
Chapitre II : Suites et séries

- Suites

- Séries



Suites



Suites

De�nition

Soit E ⊂ R. Une suite à valeurs dans E est une liste de longueur
in�nie de nombres réels appartenant à E : ā = (a1, a2, a3, . . . ),
an ∈ E pour tout n ≥ 1. On notera souvent

(a1, a2, a3, . . . ) = (an)n≥1.

Quand E n'est pas précisé, on prendra E = R.

Exemples de suites à valeurs dans E = N :

- la suite constante 0 : a1 = 0, a2 = 0, ....

- la suite des carrés d'entiers : a1 = 1, a2 = 4, an = n2.



Rappel : valeur absolue

On se rappelle la fonction x 7→ |x|. C'est une fonction qui
satisfait :

- |x| ≥ 0 pour tout x ∈ R et |x| = 0 si et seulement si x = 0 ;

- |x+ y| ≤ |x|+ |y|.
Ces conditions impliquent que d(x, y) := |x− y| est une distance

sur R :

- d(x, y) ≥ 0 et d(x, y) = 0 si et seulement si x = y ;

- d(x, y) = d(y, x) ;

- pour tous x, y, z ∈ R, d(x, y) ≤ d(x, z) + d(z, y).



Distances

Les distances donnent une manière de mesurer la proximité

entre deux éléments : la distance est 0 si et seulement si deux
éléments sont les mêmes et on peut penser à "d(x, y) est petite"
comme à "x et y sont proches".



Convergence de suites

De�nition

Soit (an)n≥1 une suite à valeur dans R. On dit que (an)n≥1

converge vers a ∈ R, noté an → a, si pour tout ϵ > 0, il existe
n0 ∈ N tel que pour tout n ≥ n0, |an− a| ≤ ϵ. En écriture math :

an → a si ∀ϵ > 0 ∃n0 ∈ N,∀n ≥ n0, |an − a| ≤ ϵ.

On dit que la suite (an)n≥1 converge si il existe a ∈ R tel que
an → a.

En mots : an → a si la distance entre an et a devient petite
quand n devient grand.



Exemples

- Vers quoi la suite an = 1
n converge-t-elle ?

- Et la suite an =
√
2 + 1

n2 ?

- Est-ce que la suite an = 0 pour tout n converge ?

- Qu'en est-il de la suite an = n ?



Rappel : écriture décimale

On se rappelle qu'un nombre peut s'écrire en utilisant l'écriture
décimale : si x ∈ [0, 1),

x = 0, b1b2b3b4 . . .

avec bm ∈ {0, 1, . . . , 9} pour tout m. On peut visualiser ceci
comme suit : on partitionne [0, 1) en sous intervalles :

[0, 1) =
[
1,

1

10

)
︸ ︷︷ ︸

I0

∪
[ 1

10
,
2

10

)
︸ ︷︷ ︸

I1

∪ . . .
[ 9

10
, 1
)

︸ ︷︷ ︸
I9

...



Rappel : écriture décimale

que l'on partitionne eux-mêmes en sous-intervalles : par exemple

I1 = [
1

10
,
2

10
) =[ 1

10
,
1

10
+

1

100

)
︸ ︷︷ ︸

I1,0

∪
[ 1

10
+

1

100
,
1

10
+

2

100

)
︸ ︷︷ ︸

I1,1

∪ · · ·∪
[ 1

10
+

9

100
,
2

10

)
︸ ︷︷ ︸

I1,9

,

et ainsi de suite.



Rappel : écriture décimale

Sur un dessin :

I0 I1 I2 I3 I4 I5 I6 I7 I8 I9

I2,0 I2,1 I2,2 I2,3 I2,4 I2,5 I2,6 I2,7 I2,8 I2,9



Rappel : écriture décimale

On a alors que si x = 0, b1b2 . . ., alors x ∈ Ib1 , mais aussi
x ∈ Ib1,b2 et x ∈ Ib1,b2,b3 etc.. Il se trouve que ces �ra�nements
successifs� su�sent pour retrouver x.

On peut voir ceci en utilisant la notation de somme in�nie : on a
(formellement du moins...)

x =

+∞∑
k=1

bk10
−k.

