

(f+9): A=R,  (f+9)() = f(x)+g(z),
(f-9):A=R,  (f9)(z) = f(x)g(x).



Sup et Inf de fonctions



Sup et inf de fonctions

Sif:A— B (A, B CR), on définit

- sup f 1= sup,ey f(z) := sup f(A) = sup Image(f),

- inf f :=inf,c4 f(z) ;= inf f(A) = inf Image(f).
Si f(A) n’est pas majoré, on pose sup f = +oo. Si f(A) n’est
pas minoré, on pose inf f = —oo.
Et, quand les quantités sont bien définies,

- max f := maxzc4 f(z) := max f(A) = max Image(f),

- min f := minge 4 f(z) := min f(A) = min Image(f).
ATTENTION : dans la notation sup f, le domaine de f est

implicite! D’ou I'importance de bien faire attention & quel est le
domaine de la fonction que 'on étudie.



Exemples

Quels sont le sup et 'inf des fonctions

(a) f:R—=R, f(z) =227

(b) f:R—=R, f(x)=x7?

() f:10,1] = R, f(z)==x?
(d) f:(0,1) > R, f(z) =227
(e) f:R =R, f(x) =sin(z)?
(€) f:[1,400) > R, flz) = 17



Sup et inf de sommes

Theorem
Soient ACR, f,g: A— R. Alors,
(1) Sif<g (VxeA, f(z) <g(z)),

sup f <supg, inf f <infg.

(2) sup(f +g) <sup f +supg.
(3) inf(f +g) > inf f +infg.



Preuve de (1)

Supposons f < g. Posons Sy =sup f, Sy =supg, Iy = inf f et
I, =infg.
On montre que Sy est un majorant de f(A) (ce qui implique que
Sg > Sy car Sy est le plus petit majorant de f(A)). Soit
y € f(A). On a alors qu'il existe z € A avec f(z) = y. Comme
<y,

y = [flz) <g(x) < Sy

On a montré que pour n’importe quel y € f(A), S; > y. Donc
Sy est un majorant de f(A).

On procede de la méme manieére pour montrer que Iy est un
minorant de g(A), ce qui implique que Iy < 1.



Preuve de (2)

On montre que sup f + sup g est un majorant de (f + g)(A4).
Soit y € (f 4+ g)(A). Alors, il existe z € A tel que

(f+9)(z)=y.
On a alors
y=(f+9)(x)=f(z)+g(x) <supf+supg.

On a montré que pour n’importe quel y € (f + g)(A),
y < sup f +supg. Donc, sup f + sup g est un majorant de
(f+9)(A).



Preuve de (3)

On montre que inf f + inf g est un minorant de (f + g)(A).
Soit y € (f 4+ g)(A). Alors, il existe z € A tel que

(f+9)(@) =y.
On a alors
y=(f+g)(@) = f(z)+g(x) = inf f+infg.

On a montré que pour n’importe quel y € (f + g)(A),
y > inf f +inf g. Donc, inf f + inf g est un minorant de
(f+9)(A).



Fonctions bornées

Definition
Soit f: A — R. On dit que f est
- majorée si Image(f) lest,
- minoré si Image(f) Dest,
- bornée si elle est majorée et minorée.
En d’autres mots, f est majorée si sup f # 400 (il existe C' € R

tel que f(a) < C pour tout a € A) et f est minorée si
inf f # —oo (il existe ¢ € R tel que f(a) > ¢ pour tout a € A).



Continuité



Continuité

Definition

Soit I C R un intervalle. Soit f: I — R. Soit z € I. On dit que
f est continue en x si pour tout € > 0, il existe § > 0 tel que
pour tout y € I avec |z —y| <4,

[f(z) = fly)l <e

Si f n’est pas continue en z, elle est discontinue et z. On dit que
f est continue si elle est continue en tout point de son domaine
de définition.



Continuité : exemples

Lesquelles de ces fonctions sont continues ?
(1) f:R=R, f(z) =a;
(2) f:R=R, f(z)=2a?;

(3) f:R—R,
1 siz>0,
J@) = {0 si x < 0;

4) f:R—R,
_)x siz#1,
J(@) = {0 six=1;

(5) Soit c e R, f:R =R, f(z)

Preuves au tableau.

C.



Continuité, définition alternative

Theorem

Soit I C R un intervalle. Soit f: 1 — R. Soit x € 1. Alors f est
continue en x si et seulement si pour toute suite & valeurs dans
I, (zn)n>1, telle que limy, o0 x,, =z, 0n a que la suite

(f(xn))nZI converge vers f(x) (limp_oo f(zn) = f(x)).

Preuve de continue et z, — x implique f(x,) — f(z) au
tableau (ou sur le slide suivant).

En particulier, on peut “échanger” les fonctions continues et les
limites : si f est continue, lim, o f(2,) = f(limn_wo a:n)



On montre que f continue en x et lim, ., =, = = implique
limy, 00 f(l'n) = f(x)
Soit € > 0.
- Comme f est continue en z, il existe & > 0 tel que
ly — | < ¢ implique |f(y) — f(z)] <.
- Comme x, — x, il existe ng > 1 tel que pour tout n > ny,
|z, — x| < 6. En particulier, pour tout n > ny,
|f(zn) — fl2)| <€
€ > 0 étant arbitraire, on a montré que pour tout € > 0 il existe
np > 1 tel que pour tout n > ng, |f(x,) — f(x)] < € ce qui est la
convergence de f(x,) vers f(x).



