Chapitre II : Suites et séries

- Suites

- Séries



Suites



Suites

Definition

Soit E C R. Une suite a valeurs dans E est une liste de longueur
infinie de nombres réels appartenant & F : a = (a1, a2,as,...),
an € E pour tout n > 1. On notera souvent

(ala az, ag, . . ) = (an)n21-

Quand F n’est pas précisé, on prendra £ = R.

Exemples de suites & valeurs dans £ = N :

- la suite constante 0 : a3 =0, ao =0, ....

- la suite des carrés d’entiers : a1 =1, as = 4, a, = n2.



Rappel : valeur absolue

On se rappelle la fonction = — |z|. C’est une fonction qui
satisfait :

- || > 0 pour tout z € R et || = 0 si et seulement si x =0;
-z +yl < Jzl+yl.

Ces conditions impliquent que d(z,y) := |z — y| est une distance
sur R :

- d(z,y) > 0 et d(x,y) = 0 si et seulement si z = y;
- pour tous z,y,z € R, d(z,y) < d(zx, z) + d(z,y).



Distances

Les distances donnent une maniére de mesurer la proximité
entre deux éléments : la distance est 0 si et seulement si deux
éléments sont les mémes et on peut penser a "d(z,y) est petite"
comme 3 "z et y sont proches".



Convergence de suites

Definition

Soit (ap)n>1 une suite & valeur dans R. On dit que (an)n>1
converge vers a € R, noté a,, — a, si pour tout € > 0, il existe
ng € N tel que pour tout n > ng, |a, —a| < e. En écriture math :

an, — a si Ve > 03ng € N,Vn > ng, |a, —a| <e.

On dit que la suite (an)n>1 converge si il existe a € R tel que
an, — a.

En mots : a, — a si la distance entre a,, et a devient petite
quand n devient grand.



Exemples

1
n
Etlasuiteanzx/i—i—n%?

Est-ce que la suite a,, = 0 pour tout n converge?

Vers quoi la suite a,, = == converge-t-elle 7

Qu’en est-il de la suite a,, = n?



Rappel : écriture décimale

On se rappelle qu'un nombre peut s’écrire en utilisant I’écriture
décimale : si z € [0,1),

Tr = 0, b1b2b3b4 e
avec b, € {0,1,...,9} pour tout m. On peut visualiser ceci

comme suit : on partitionne [0,1) en sous intervalles :

1 1 2 9
D=1 ) Ul ) U [5501) -
0,1) ! 10 N 10" 10 - 10 !
S—— —— SN——
I I I



Rappel : écriture décimale

que 'on partitionne eux-mémes en sous-intervalles : par exemple

1 2
[TO’E)_
11+1>U[1+1 1+2> U[l—i—g 2)
R 10’ 10 100 L10 100’ 10 100 L10 100’ 10 J’
I 0 I I19

1=

et ainsi de suite.



Rappel : écriture décimale

Sur un dessin :




Rappel : écriture décimale

On a alors que si = 0,b1by .. ., alors x € I, mais aussi
x € Iy, p, €t © € Iy, b, 1, etc.. Il se trouve que ces “raffinements
successifs” suffisent pour retrouver x.

On peut voir ceci en utilisant la notation de somme infinie : on a
(formellement du moins...)

+oo
T = Z bkl()_k.
k=1

Par exemple, si by = 1,by = 8,b3 = 3, 'intervalle I; g3
correspond 3

1-10_1+8-10_2+3-10_3,1-10_1+8-10_2+3-10_3+10_4) -

006 205+ 1)



Ecriture décimale tronquée

Sixze0,1),
sz,blbg...

avec by, € {0,1,...,9} pour tout m. On définit

xr1 = O,bl I = 0,b1b2 I3 = 0,b1b2b3
Tn :O,bl...bn

On a alors que =, — x (au tableau).



Digression : convergence dans un ensemble

Soit (an)n>1 est une suite a valeurs dans F C R. Supposons que
an — a pour un a € R. Peut-on en déduire que a € E'7



Digression : convergence dans un ensemble

Soit (an)n>1 est une suite a valeurs dans F C R. Supposons que
an — a pour un a € R. Peut-on en déduire que a € E'7

Non! En effet : prenons les exemples

- ap = 1/n est une suite a valeurs dans (0, 1] mais a,, — 0 et
0 ¢ (0,1];

- Notons v/2 = 1.414213 ... et posons a; = 1.4, ay = 1.41,
as = 1.414 etc. la suite des troncatures décimales de v/2.
On a alors que a, € Q pour tout n et donc (ay)n>1 est une
suite a valeurs dans Q qui converge vers v/2 ¢ Q.