Par exemple, si b1 = 1, b2 = 8, b3 = 3, l'intervalle I1,8,3
correspond à[

1·10−1+8·10−2+3·10−3, 1·10−1+8·10−2+3·10−3+10−4
)
=[ 183

1000
,
183

1000
+ 10−4

)
.



Écriture décimale tronquée

Si x ∈ [0, 1),
x = 0, b1b2 . . .

avec bm ∈ {0, 1, . . . , 9} pour tout m. On dé�nit

x1 = 0, b1 x2 = 0, b1b2 x3 = 0, b1b2b3

xn = 0, b1 . . . bn

On a alors que xn → x (au tableau).



Digression : convergence dans un ensemble

Soit (an)n≥1 est une suite à valeurs dans E ⊂ R. Supposons que
an → a pour un a ∈ R. Peut-on en déduire que a ∈ E ?

Non ! En e�et : prenons les exemples

- an = 1/n est une suite à valeurs dans (0, 1] mais an → 0 et
0 /∈ (0, 1] ;

- Notons
√
2 = 1.414213 . . . et posons a1 = 1.4, a2 = 1.41,

a3 = 1.414 etc. la suite des troncatures décimales de
√
2.

On a alors que an ∈ Q pour tout n et donc (an)n≥1 est une
suite à valeurs dans Q qui converge vers

√
2 /∈ Q.



Digression : convergence dans un ensemble

Soit (an)n≥1 est une suite à valeurs dans E ⊂ R. Supposons que
an → a pour un a ∈ R. Peut-on en déduire que a ∈ E ?

Non ! En e�et : prenons les exemples

- an = 1/n est une suite à valeurs dans (0, 1] mais an → 0 et
0 /∈ (0, 1] ;

- Notons
√
2 = 1.414213 . . . et posons a1 = 1.4, a2 = 1.41,

a3 = 1.414 etc. la suite des troncatures décimales de
√
2.

On a alors que an ∈ Q pour tout n et donc (an)n≥1 est une
suite à valeurs dans Q qui converge vers

√
2 /∈ Q.



Ré-indexage et convergence de suites

À partir d'une suite (an)n≥1, on peut construire une nouvelle
suite (bn)n≥1 en ré-indexant la suite an : on prend N ∈ N et on
pose

bn = an+M .

Cela correspond à regarder la suite an après le rang M . On a
alors que

(an)n≥1 converge vers a ⇐⇒ (bn)n≥1 converge vers a.

On remarque que la suite bn ne dépend que de (an)n>M , la suite

an démarrée en M + 1.



Ré-indexage et convergence de suites

Du slide précédent, on déduit que pour n'importe quel M ∈ N
�xé, on peut toujours oublier les M premiers termes d'une suite
pour étudier sa convergence.



Divergence vers l'in�ni

Si une suite (an)n≥1 est telle que pour tout R ∈ R, il existe
n0 ∈ N tel que pour tout n ≥ n0, an ≥ R, on dira que an diverge

vers +∞ et on notera limn→∞ an = +∞ ou an → +∞.

De la même façon, si pour tout R ∈ R, il existe n0 ∈ N tel que
pour tout n ≥ n0, an ≤ R, on dira que an diverge vers −∞ et on
notera limn→∞ an = −∞ ou an → −∞.



Suites bornées

De�nition

Soit (an)n≥1 une suite à valeurs dans R. On dit que (an)n≥1 est

- majorée si l'ensemble {an : n ≥ 1} l'est,
- minorée si l'ensemble {an : n ≥ 1} l'est,
- bornée si elle est majorée et minorée.



Suites bornées

Theorem

Soit (an)n≥1 une suite à valeurs dans R. Si elle est convergente,

alors elle est bornée.

Preuve au tableau. Idée : an → a donc il existe n0 ∈ N tel que
{an : n ≥ n0} ⊂ [a− 1, a+ 1].



Critères de convergence de suites

On verra un certain nombre de critères, listés ici.

- Suites monotones bornées

- Limsup et liminf

- Opérations sur les suites

- Théorème des gendarmes

- Suites de Cauchy



Suites monotones bornées

Theorem

Soit (an)n≥1 une suite à valeurs dans R. Supposons que

- (an)n≥1 est majorée,

- an+1 ≥ an pour tout n ≥ 1.