Application 1 : montrer la discontinuité

On veut montrer que f : R — R donnée par

f(x):{xQ six <2

x siz>2’

est discontinue en 2. On regarde la suite (x,)n>1 :

1

1 . .
S 2+ sin pair
n . . . *
2 — = sl n impair
n

On a que x, — 2 mais,

(2+1/n)? >4 sin pair
2—-<2 si n impair

ne converge pas vers f(2) = 2.



Application 2 : suites définies par récurrence

Si on a une suite définie par récurrence : zg € R et
ZTnt1 = f(zp), n > 1 pour une fonction continue f: R — R.

On obtient que, si la suite converge vers une limite x, alors x est
solution de f(x) = =.

En effet,

© = i on = Jim m = i flon) = £ lim,on) = F(@)

Exemples dans les séries 7 et 8.



On regarde la suite, pour a,b € R,
o € R, xpy1 =ax, +0.

Le.: zp41 = f(x), avec f(z) = ax +b.

On a alors que (xy,)n>0 converge si et seulement si |a| < 1, et,
quand elle converge, la limite est

. b
lim x, = .
n—00 —a



Supposons que la suite converge vers une limite x. On a alors
x = ax + b, ce qui donne

ce qui est la limite voulue.

On regarde maintenant quand est-ce que la suite converge. On
montre par récurrence que pour tout n > 1

! 1—a™
n k n
= b= b .
Ty a$0+l§0a a"xro+ 1

De 14, on remarque que la suite converge si et seulement si
la] <1 (soit calcul exact, soit critére de Cauchy).



Application 2 : suites définies par récurrence

On combine souvent cette observation avec de la monotonicité :

Theorem

Soit f: R — R une fonction, et z9 € R, zp41 = f(x,) une suite
définie par récurrence. Si f est croissante (x <y implique

f(z) < f(y)), alors

- st xg < x1, la suite est croissante,

- st xo > x1, la suite est décroissante.

Au tableau. Idée : si x, < xp41, alors
Tp1 = f(2n) < f(Tnt1) = Tnya



Application 2 : suites définies par récurrence

Theorem

Soit f: R — R une fonction, et z9 € R, zp41 = f(x,) une suite
définie par récurrence. Si f est décroissante (x <y implique
f(x) < f(y)), alors les suites

ap = Top, n >0, bn:x2n+1’ n>0

sont monotones. De plus, (an)nzl est croissante si et seulement
si (bp)n>1 est décroissante.

En exercice pour les motivés.



Application 2 : suites définies par récurrence

Si on se trouve dans le cas monotone, on peut alors chercher a
borner la suite pour garantir sa convergence (ce qui est plus
simple que de calculer la limite). On trouve la limite en
résolvant = = f(x).

Voir séries.



Opérations sur les fonctions continues

Theorem

Soit I C R un intervalle et xg € I. Soient f,g: 1 — R deux
fonctions continues en xg et A € R. Alors,

-fHg: I =R, (f+g)(x) = f(z)+ g(z) est continue en xo,
-frg: I =R, (f-9)(x) = f(x)-g(x) est continue en xo,
-Af I =R, (Af)(x) =X f(x) est continue en xg,

- si f(xg) # 0, il existe a > 0 tel que % :IN[zo—a, zo+a] — R,

(%) (x) = ﬁ est bien définie et est continue en xg.

Preuves sur les slides suivants.



Pour la culture : f + ¢ est continue en x

Soit € > 0. Par continuité de f, g en xg, il existe § > 0 tel que
pour tout = € I avec |x — xg| <4,

[f (@) = flzo)| < €/2 et |g(x) —g(xo)| < €/2.

On a alors

(f +9)(@) = (f + 9)(zo)| = |f(2) + g(x) — f(xo) - (xo)l <
[f(x) = f(xo)| + 19(z) — g(z )!< +—= €,

par l'inégalité du triangle.



Pour la culture : f - g est continue en x

Soit € > 0. Par continuité de f, g en xg, pour tout € > 0, il
existe 0 > 0 tel que pour tout = € I avec |x — xg| < 4,

[f(@) = flzo)| <€ et |g(z) —g(zo)| <€

Fixons un tel ¢ > 0 (que l'on choisira plus tard en fonction de
€), et le 0 > 0 correspondant. On a alors pour tout x € I avec

|x — x| <6,
[(f-9)(x) = (f-g)(@o)| = |f(2) - g(z) — f(20) - g(w0)| =
|(f(z) — f(xo)) -g(fv) + f g(zo)| =

par l'inégalité du triangle.



Pour la culture : f - g est continue en x

Il nous reste & montrer que pour ¢ > 0 suffisamment petit, on a
que pour tout x € I avec |z — xg| < 4,

¢(lg(@)| + |f(zo)]) <.
Par le choix de 6, on a que pour tout z comme ci-dessus,
l9(z) — g(@o)| < €.
On a alors par l'inégalité du triangle

¢ (lg(@)| + 1 f(zo)]) < €' (€ + lg(zo)| + [ f (z0)])-

On choisit alors € du sorte a ce que € (€' + |g(zo)| + | f(z0)]) < €.



Pour la culture : Af est continue en x

La fonction constante de R dans R donnée par x +— X est
continue. Par la point précédent, le produit de fonctions
continues est continue, ce qui donne le résultat voulu.



Pour la culture : % est continue en x

Si f(xo) # 0, on a |f(xg)| > 0. Par continuité de f en zo, il
existe a > 0 tel que pour tout x € I avec |z — z¢| < «,

|f(z) = f(zo)| = | f(z0)]/2 > 0.
En particulier,
[f (@) = [f(zo)| = |f(w0)|/2 = | f(z0)]/2 > 0.