-indexage et convergence de suites

A partir d’une suite (a,)n>1, on peut construire une nouvelle
suite (bp)n>1 en ré-indezant la suite a, : on prend N € N et on
pose

bn = Qn+M-
Cela correspond a regarder la suite a,, aprés le rang M. On a
alors que

(an)n>1 converge vers a <= (by)n>1 converge vers a.

On remarque que la suite b, ne dépend que de (ay,)n>n, la suite
an démarrée en M + 1.



Ré-indexage et convergence de suites

Du slide précédent, on déduit que pour n’importe quel M € N
fizé, on peut toujours oublier les M premiers termes d’une suite
pour étudier sa convergence.



Divergence vers l'infini

Si une suite (ay)n>1 est telle que pour tout R € R, il existe
ng € N tel que pour tout n > ng, a, > R, on dira que a, diverge
vers +00 et on notera lim, ., a, = 400 ou a, — +0oo.

De la méme facon, si pour tout R € R, il existe ng € N tel que
pour tout n > ng, a, < R, on dira que a,, diverge vers —oo et on
notera lim,,_yoc @y, = —00 OU @y, — —OO.



Suites bornées

Definition

Soit (an)n>1 une suite & valeurs dans R. On dit que (ap)n>1 est
- magorée si 'ensemble {a, : n > 1} lest,
- minorée si 'ensemble {a, : n > 1} lest,

- bornée si elle est majorée et minorée.



Suites bornées

Theorem

Soit (an)n>1 une suite & valeurs dans R. Si elle est convergente,
alors elle est bornée.

Preuve au tableau. Idée : a,, — a donc il existe ng € N tel que
{an: n>np} Cla—1,a+1].



Critéres de convergence de suites

On verra un certain nombre de critéres, listés ici.

Suites monotones bornées

- Limsup et liminf

Opérations sur les suites

Théoréme des gendarmes

Suites de Cauchy



Suites monotones bornées

Theorem

Soit (an)n>1 une suite ¢ valeurs dans R. Supposons que
- (an)n>1 est majorée,
- Gp+1 > Gy pour tout n > 1.

Alors, (an)n>1 converge vers a = sup{a, : n > 1}.

Preuve au tableau.

Idée : utiliser la caractérisation x = sup A si et seulement si x
est un majorant de A et pour tout € > 0, il existe y € A tel que
Yy > T — €.



Suites monotones bornées

On a le résultat symétrique pour les suites minorées :

Theorem

Soit (an)n>1 une suite ¢ valeurs dans R. Supposons que
- (an)n>1 est minorée,
- apt1 < ap pour tout n > 1.

Alors, (an)n>1 converge vers a = inf{a, : n > 1}.



Limsup et liminf

Prenons la suite :

ap, = (—=1)".
Sur un dessin :

Cette suite ne converge pas, mais on voit qu’elle oscille entre +1
et —1. On peut penser & +1 comme la "valeur limite supérieure"
et & —1 comme la "valeur limite inférieure".



Limsup et liminf

Ceci est formalisé dans la notion suivante.

Definition

Soit (an)n>1 une suite & valeurs réelles. On définit la limite
supérieure (ou limsup) et la limite inférieure (ou liminf) de la

suite par
limsup a, := lim sup{a,, : m > n},
n—00 n—00
liminf a, := lim inf{a,, : m > n}.
n—o0 n—oo

En mots, la limsup est le "plus grand nombre dont la suite
s’approche infiniment souvent" et la liminf le "plus petit nombre
dont la suite s’approche infiniment souvent".



Limsup et liminf

Au tableau : ces notions sont bien définies si a,, est bornée.

Par convention, si a, n’est pas majorée, on notera
lim sup,,_,+, a@n = +00. De la méme facon, si a,, n’est pas
minorée, on notera lim inf,, ,, a,, = —oc.