Alors, (an)n≥1 converge vers a = sup{an : n ≥ 1}.
Preuve au tableau.
Idée : utiliser la caractérisation x = supA si et seulement si x
est un majorant de A et pour tout ϵ > 0, il existe y ∈ A tel que
y ≥ x− ϵ.



Suites monotones bornées

On a le résultat symétrique pour les suites minorées :

Theorem

Soit (an)n≥1 une suite à valeurs dans R. Supposons que

- (an)n≥1 est minorée,

- an+1 ≤ an pour tout n ≥ 1.

Alors, (an)n≥1 converge vers a = inf{an : n ≥ 1}.



Limsup et liminf

Prenons la suite :
an = (−1)n.

Sur un dessin :

1

−1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Cette suite ne converge pas, mais on voit qu'elle oscille entre +1
et −1. On peut penser à +1 comme la "valeur limite supérieure"
et à −1 comme la "valeur limite inférieure".



Limsup et liminf

Ceci est formalisé dans la notion suivante.

De�nition

Soit (an)n≥1 une suite à valeurs réelles. On dé�nit la limite

supérieure (ou limsup) et la limite inférieure (ou liminf) de la
suite par

lim sup
n→∞

an := lim
n→∞

sup{am : m ≥ n},

lim inf
n→∞

an := lim
n→∞

inf{am : m ≥ n}.

En mots, la limsup est le "plus grand nombre dont la suite
s'approche in�niment souvent" et la liminf le "plus petit nombre
dont la suite s'approche in�niment souvent".



Limsup et liminf

Au tableau : ces notions sont bien dé�nies si an est bornée.

Par convention, si an n'est pas majorée, on notera
lim supn→∞ an = +∞. De la même façon, si an n'est pas
minorée, on notera lim infn→∞ an = −∞.

Aussi par convention : si an diverge vers +∞, on pose
lim infn→∞ an = +∞ et si elle diverge vers −∞, on pose
lim supn→∞ an = −∞.



Limsup et liminf, notation

On utilisera aussi les notations équivalentes

lim sup
n→∞

an = lim
n→∞

sup
m≥n

am = inf{ sup
m≥n

am : n ≥ 1} = inf
n≥1

sup
m≥n

am,

lim inf
n→∞

an = lim
n→∞

inf
m≥n

am = sup{ inf
m≥n

am : n ≥ 1} = sup
n≥1

inf
m≥n

am.

La seconde égalité de chaque ligne utilise le fait que les suites
(supm≥n am)n≥1 et (infm≥n am)n≥1 sont respectivement
décroissantes (le sup est prit sur un ensemble de plus en plus
petit) et croissantes (l'inf est prit sur un ensemble de plus en
plus petit).



Limsup et liminf

Quelles sont les liminf et limsup des suites

an =

{
0 si n impair

(−1)n/2 si n pair
, bn =

(−1)n

n
,

cn = n3, dn = (−1)nn2.



Limsup et liminf

Theorem

Soit (an)n≥1 une suite à valeurs dans R et a ∈ R. Alors an → a
si et seulement si lim infn→∞ an = lim supn→∞ an = a.



Opérations sur les suites

Theorem

Soit (an)n≥1, (bn)n≥1 deux suites convergentes à valeurs dans

R. Notons a, b ∈ R leurs limites : an → a, bn → b. Alors,

i. les suites

(−an)n≥1, (an + bn)n≥1, (an − bn)n≥1

sont convergentes et leurs limites sont données par

−an → −a, an + bn → a+ b, an − bn → a− b;

ii. si b ̸= 0, la suite
(
an
bn

)
n≥n0

est bien dé�nit pour n0 assez

grand, et converge vers limn→∞
an
bn

= a
b .

Preuve de an + bn → a+ b et de 1
bn
→ 1

b au tableau.



Théorème des gendarmes

Theorem

Soient (an)n≥1, (bn)n≥1, (cn)n≥1 trois suites réelles. On suppose

qu'il existe l ∈ R tel que bn → l et cn → l, et que pour tout

n ≥ 1, bn ≥ an ≥ cn. Alors, an → l.

Preuve au tableau.



Théorème des gendarmes

On a le même type de théorème pour les suites qui divergent
vers ±∞.

Theorem

Soient (an)n≥1, (bn)n≥1, deux suites réelles telles que an ≤ bn
pour tout n ≥ 1. On a que

- si an → +∞, alors bn → +∞,

- si bn → −∞, alors an → −∞.