Donc f(x) # 0 pour x € [xg — a,z9 + o] N I et donc % est bien
définie sur cet intervalle et satisfait f(z) > |f(zo)|/2.



Pour la culture : % est continue en x

Montrons que % est continue en xg. Comme f est continue en
x, pour tout € > 0, il existe § > 0 tel que pour tout
x € [xog— a,z9 +a] NI avec |z — xo| < 6,

|f(2) = flzo)| < €.

On a alors que pour de tels x,

1 1 1
@)~ Feo)l ~ F@ o) " @<

2 9 /

Tl )~ F@] < e

(car x € [xg — a,x0 + a| N I). En prenant € tel que Wfl <,

on obtient le résultat voulu.



Application : les polynémes sont continus

Comme application du théoréme précédent, on obtient

Theorem
Soient n € N, ag,...,a, € R, et p: R — R la fonction

polynémiale
n
p(z) = Z apz®.
k=0

Alors, p est continue.



Preuve, étape 1 : x — x* est continue

On commence par montrer que pour tout £ > 0, la fonction
fr : R — R donnée par fi(x) = 2 est continue.

On proceéde par récurrence sur k. On a déja vu que c’est vrai
pour k =0, 1,2, ce qui donne l'initialisation. On montre le pas
de récurrence. Supposons que fr est continue. On a aussi que fi
est continue. Mais fr+1 = fx - f1. Donc, fry1 est continue car
c’est le produit de deux fonctions continues.



Preuve, étape 2 : x —> cx® est continue

On montre que pour tout £ > 0, ¢ € R, la fonction f: R — R
donnée par f(z) = cz® est continue.

On a montré que = — x* est continue. f est alors le produit
d’une fonction continue par un nombre, elle est donc continue.



Preuve, étape 3 : x +— p(x) est continue

On montre finalement ’énoncé du théoréme.

On procede par récurrence sur le degré de p (noté n). Pour
n = 0, p est une fonction constante, donc continue. Ceci donne
le pas d’initialisation. On montre le pas de récurrence. Si p a

degré n + 1,
n+1 n
k 1 k
p(z) = Z apz” = app2™t + Z ape
k=0 k=0
——

=:q()

q est alors un polynéme de degré n qui est continue par
I’hypothése de récurrence.

p est la somme de ¢ et d’'un mondme, dont on a montré la
continuité dans les étapes 1 et 2. p est la somme de deux
fonctions continues, et est donc continue.



Continuité de fonction définies par des série

Theorem

Soient an, € R, n € N. Soit r > 0. Supposons que

o0
Z lan|r" < oco.
n=0

Alors, la fonction f : [—r,r] = R donnée par

flz) = Z anz"
n=0

est bien définie et continue.



Preuve

Le fait que f soit bien définie suit de la convergence absolue de
la série pour tout x € [—r,7r].

On montre qu’elle est continue. Pour tout n > 0, on introduit
les fonctions A, By, : [-r,r] — R données par

o0

Il
S}
e
8
B

Ap(z) = Z apx”, B, ()
k=0

Comme toutes les séries converges absolument, A, + B, = f
pour tout n.



Preuve

Soit « € [—r,r]. On montre la continuité en x. Soit € > 0. On
peut montrer qu’il existe ng > 0 tel que

sup |Bn(y)| <
yE[—T,T‘]

Wl ™

pour tout n > ng (voir slides suivants).

Maintenant, A,, est un polynome, qui est donc continu. On peut
alors trouver § > 0 tel que pour tout y € [—r, 7] avec |y — z| < 4,

[ Ang () = Ang(0)] < 5.



Preuve

Par I'inégalité du triangle, on obtient que pour tout y € [—r, 7]
avee |y — | < 4,

£ (@) = f(W)] = | Buo () + Ang () — Ang(y) — Bny (v)]
< |Bo(a \+|An0 ) — Ano ()| + |Bno(y)| <

Donc f est continue en .



Preuve de la premiére majoration

On a que pour tout y € [—r,7],

o o
1Bu) < Y larllyl* < > Jarlr®.
k=n-+1 k=n+1

Mais on sait que Y oo |ax|r® =: C € R, et que

Z|a |7"k n—00

En particulier, il existe ng > 0 tel que pour tout n > ny,

> |c Zlak\r] S farlr®

ce qui est la majoration voulue.

OJlm



Application

On obtient que la fonction exp : R — R est continue! De méme
pour les fonctions sinus et cosinus.



on de fonctions continues

Theorem

Soit I,J C R deux intervalles. Soit f: 1 - R et g:J — R deux
fonctions continues telles que f(I) C J. Alors, leur composition

gof:I—R, (go f)(z) =g(f(x))

est continue.



Composition de fonctions continues, preuve

Soit 2g € I. Montrons que g o f est continue en xg.

Soit € > 0.

- comme g est continue en f(xg) (g continue sur J et
f(zo) € J), il existe &' > 0 tel que pour tout y avec
ly = f@o)| < 0", 19(y) — g(f(20))| < €;

- comme f est continue en xg, il existe § > 0 tel que pour
tout = avec |z — x| <0, |f(z) — f(xo)| < 0.

On a alors que pour tout x tel que |x — xg| <,
|f(z) = f(xo)| < 0" et donc

[(g o f)(x) — (g0 f)(zo)|l = lg(f(x)) — g(f(z0))] < e



Continuité a gauche et & droite

Definition
Soit I C R un intervalle. Soit f: I — R. Soit € I. On dit que
f est
- continue & droite en x si pour tout € > 0, il existe § > 0 tel
que pour tout y € I avec y > x, |y — x| <6,

[f(z) = Fly)l <e

- continue & gauche en x si pour tout € > 0, il existe § > 0 tel
que pour tout y € I avec y < z, |y — x| <4,

[f(z) = fly) <e



On regarde les fonctions f,g : R — R données par

1 Lz >0 1 siz >0
six
— - R e O i :0
/(@) {0 sixzx <0 9(x) S?m
-1 siz<0

Est-ce qu’elles sont continues a droite/gauche en 07



Remarque

On a que f: I — R est continue en zg € [ si et seulement si elle
est continue & droite et & gauche en xg.



Quelques familles de fonctions



Observation

La continuité est une propriété locale : pour que f : I — R soit
continue en zg € I, il faut regarder comment se comporte f(x)
pour des x infiniment proches de xg.

En particulier, on remarque que sion a f: I - R, a < b avec
(a,b) C I, et f:(a,b) — R continue, alors f : I — R est
continue en tout point de (a,b).

Que peut-on dire si f : [a,b] — R est continue ? Et pour
f:la,b) > Ret f:(a,b] > R?



On va voir comment cette propriété de “localité” peut étre
combinée avec des symétries pour déduire la continuité d’une
fonction.



Fonctions paires, impaires

Definition
Soit f : R — R une fonction. On dit que
- f est paire si pour tout x € R, f(—x) = f(x),
- f est impaire si pour tout x € R, f(—z) = —f(x).

Notons que si f est impaire, f(0) = 0 car f(0) = f(—0) = —f(0)
car 0 = —0.



Parité et continuité

Theorem

Soit f : R — R une fonction paire ou impaire. Supposons que la
fonction g : [0, +00) — R donnée par g(z) = f(x) soit continue
(g est la restriction de f a Ry ). Alors f est continue.



Preuve du cas f impaire

On procéde en trois étapes :
(1) on montre que pour tout x € (0,400) f est continue en z,
(2) on montre que pour tout x € (—o0,0) f est continue en x,

(3) on montre que f est continue en 0.



Preuve du cas f impaire, (1)

Soit zy € (0,4+00). Montrons que f est continue en xg.

Soit € > 0. Comme g est continue en xg, il existe 6’ > 0 tel que
pour tout z € [0,400) avec |zg — x| < ¢, [g(x) — g(x0)| <e.

Posons § = min(d’, |zp|). On a alors que pour tout z € R tel que
|zg — x| <, x € [0,400). Ceci nous donne que pour
|$0 - IE‘ S 57

|[f (@) = f(zo)| = lg(x) — g(zo)| < €

car |[xg — x| < § < ¢



Preuve du cas f impaire, (2)

Soit zy € (—00,0). Montrons que f est continue en xg.

Soit € > 0. Comme g est continue en —xy, il existe ¢’ > 0 tel que
pour tout y € [0, +00) avec |xg — y| < ¢, |9(y) — g(zo)| < e.

Posons § = min(d’, |zp|). On a alors que pour tout z € R tel que
|zg — x| < 3§, —x € [0,400). Ceci nous donne que pour
|$0 - IE‘ S 57

[f(z) = f(zo)| = [ = f(=2) + f(=xo)| = [9(=2) — g(—w0)| <€

car | —xo— (—z)| = |xg — 2| <5 <&



Preuve du cas f impaire, (3)

Montrons la continuité en 0.

Soit € > 0. Comme g est continue en 0, il existe § > 0 tel que
pour tout y € [0,4], |g(y) — g(0)| <.

On a alors que pour tout « € R avec |z| < 4,

F@) - £(0)] = {\9@) —9(0)] <



Quelques propriétés des fonctions paires et impaires

Theorem

Soient p1,pa: R — R deux fonctions paires, q1,q2: R — R deux
fonctions impaires et f: p1(R) — R une fonction. Alors,

- p1+p2, p1-p2 et q1 - q2 sont paires;
- q1+ q2 et p1-q1 sont impaires ;

- q1 0 q2 est impaire ;

- p1oq est paire;

- fop1 est paire.

Preuve dans la série 8.



Fonctions périodiques

Definition

Soit f : R — R une fonction et 7" € R*. On dit que f est
T-périodique si pour tout x € R, f(x +T) = f(x). De fagon
équivalente, f est T-périodique si et seulement si
f(z+nT) = f(x) pour tout n € Z.

EXEMPLES : sin et cos sont 2w-périodiques.



Périodicité et continuité

Theorem

Soit T € R* et f : R — R une fonction T-périodique. Alors f est
continue si et seulement si f :[0,T] — R (la restriction de f a
une période fermée) est continue.

Qu’est-ce qui peut rater si on demande seulement f:[0,7) — R
continue ?

Preuve similaire a celle du Théoréme sur la continuité des
fonctions paires et impaires.



Limites de fonctions et
extension par continuite



Un probléme comme mot

On regarde la fonction f: R — R

x? Six
flo) = { 7Y

-1 siz=0

Est-ce qu’elle est continue en 07 Si on la regarde comme
fonction f : (0,4+00) — R, est-elle continue ? et comme fonction
de f:(—00,0) = R?



Un probléeme comme motivation

On peut voir f: R* — R comme la fonction définie par
morceaux

z) =22 siz o0
f(x):{fm € (0, +00)

fo(z) =22 siz e (—00,0)

avec f1:(0,400) = R, fa: (—00,0) — R continues. Comment
“compléter” f de sorte & la rendre continue sur tout R?