Théorème des gendarmes, exemple

On regarde la suite

an =
sin(
√
3n)

n
.

On a que
−1
n
≤ an ≤

1

n
.

En déduire que an converge et trouver limn→∞ an.



Suites de Cauchy

De�nition

Soit (an)n≥1 une suite à valeurs dans R. On dit que c'est une
suite de Cauchy si pour tout ϵ > 0, il existe n0 ≥ 1 tel que pour
tout n,m ≥ n0, |an − am| ≤ ϵ.

En mots : une suite est de Cauchy si les valeurs "lointaines" de
la suite sont toutes arbitrairement proches les unes des autres.



Suites de Cauchy, exemples

Lesquelles de ces suites sont de Cauchy ?

(1) an = 1 pour tout n,

(2) an = n,

(3) an = 1
n2 ,

(4) an = (−1)n,
(5) an = 3−2n2

12n2 .



Suites de Cauchy, convergence

Si (an)n≥1 est convergente, peut-on en dire quelque chose sur le
fait qu'elle soit de Cauchy ?

Oui ! Si an converge, elle est de Cauchy : si an → a, pour
n'importe quel ϵ > 0, on peut trouver n0 ∈ N tel que n ≥ n0

implique |an − a| ≤ ϵ/2. En particulier, pour n,m ≥ n0,

|an − am| = |an − a+ a− am|

≤ |an − a|+ |a− am| ≤
ϵ

2
+

ϵ

2
= ϵ.



Suites de Cauchy, convergence
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ϵ
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Suites de Cauchy, convergence

L'intérêt des suite de Cauchy est l'implication converse :

Theorem

Soit (an)n≥1 une suite de Cauchy. Alors, il existe a ∈ R tel que

an → a.

En mots : une suite qui à l'air de se rapprocher de quelques
chose est convergente.



Pour la culture

On ne montrera pas le théorème précédent. Il est équivalent à
l'axiome que tout ensemble majoré admet un supremum dans R.
Un espace dans lequel les suites de Cauchy convergent est
appelé complet.



Suites de Cauchy, application

On va donner une dé�nition du nombre d'Euler, e = 2.71828 . . .
que l'on reverra plus tard. On pose

an =

n∑
k=0

1

k!
= 1 +

1

2
+

1

2 · 3
+ · · ·+ 1

2 · 3 · · · · · (n− 1) · n
.

On voudrais poser e := limn→∞ an, il faut donc montrer que an
converge. On montre qu'elle est de Cauchy (c.f. tableau ou slide
suivant).



Soient n,m ∈ N. Les deux ayant des rôles symétrique, supposons
n ≥ m. On a

- k! ≥ 2k−1 pour k ≥ 1,

- donc |an − am| =
∑n

k=m+1
1
k! ≤

∑n
k=m+1 2

1−k,

- on peut utiliser un changement d'indice dans la somme :
pour toute suite (bk)k≥1,

n∑
k=m+1

bk = bm+1+bm+2+· · ·+bm+1+n−m−1 =

n−m−1∑
k=0

bm+1+k,

- on obtient

|an − am| ≤
n−m−1∑
k=0

2−m−k = 2−m
n−m−1∑
k=0

2−k

≤ 2−m
n∑

k=0

2−k = 2−m · 1− 2−n−1

2−1
≤ 21−m.



On a donc que pour n'importe quel ϵ > 0, si n,m ≥ n0 = n0(ϵ),

|an − am| ≤ 21−n0 ≤ ϵ.

La suite (an)n≥1 est donc de Cauchy et elle est donc bien
convergente.



Séries



Rappel de notation :
∑

On rappelle que si ak ∈ R, k ∈ N, et que m ≤ n, on note

n∑
k=m

ak = am + am+1 + · · ·+ an−1 + an =

n−m∑
k=0

am+k,

la seconde égalité est appelé ré-indexage de la somme (ou
changement de variable).

On a la propriété que si l ≤ m < n,

n∑
k=l

ak =

m∑
k=l

ak +

n∑
k=m+1

ak.



Rappel de notation :
∑

ATTENTION : la variable de sommation (k dans
∑n

k=1 ak), est
locale : elle est dé�nie uniquement à l'intérieur de la somme et la
valeur de la somme ne dépend pas du symbole choisit (k peut
être remplacé par □, †, i, α, . . .).