Point d’accumulation

Definition

Soit F C R. x € R est un point d’accumulation de E si il existe
une suite a, € E,n > 1 telle que
- (an)n>1 converge vers x (a, — ),

- an # x pour tout n.

En mots : un point d’accumulation d’un ensemble E est un
point dont on peut s’approcher arbitrairement prés sans le
toucher en restant dans ’ensemble E. Notez que le point
d’accumulation n’appartient pas forcément & ’ensemble.



Point d’accumulation : exemples

Quels sont les points d’accumulations des ensembles suivants :

(a) E=(0,1)7
(

b) E={0,2,5}7
(¢c) E=N?

(d) E=Q7
(e) E=1[0,1]7



Ne pas confondre

On regarde ici les points d’accumulation d’un ensemble et non
d’une suite. Pour une suite, les points d’accumulations sont
toutes les limites de sous-suite convergentes :

Definition

Soit (ap)n>1 une suite. x € R est un point d’accumulation de
(an)n>1 si il existe une sous-suite de (ap)p>1 qui converge vers
x:

Ing <ng < ..., (an,)k>1 converge vers .



On a déja rencontré (implicitement) le concept de point
d’accumulation pour des suites : pour démontrer qu'une suite ne
converge pas, on peut montrer qu’elle posséde au moins deux
points d’accumulation distincts.

Par exemple,
- a’TL = (—l)n’
- a, = sin(mn/8),

possédent toutes deux —1 et 1 comme points d’accumulation.

Voir slide suivant pour comment formaliser ceci en général.



Si (ap)n>1 est une suite et que I'on peut trouver (ap, )r>1 et
(@m, )k>1 deux sous-suites telles que

lim a,, =b<c= lim ap,.
k—o00 —00

On a alors que par convergence de (an, )r>1 €t (am, )k>1, on
peut trouver kg > 1 tel que pour tout k > kg,

’ank - b <a, ‘amk —c <o
ot a = (¢ —b)/4. Ce qui implique que pour k > ko,
an, < b+ a, Uy, > C— Q.
En particulier, pour tout k > kg
|, — @n,| > am,, — an, >c—a—b—a=(c—b)/2>0,

ce qui implique que (an)n>1 n'est pas de Cauchy.



Limite de fonction en un point d’accumulation

Definition

Soit £ C R un ensemble. Soit f: EF — R une fonction et z € R
un point d’accumulation de E. On dit que f admet une limite
en x ¢i il existe L € R tel que pour tout € > 0, il existe § > 0 tel
que pour tout y € E satisfaisant 0 < |y — z| < 0,

IL—fy) <e

L est alors appelée la limite de f en x. On notera alors

lim f(y) = L.

Yy—x



Exemples

Est-ce que les fonctions suivantes admettent des limites en xg 7
Si oui, quelle est la limite ?

(a) m9 =0, f:(0,+00) = R, f(z) =2?;
(b) 2o =0, f:R* = R, f(x) =3z + 2;
(¢) 20=0, f:R - R,

T stz <0
z) = ;
/(@) {:c2+1 siz>0

(d) zo=1, f:(-1,1) = R, f(z) = (1 —xz)"";
(e) 2o =—1, f: (=1,1) = R, f(z)=(1—2)7';
(f) :L‘():O,f:R—)R,



Limite de fonction en un point d’accumulation

ATTENTION no 1 : il n’est pas vrai en général que

lim,_,, f(y) = f(x). La caractérisation de la continuité par les
suites nous dit que limy_,, f(y) = f(x) si et seulement si f est
continue en x.

ATTENTION no 2 : pour écrire “lim,_,, f(y) = L” il ne suffit
pas de trouver une suite (z,),>1 qui converge vers z telle que
f(zy) — L.



Divergence vers +00

Definition

Soit £ C R un ensemble. Soit f: EF — R une fonction et z € R
un point d’accumulation de E. On dit que f diverge vers +oo
(—o0) en x si pour tout R > 0, il existe § > 0 tel que pour tout
y € E satisfaisant 0 < |y — z| < 0,

flyy =2 R (£ -R).
On notera alors

lim f(y) = +o00 (—00).

Yy—x



Limite de fonction en 400

Definition

Soit f : R — R une fonction. On dit que f admet une limite en
400 si il existe L € R tel que pour tout € > 0, il existe R € R tel
que pour tout x > R,

IL—f(z)| <e
L est alors appelée la limite de f en +00. On notera alors

lim f(x)=L.

T—r00



Limite de fonction en 400

De la méme maniére, on définit

Definition

Soit f : R — R une fonction. On dit que f admet une limite en
—oo si il existe L € R tel que pour tout € > 0, il existe R € R tel
que pour tout z < R,

IL— f(z)] <e
L est alors appelée la limite de f en —oo. On notera alors

lim f(xz) = L.

T—r—00



Limite de fonction en 400

Definition

Soit f : R — R une fonction. On dit que f diverge vers 400
(—o0) en 400 si pour tout s € R, il existe R € R tel que pour
tout x > R,

On notera alors
lim f(z) = +oo(—00).

T—00



Limite de fonction en 400

De la méme maniére

Definition

Soit f : R — R une fonction. On dit que f diverge vers 400
(—oc) en —oo si pour tout s € R, il existe R € R tel que pour
tout z < R,

On notera alors



Limites de fonctions : propriétés

Theorem

Soit E C R un ensemble. Soit g € R un point d’accumulation
de E. Soient f,g: E — R deux fonctions qui admettent des
limites en xg. Soit A € R. Alors

- lima:—):co (f + g) (37) = limx—)xo f(l') + limx—):co g(x) ;
- hmx—mo (f ' g) (.Z‘) = (hmw—mo f(x)) (hmfc_)zvo g(x)) ;
- limg o (M) (@) = A(limg—a, f(2)) ;

hmggﬁaCQ f(z) |

- st limg_yp, g(x) # 0, limg 4, ’5(-%) = iMoo 9(2) 7

Notations : (f +g)(z) := f(x) + g(x), (\f)(z) = Af(2),
(f - 9)(@) = f@)g(), L(x):= LY.