On peut penser à
∑n

k=m ak comme à une fonction qui prend en
entrée la suite (ak)k≥0, et les bornes m,n : en pseudo-code,∑n

k=m ak est donnée par l'output de

Let k = m, Σ = 0 ;

While k ≤ n do :

Update Σ← Σ+ ak ;
Update k ← k + 1 ;

Return Σ ;



Rappel de notation :
∑

On a aussi que l'ordre dans lequel on somme les termes
n'importe pas : si σ : {0, . . . , n} → {0, . . . , n} est une bijection
(une permutation des indices) on a que

n∑
k=0

ak =

n∑
k=0

aσ(k).

Exemple : si n = 2 et σ : {0, 1, 2} → {0, 1, 2} est donnée par
σ(0) = 2, σ(1) = 1, σ(2) = 0, l'égalité est simplement

a0 + a1 + a2 = aσ(0) + aσ(1) + aσ(2) = a2 + a1 + a0.



Série in�nie

Soit (an)n≥0 une suite. La série in�nie associée est

∞∑
n=0

an.

PROBLÈME : est-ce que cette somme in�nie fait du sens et si
oui, lequel ?



Convergence de séries

On peut faire du sens de la somme in�nie en introduisant :

An =

n∑
k=0

ak, n ≥ 0,

la suite des sommes partielles. Si (An)n≥0 converge, on peut
alors dé�nir la somme in�nie comme

∞∑
k=0

ak = lim
n→∞

n∑
k=0

ak.

On dit alors que la série
∑∞

k=0 ak converge.



Convergence de séries

Est-ce que la série
∑∞

k=0 ak peut converger si la suite ak ne
satisfait pas ak → 0 ?

Non ! Si An =
∑n

k=0 ak, on a |An+1 −An| = |an+1|. Si la suite
(An)n≥0 converge, on doit avoir |An+1 −An| → 0 (pour le
montrer, on peut utiliser que si An converge elle est de Cauchy).



Convergence de séries

Est-ce que la série
∑∞

k=0 ak peut converger si la suite ak ne
satisfait pas ak → 0 ?

Non ! Si An =
∑n

k=0 ak, on a |An+1 −An| = |an+1|. Si la suite
(An)n≥0 converge, on doit avoir |An+1 −An| → 0 (pour le
montrer, on peut utiliser que si An converge elle est de Cauchy).



Convergence de séries

Le problème avec cette manière de faire est que l'ordre

d'apparition des an importe. On ne peut a priori donc pas faire
comme dans une somme �nie et modi�er l'ordre dans lequel on
somme les termes à loisir.



Convergence absolue

Pour palier à ce problème, on introduit une condition plus forte :

De�nition

Soit (an)n≥0 une suite. On dé�nit

Bn =

n∑
k=0

|ak|, n ≥ 0,

On dit que la série in�nie
∑∞

n=0 an converge absolument si la
suite (Bn)n≥0 converge. On note cette condition∑∞

n=0 |an| <∞. Si la série ne converge pas absolument, on
notera

∑∞
n=0 |an| = +∞.

Notez que la suite Bn peut soit converger, soit diverger vers +∞
car elle est croissante.



Convergence absolue

Theorem

Soit (an)n≥0 une suite. Supposons que
∑∞

n=0 |an| <∞. Alors, il

existe A ∈ R tel que

lim
n→∞

n∑
k=0

ak = A,

et pour toute bijection σ : N→ N,

lim
n→∞

n∑
k=0

aσ(k) = A.

Sans preuve.



Convergence absolue

En mots : si la série converge absolument, alors la suite des
sommes partielles converge et changer l'ordre des termes dans la
suite (an)n≥0 ne change pas la valeur de la limite des sommes
partielles. En particulier, la "somme in�nie peut être sommée
dans l'ordre voulu sans changer sa valeur".



Pour la culture, convergence pas absolue

Théorème de réarrangement de Riemann :

Theorem

Soit (an)n≥0 une suite. Supposons que
∑∞

n=0 an converge mais

que
∑∞

n=0 |an| = +∞. Alors, pour tout L ∈ R ∪ {−∞,+∞}, il
existe une bijection σ : N→ N telle que

lim
n→∞

n∑
k=0

aσ(k) = L.

En d'autre mots : si la série converge mais ne converge pas
absolument, on peut changer l'ordre de sommation des termes
de sorte à obtenir n'importe quel nombre (et même ±∞) comme
limite des sommes partielles (et donc comme �valeur� de la
somme in�nie) !



Convergence absolue, exemple

On regarde la suite an = (−1)n · 2−n, n ≥ 0. On a alors que

n∑
k=0

|ak| =
n∑

k=0

2−k =
1− 2−n−1

1− 2−1
= 2− 2−n ≤ 2.

Donc, limn→∞
∑n

k=0 |ak| = 2 <∞. On a alors que la série
in�nie est bien dé�nie et vaut

∞∑
k=0

ak = lim
n→∞

n∑
k=0

(−1
2

)k
= lim

n→∞

1

1 + 2−1

(
1−

(−1
2

)n+1)
= lim

n→∞

2

3
+

(−1)n

3 · 2n
=

2

3
.



Pour la culture : Exemple de convergence pas absolue

On regarde la suite an = (−1)n

n+1 , n ≥ 0. On a alors que

lim
n→∞

n∑
k=0

(−1)k

k + 1
= ln(2),

mais
∑

k≥0
1

k+1 =
∑

k≥1
1
k = +∞ (on le verra plus tard).



Convergence de série alternées

Theorem (Règle de Leibniz)

Soit an ∈ R+, n ∈ N une suite à valeurs dans R+. Alors, si

an+1 ≤ an pour tout n et que an → 0, la série

∞∑
n=0

(−1)nan,

converge.

ATTENTION : la convergence n'est pas absolue !

En particulier, les séries

∞∑
n=0

(−1)n

n+ 1
,

∞∑
n=0

(−1)n√
n+ 1

convergent.



Critères de convergence

On a vu que pour que la série (somme in�nie) fasse du sens et
que l'on puisse y penser comme à une somme normale, on a
besoin que la série converge absolument. On veut donc trouver
des critères qui garantissent que la série converge absolument.



Comparaison de séries (convergence dominée)

Theorem

Soient (an)n≥0 une suite à valeurs dans R et (bn)n≥0 une suite à

valeur dans R+. Si |an| ≤ bn et que
∑∞

k=0 bk <∞, alors∑+∞
k=0 |ak| <∞.

Réciproquement, si |an| ≥ bn et que
∑∞

k=0 bk = +∞, alors∑+∞
k=0 |ak| = +∞.



Application

On a vu que la série
∑∞

n=0 2
−n converge. On peut alors en

déduire que la série associée à la suite

an =
(−1)n

2n · (1 + n2)

converge absolument car

|an| ≤ 2−n.



La série géométrique

Un exemple fondamental de série in�nie est la série géométrique.
C'est la série associée à une suite de la forme an = xn :

∞∑
n=0

xn.



La série géométrique : convergence

Si |x| ≥ 1, xn ̸→ 0, donc la série diverge.

Si |x| < 1, on a alors que les sommes partielles des valeurs
absolues sont données par

n∑
k=0

|xk| =
n∑

k=0

|x|k =
1− |x|n+1

1− |x|
n→∞−−−→ 1

1− |x|
<∞,

en particulier, la série géométrique converge absolument dans ce
cas.



Critère de d'Alembert (critère du quotient)

Theorem

Soit (an)n≥0 une suite à valeurs dans R. Supposons qu'il existe

L ∈ R tel que
an+1

an
→ L.

Alors,

- si |L| < 1,
∑∞

k=0 |an| <∞,

- si |L| > 1,
∑∞

k=0 |an| =∞.



Pour la culture : idée de la preuve

Si an+1/an → L, on sait |an+1/an| ∈ [|L| − ϵ, |L|+ ϵ] pour
n ≥ n0 (avec n0 qui dépend de ϵ). On écrit alors

|an| =
|an|
|an−1|

· |an−1|
|an−2|

· · · · · |an0+1|
|an0 |

|an0 |.

Mais ce nombre est borné par en dessus par (|L|+ ϵ)n−n0 |an0 | et
par en dessous par (|L| − ϵ)n−n0 |an0 |. On peut alors comparer
par en dessus/dessous la série

∑∞
n=n0

|an| avec les séries

∞∑
n=n0

(|L|+ ϵ)n−n0 |an0 | et
∞∑

n=n0

(|L| − ϵ)n−n0 |an0 |,

qui sont des multiples de la série géométrique.