On ne prouvera pas ce théoréme. Ce résultat est I’analogue
“fonctions” des résultats de convergences pour les sommes,
produit etc. de suites.



Extension par continuité en un point

La notion de limite de fonctions nous permet de voir notre
exemple de “compléter la fonction en un point pour la rendre
continue sur un domaine plus grand” dans un cadre plus général.

Soit f : E — R une fonction qui admet une limite en tout point
d’accumulation x de F, dénotée L,. Si L, = f(x) quand = € E,
on peut définir extension de f par continuité via

x {f(ac) siz € E,

fz) = . . .
(@) L, si x est un point d’accumulation de F.



Extension continue de fonctions continues sur un

intervalle

Comme exemple, on considére a < b € R et
f:(a,b) — R.

Si f admet une limite en a et en b (notées L, et Lp), on peut
étendre f a [a,b] en posant

f(z) size(a,b),
flx) =< L, siz=a,
Ly sixz =0

f est alors continue en a et en b.



Extrema de fonctions
continues



Pour la culture : Bolzano-W

Theorem

Toute suite a valeurs réelles bornée admet une sous-suite
convergente.

Sans preuve. Idée de la preuve pour les intéressés : on extrait une
sous-suite qui converge vers la limsup de la suite en utilisant la
caractérisation alternative du supremum vue au début du cours.



Extrema de fonctions continues

Theorem

Soient a < b € R. Soit f: [a,b] — R une fonction continue.
Alors, [ est bornée et il existe xy,x_ € [a,b] tels que

sup f = f(zy), inff=f(a_).
En d’autres mots, max f et min f sont bien définis.

Est-ce que le résultat est vrai si [a, b] est remplacé par (a,b)?



Divergence au bord

On regarde le cas suivant : f : (0,1] — R, donnée par

1
)= —.
fla) =+
On a alors que la fonction f n’est pas majorée car f(x) diverge

quand z tend vers 0.

Morale : pour les fonctions continues définies sur un intervalle,
les problémes surviennent aux bords!



Pour la culture : une partie de la preuve

Soit f : [a,b] — R une fonction continue. On montre que f est
majorée. On va raisonner par I’absurde et utiliser
Bolzano-Weierstrass.

Par I'absurde, supposons que f n’est pas majorée. Alors, pour
tout n € N, il existe z,, € [a,b] tel que f(zy) > n.

La suite (zy,)n>0 étant & valeurs dans [a, b], elle est majorée par b
et minorée par a. Elle est donc bornée. Par Bolzano-Weierstrass,
la suite (2, )n>0 admet une sous-suite convergente, notons la
(n,,)k>1- Notons x = limy_, o zp, la limite de cette sous-suite.
Comme a < z,, < b pour tout k, € [a,b].



Pour la culture : une partie de la preuve

D’un coté, comme f est continue, donc
li = lim x,, ) = f(z) € R
kggof(xnk) f(k—>oo nk) f( ) )

car z € [a,b] qui est le domaine de définition de f.
D’un autre coté, par construction de la suite (x,),>0, on a que

f(zn,) > ny pour tout k. Donc,

lim f(xy,) > hm ng = +00,
k—o00 —+00

ce qui améne & une contradiction. Notre hypothése de départ,
“f n’est pas majorée” est donc fausse, et f est donc majoreée.



Théoréeme des valeurs
intermédiaires



Théoréeme des valeurs intermédiaires

Theorem

Soient a < b€ R et f:[a,b] = R une fonction continue. Alors,
pour tout y entre f(a) et f(b), il existe x € [a,b] tel que
flz) =y



“Preuve par I'image”

. [a, 0]
J Image( f)




Pour la culture : preuve du Théoréeme

On traite le cas f(a) < f(b). Soit y € [f(a), f(b)]. On cherche
x € [a,b] tel que f(z) =y.

On va construire deux suites (uy)n>1, (Un)n>1 & valeurs dans
[a, b] telles que

- uy < v, pour tout n,

- |vp — un| < (b—a)2'™"

- flun) <y < f(vy) pour tout n,

- (up)n>1 est une suite croissante et (vy)p>1 €st une suite
décroissante,

- (un)n>1 €t (vp)n>1 vont converger vers le point  voulu.



Pour la culture : preuve du Théoréeme

On va construire les deux suites par récurrence : on pose
u1 = a,v1 = b. On a bien que

- ulgvlu
- v —w| =b—aq,

- flu) = fla) <y < f(b) = f(u).



Pour la culture : preuve du Théoréeme

Si uy,, vy, sont définis et satisfont u, < vy,
|Un, — un| < (b—a)2'™", fun) <y < f(vn), on pose w,, = Yatin
le point milieu entre u,, et vy, et on définit

{wn si f(wp) <y {wn si f(wy) >y
Unp+1 = y  Un41 = .

up s flwy) >y vp sl flwn) <y

On a alors bien que
- Uy S Upp1 S Upgl < Un,
- |unt1 = vpga| = |up — vn| < (b—0a)277,

- flunt1) <y < f(vnt),
ce qui donne les quatres premiéres propriétés voulues.