Pour la culture : idée de la preuve

Si |L| < 1, alors |L|+ ϵ < 1 pour ϵ > 0 assez petit et donc, pour
un n0 correspondant à un tel ϵ,

∞∑
n=0

|an| ≤
n0−1∑
n=0

|an|+
|an0 |

(|L|+ ϵ)n0

∞∑
n=n0

(|L|+ ϵ)n <∞,

car on reconnait la série géométrique. On procède de façon
similaire pour |L| > 1, qui implique que |L| − ϵ > 1 pour ϵ > 0
assez petit.



Application

Est-ce que la série
∞∑
n=0

(−5)k

k!

converge absolument ?

Est-ce que ce critère permet de dire quelque chose sur la série

∞∑
n=0

1√
n+ 1

?



Règle de Cauchy (critère de la racine)

Theorem

Soit (an)n≥0 une suite à valeurs dans R. Si il existe c ∈ [0, 1) tel

que pour tout n ≥ 1
|an|1/n ≤ c,

alors
∑∞

k=0 |ak| <∞.



Pour la culture : idée de la preuve

On a que |an|1/n ≤ c est équivalent à |an| ≤ cn. On peut alors
utiliser le critère de comparaison pour comparer

∑∞
n=0 |an| avec

la série géométrique
∑∞

n=0 c
n. Comme c ∈ [0, 1) cette série est

absolument convergente.



Règle de Cauchy (critère de la racine)

Du même argument, on déduit cette version plus facile à
appliquer :

Theorem

Soit (an)n≥0 une suite à valeurs dans R. Si il existe c ∈ [0, 1) et

N ∈ N tel que pour tout n ≥ N

|an|1/n ≤ c,

alors
∑∞

k=0 |ak| <∞.

Preuve au tableau (ou slide suivant).



On veut montrer que la suite Bn =
∑n

k=0 |ak| converge. Comme
elle est croissante, il su�t de montrer qu'elle est majorée. Soit
N ∈ N tel que pour tout n ≥ N , |an| ≤ cn (où c < 1).

On a alors

Bn ≤

{
BN si n ≤ N,

BN +
∑n

k=N+1 |ak| si n > N.

Comme |ak| ≤ ck pour k ≥ N , on en déduit que
Bn ≤ BN +

∑n
k=0 c

k pour tout n ≥ 0. On a alors que

Bn ≤ sup
n≥0

(
BN+

n∑
k=0

ck
)
= lim

n→∞

(
BN+

n∑
k=0

ck
)
= BN+

1

1− c
<∞.

Donc la suite Bn est majorée.



Application

Est-ce que la série
∞∑
n=0

(3 + n2)4−n

converge absolument ?

Trois méthodes :

- utiliser le critère de la racine ;

- utiliser le critère du quotient ;

- comparer avec un multiple de la série géométrique.



Méthode 1 : critère de la racine

On veut montrer que An =
∑n

k=0(3 + k2)4−k est une suite
convergente. On veut appliquer le critère de la racine. On va
utiliser la condition avec c = 1/2, N = 5.

On veut donc montrer que pour tout n ≥ 5,

(3 + n2)4−n ≤ 2−n,

ce qui est équivalent à montrer que (3 + n2)2−n ≤ 1.



Méthode 1 : critère de la racine

On montre que pour tout n ≥ 5, (3 + n2)2−n ≤ 1. On procède
en deux étapes.

(1) Montrons par récurrence : pour n ≥ 5, (2n+ 1)2−n ≤ 1.

(1.1) Initialisation : 11 · 1
32 ≤ 1.

(1.2) Pas de récurrence : on suppose (2n+ 1)2−n ≤ 1 et on
montre que (2(n+ 1) + 1)2−n−1 ≤ 1.

(2(n+ 1) + 1)2−n−1 =
1

2

( 2n+ 1

2n︸ ︷︷ ︸
H.R.
≤ 1

+
2

2n︸︷︷︸
≤1

)

≤ 1

2

(
1 + 1

)
= 1.



Méthode 1 : critère de la racine

On montre que pour tout n ≥ 5, (3 + n2)2−n ≤ 1. On procède
en deux étapes.