Pour la culture : preuve du Théoréme

On montre maintenant que ces deux suites convergent vers la
méme limite.

(un)n>1 est croissante et majorée par b, donc elle converge.
Notons u,, — u.

(Un)n>1 est décroissante et minorée par a, donc elle converge.
Notons v, — v.

Comme v, > u, pour tout n, v > u.



Pour la culture : preuve du Théoréeme

Montrons que u = v. Par monotonicité, pour tout n > 1, on a

]u—vlzv—ugvn—ung(b—a)21_".

On a alors que comme (b—a)2'™" 2% 0, |u — v| est plus petit

que n’importe quel nombre positif et est donc = 0.

Donc



Pour la culture : preuve du Théoréeme

On montre finalement que f(x) =y comme voulu. Comme f est
continue et u, — x,

f(z) = lim f(un) <y,

n—oo

et, comme v, — x,

f(x) = lim f(vn) 2 y.

n—oo

Donc f(z) <yet f(z) >y, dot f(z) =y.



Remarque

La preuve nous donne un algorithme pour trouver un point x
qui satisfait f(z) =y!



Application : point fixe de Brouwer

Une conséquence directe du Théoréme des valeurs
intermédiaires est

Theorem

Soit f :]0,1] — [0,1] une fonction continue. Alors, il existe
x € [0,1] tel que f(z) = .



Application : point fixe de Brouwer, preuve

Si f(0) =0 ou f(1) =1, le résultat est directement vrai.
Supposons que f(0) >0 et f(1) < 1.

On regarde alors g : [0,1] — R définie par g(x) = f(x) — x. g est
continue (somme de fonctions continues). On cherche alors
x € [0, 1] tel que g(x) = 0.

Mais comme f(0) > 0et f(1) <1, g(0) >0 et g(1) < 0. Donc 0
est un nombre entre g(0) et g(1).

Le Théoréme des valeurs intermédiaires nous dit donc qu’il
existe = € [0, 1] tel que g(x) = 0, ce qui est le résultat voulu.



Applications

En général, on applique le Théoréme des valeurs intermédiaires
(souvent abrégé TVI) pour montrer qu’il existe des solutions a
des équations de la forme f(z) = g(x) pour = € [a,b] et f,g
continues.

De plus, comme la preuve vue est algorithmique, on peut
P'utiliser pour trouver des (approximations de) solutions a ces
équations.



Continuité et bijectivité



Fonctions monotones et bijectivité

Theorem

Soit E CR et f: E— R une fonction strictement croissante :
pour tous x,y € E, si x <y alors f(x) < f(y). Alors

f:E— f(E) est bijective, et sa réciproque, f~': f(E) = E,
est strictement croissante.

Le méme énoncé est vrai en remplagant “strictement croissante”
par “strictement décroissante” (pour tous z,y € E, si x < y alors

f(z) > 1)



Preuve du théoréme

On montre que f: E — f(FE) est bijective.

On commence par remarquer que par choix du co-domaine, f
est surjective (chaque point du co-domaine et atteint).

On montre ensuite que f est injective (si x # y, alors

f(x) # f(y)). Soient x,y € E tels que = # y. Alors, soit x < y et
donc f(z) < f(y) ce qui entraine f(z) # f(y), soit = > y et
donc f(z) > f(y) et donc f(x) # f(y).



Preuve du théoréme

On montre finalement que f~!: f(E) — E est strictement
croissante.

Soient x < y € f(E). Alors, il existe u,v € E tels que u # v et
flu) =z, f(v) = y. Comme u # v, on sait que soit u < v, soit
v < u. Comme f(u) =z <y = f(v), et f est strictement
croissante, v < u est impossible (car cela impliquerait que
fw) < f(u)). Donc u < v.

On a alors que
F ) = 1) =u<v=f(fv) = ),

ce qui est la monotonicité voulue.



Fonctions monotones et bijectivité

Theorem

Soita <beR et f:[a,b] — R une fonction continue et
strictement croissante. Alors, f : [a,b] — f([a,b]) est
bijective, sa réciproque est continue, et f(la,b]) = [f(a), f(b)].

Le méme énoncé est vrai en remplacant “strictement croissante”

par “strictement décroissante”.



Fonctions monotones et bijectivité : cas général

Theorem

Soit I C R un intervalle et f : I — R une fonction continue et
strictement croissante. Alors, f : I — f(I) est bijective, sa
réciproque est continue, f(I) est un intervalle qui est donné par :

[Lo,Ly]  si I =a,b]
(Lo, Ly) st 1= (a,b
[La,Ly) i I =][a,b)’
(Lq, Ly) si I =(a,b)

) =

avec a € RU{—o00}, b € RU {400} (£oo autorisé dans les cas
(semi-)ouverts), et Lo = limg_yq f(x), Ly = lim,_y f(2).



Fonctions monotones et bijectivité : cas général

REMARQUE 1 : Par le résultat précédent, f: I — f(I) est

bijective car strictement croissante.

REMARQUE 2 : Notons que les limites sont bien définies
(possiblement 4+00) par monotonicité de f, et que dans le cas
I =la,b], L, = f(a), Ly = f(b) par continuité de f.



Pour la culture : preuve du théoréme dans le ¢

Par le résultat précédent, f: I — f(I) est bijective car
strictement croissante.

Montrons que f([a,b]) = [f(a), f(b)]. On procéde par double

inclusions.



Pour la culture : preuve du théoréme dans le cas I = |a, 0]

On montre que f([a,b]) C [f(a), f(b)].