(2) Montrons par récurrence : pour n ≥ 5, (3 + n2)2−n ≤ 1.

(2.1) Initialisation : 28 · 1
32 ≤ 1.

(2.2) Pas de récurrence : on suppose (3 + n2)2−n ≤ 1 et on
montre que (3 + (n+ 1)2)2−n−1 ≤ 1.

(3 + (n+ 1)2)2−n−1 =
1

2

3 + n2 + 2n+ 1

2n
=

1

2

( 3 + n2

2n︸ ︷︷ ︸
H.R.
≤ 1

+
2n+ 1

2n︸ ︷︷ ︸
(1)

≤ 1

)
≤ 1.

Ce qui conclu la preuve.



Méthode 2 : critère du quotient

Dans notre cas, le critère du quotient est applicable si la suite((3 + (n+ 1)2)4−n−1

(3 + n2)4−n

)
n≥0

converge vers un nombre L tel que |L| < 1.

On a

(3 + (n+ 1)2)4−n−1

(3 + n2)4−n
=

1

4

n2 + 2n+ 4

n2 + 3
=

1

4

( n2

n2 + 3
+

2n

n2 + 3
+

4

n2 + 3

)
.



Méthode 2 : critère du quotient

On étudie les trois suites dans la parenthèse :

lim
n→∞

4

n2 + 3
= 0,

0 ≤ 2n

n2 + 3
≤ 2n

4n2
=

1

2n
pour n ≥ 1,

n2

n2 + 3
=

1

1 + 3/n2
pour n ≥ 1.

Par le théorème des gendarmes, la seconde suite converge vers 0.
La troisième suite converge vers 1 car la limite d'une suite ne
dépend pas de la première valeur et la suite est l'inverse d'une
suite qui converge vers un nombre non-zéro (1).



Méthode 2 : critère du quotient

La limite de la somme de suites convergentes est égale à la
somme des limites, on obtient que la suite( n2

n2 + 3
+

2n

n2 + 3
+

4

n2 + 3

)
n≥1

converge vers 1 + 0 + 0 = 1.



Méthode 2 : critère du quotient

On obtient que notre suite de départ est le produit d'une suite
constante, 1/4, et d'une suite qui converge vers 1. La limite du
produit de suites convergentes est égale au produit des limites.
Donc,

lim
n→∞

(3 + (n+ 1)2)4−n−1

(3 + n2)4−n
=

lim
n→∞

1

4

( n2

n2 + 3
+

2n

n2 + 3
+

4

n2 + 3

)
=

1

4
· 1.

On a donc que la suite des ratios converge vers un nombre L
(L = 1/4) avec |L| < 1. Donc la série converge absolument.



Méthode 3 : comparaison avec la série géométrique

On va utiliser le critère de comparaison. On commence par
montrer

(3 + n2)4−n ≤ 3 · 2−n

- Par la récurrence de la méthode 1, on a que
(3 + n2)2−n ≤ 1 pour n ≥ 5.

- Pour n = 0, 1, 2, 3, 4, on a que (3 + n2)2−n vaut (dans
l'ordre)

3, 2 ≤ 3,
7

4
≤ 3,

12

8
≤ 3,

19

16
≤ 3.

- Donc, (3 + n2)2−n ≤ 3 pour tout n ≥ 0. En particulier,

(3 + n2)4−n = (3 + n2)2−n · 2−n ≤ 3 · 2−n.



Méthode 3 : comparaison avec la série géométrique

On montre ensuite que la série

∞∑
n=0

3 · 2−n

converge (ce qui permet d'utiliser le théorème de convergence
dominée).



Méthode 3 : comparaison avec la série géométrique

On regarde la suite des sommes partielles :

An =

n∑
k=0

3 · 2−k = 3

n∑
k=0

2−k.

La suite (An)n≥0 est croissante. Il su�t de montrer qu'elle est
majorée. Pour tout n ≥ 0, on a

An = 3

n∑
k=0

2−k ≤ lim
n→∞

3

n∑
k=0

2−k = 3 · 1

1− 2−1
= 6,

car la limite est la limite d'un produit de suites convergentes.
On a donc que la suite (An)n≥0 est majorée (par 6) et
croissante. Donc elle converge.