Soit y € f([a,b]). Alors, il existe x € [a, b] tel que f(z) =y. On
a alors que comme f est croissante, et a < x < b,

fla) < f(z) < f(b),
et donc y = f(x) € [f(a), f(b)]. Do f([a,b]) C [f(a), f(b)]-



Pour la culture : preuve du théoréme dans le cas I = |a, 0]

On montre finalement que [f(a), f(b)] C f([a,b]).

Soit y € [f(a), f(b)]. Alors, par le Théoréme de valeurs
intermédiaires, il existe x € [a, b] tel que f(z) =y. On a alors
que

y = [f(z) € f([a,b])
par définition de I’ensemble image de f. D’oul

[f(a), £(B)] C f([a, b])-



Pour la culture : preuve du théoréme dans le cas I = |a, 0]

Il reste & montrer que la réciproque de f,

f~t:[f(a), f(b)] — [a,b], est continue. Soit y € [f(a), f(D)].

Montrons que f_1 est continue en y. Notons x = f_l(y).

Soit € > 0. Prenons § = min(f(z+¢€) — f(x), f(z) — f(x —€)) >0
car f est strictement croissante. On a alors que pour tout
Yy €ly—0,y+4] (i.e. : tout y tel que |y —y'| <),

1f 7y —fl(y)|
) - Se - fle-g) = siy>y
f W)~y S (flate) —a=e siy>y
car dans le premier cas
y>y—0>y— f(z)+ f(x —€) = f(x — €) et dans le second,
Y<y+o<y+flz)—fle+e=flz+e.



Application 1 : z —

f:[0,400) = [0,+00), f(z) = 22 : on a déja vu que f est
continue. On montre que f est strictement croissante sur Ry :
soit 0 <z <y,

y?—a2® = (y+a)(y—z) >0,

carx+y>y>0ety—a>0(car y >z > 0). On obtient que
f est une bijection entre [0, +00) et f([0, +00)) = [0, +00).



Application 2 : z — e*

exp : R — (0,4+00), exp(z) = € : on a vu que cette fonction est
continue, on montre que exp est strictement croissante sur R :
soit x < y,

ey —e"=e"(eV" —1) >0,

car si 6 > 0,

| =

FOBUE
k=1

On obtient que exp est une bijection entre R et
exp(R) = (0, +0).



Application 3 : x — In(z)

Comme exp : R — (0, +00) est bijective et continue, sa
réciproque, In, est bijective et continue. De plus, comme exp est
strictement croissante, In est aussi strictement croissante.

En particulier, comme Image(ln) = R, on obtient que

lim In(z) = 400, lim In(x) = —o0.
T—>+00 z—0



Notions plus fortes de
continuitée



Continuité uniforme

Definition

Soit I un intervalle et f: I — R. On dit que [ est uniformément
continue si pour tout € > 0, il existe § > 0 tel que pour tout
x €1 ettout y €l tel que|z—y|<4d

|f(x) = fy)l <e
La différence avec la continuité usuelle est que dans le cas de la

continuité usuelle en un point x, d est autorisé & dépendre du
point x.



Continuité uniforme : exemple 1

La fonction f : R — R donnée par f(x) = 3x + 2 est
uniformément continue : si |z — y| < 4,

|f(@) — f(y)| = |32 — 3y| = 3|z — y| < 3.

On peut donc prendre § = 6(¢) = § dans la définition.



Continuité uniforme : exemple 2

La fonction f:R — R donnée par f(z) = 22

uniformément continue : on a

n’est pas

[f(z) = f)] = |2* = 9| = [z +y| - |z — yl.

Si on prend € > 0, 6 > 0 et que I'on suppose g <lz—yl <4, on
a que pour x,y > 0 assez grands (p. ex. : x,y > %),

|f(x) = f(y)| > g\x—i-y\ > 10€e > €.

On ne peut donc pas trouver de § = §(e) > 0 tel que |z —y| <6
implique |f(z) — f(y)| < e



ions quantitatives de la continuité

Definition

Soit I un intervalle et f : I — R. Soit C' > 0. On dit que f est
C-lipschitzienne si pour tout z,y € I,

|f(z) = f(y)] < Clz —yl.

En prenant § = ¢/C, on obtient que C-lipschitzienne implique
uniformément continue.



ions quantitatives de la continuité

On peut généraliser cette notion.

Definition

Soit I un intervalle et f: I — R. Soit C' > 0, > 0. On dit que
f est (a, C)-holdérienne si pour tout x,y € I,

|f(xz) = f(y)] < Clz —y|

En prenant § = (¢/C)'/, on obtient que (o, C)-holdérienne
implique uniformément continue.



Application : calcul d’erreur

On imagine que l'on connait la masse d’'un objet, m > 0, et que
I’on mesure sa hauteur depuis le sol, hpes, avec une précision
0 = 0.01. On calcule alors I’énergie potentielle de gravitation de
l'objet via

Eyot = 9.81 - masse - hauteur.
On veut savoir & quel point la valeur obtenue peut étre loin de
la valeur réelle de ’énergie de 1’objet.



Application : calcul d’erreur

En math : on a une fonction Fpo : R — R, donnée par
Epot(h) = 9.81-m - h. On sait que la hauteur réelle, hye, est
dans U'intervalle [Ames — 0, Ames + 0]. La fonction Epq est
9.81m-lipschitzienne car,

}Epot( ) — pot ‘ = 9.8Im|z —y|.
On obtient alors que comme |hye — Ames| < 0,
| Epot (hre) — Epot (hmes)| < 9.81md = 0.0981m,

ce qui nous donne une borne sur 'erreur commise.