Aussi par convention : si a,, diverge vers 400, on pose
liminf, ,~ a, = 400 et si elle diverge vers —oo, on pose
limsup,,_,o, @n = —00.



Limsup et liminf, notation

On utilisera aussi les notations équivalentes

limsupa, = lim sup a,, = inf{sup a,, : n > 1} = inf sup a,,,
n—00 nN—=00 ;>n m>n n2lm>n

liminf a, = lim inf a,, = Sup{ 1nf Qp 2 > 1} =sup inf a,,.
n—00 n—oom>n n>1m>n

La seconde égalité de chaque ligne utilise le fait que les suites
(SUpP>n @m)n>1 €t (infy,>p am)n>1 sont respectivement
décroissantes (le sup est prit sur un ensemble de plus en plus
petit) et croissantes (I'inf est prit sur un ensemble de plus en
plus petit).



Limsup et liminf

Quelles sont les liminf et limsup des suites

0 si n impair (=)
Ay — )
(—=1)™? i n pair n



Limsup et liminf

Theorem

Soit (an)n>1 une suite ¢ valeurs dans R et a € R. Alors ap, — a
st et seulement st liminf, o a, = limsup,, . a, = a.



Opérations sur les suites

Theorem

Soit (an)n>1, (bn)n>1 deur suites convergentes a valeurs dans
R. Notons a,b € R leurs limites : a, — a, b, — b. Alors,

1. les suiles
(_an)nzlv (an + bn)nzla (an — bn)n>1
sont convergentes et leurs limites sont données par
—a, = —a, ap+b,—>a+b, a,—b,—a—Db;

1. si b #£ 0, la suite (z—:)n>n0 est bien définit pour ng assez

grand, et converge vers lim,_ ‘;—;L =

>e

Preuve de a, + b, — a + b et de % — % au tableau.



Théoréme des gendarmes

Theorem

Soient (an)n>1, (bn)n>1, (Cn)n>1 trois suites réelles. On suppose
qu’il existe | € R tel que b, — [ et ¢, = 1, et que pour tout
n>1, b, >a, > c,. Alors, a, — [.

Preuve au tableau.



Théoréme des gendarmes

On a le méme type de théoréme pour les suites qui divergent
vers 400.

Theorem

Soient (an)n>1, (bn)n>1, deux suites réelles telles que a, < by,
pour tout n > 1. On a que

- 8t Gp — 400, alors b, — 400,

- st by, = —o0, alors a, — —o0.



Théoreme des gendarmes, exemple

On regarde la suite

sin(v/3n)

n:—
n
On a que

— <a, <
n

S

En déduire que a,, converge et trouver lim, oo G-



Suites de Cauchy

Definition

Soit (an)n>1 une suite & valeurs dans R. On dit que c¢’est une
suite de Cauchy si pour tout € > 0, il existe ng > 1 tel que pour
tout n,m > no, |ap, — am| < €

En mots : une suite est de Cauchy si les valeurs "lointaines" de
la suite sont toutes arbitrairement proches les unes des autres.



Suites de Cauchy, exemples

Lesquelles de ces suites sont de Cauchy ?

(1) a, =1 pour tout n,
(2) an=n,

(3) an = n%v

4) an = (=1)",

(5) an = S5



s de Cauchy, convergence

Si (an)n>1 est convergente, peut-on en dire quelque chose sur le
fait qu’elle soit de Cauchy?



Suites de Cauchy, convergence

Si (an)n>1 est convergente, peut-on en dire quelque chose sur le
fait qu’elle soit de Cauchy?

Oui! Si a,, converge, elle est de Cauchy : si a, — a, pour
n’importe quel € > 0, on peut trouver ng € N tel que n > ng
implique |a,, — a| < €/2. En particulier, pour n,m > ng,

|an, — am| = |an —a+ a — ap)|
€

€
§|an—a|+|a—am|§§+ = €.

[\



Suites de Cauchy, convergence

L’intérét des suite de Cauchy est I'implication converse :

Theorem

Soit (an)n>1 une suite de Cauchy. Alors, il existe a € R tel que
an — a.

En mots : une suite qui a I'air de se rapprocher de quelques
chose est convergente.



Pour la culture

On ne montrera pas le théoréme précédent. Il est équivalent &
I’axiome que tout ensemble majoré admet un supremum dans R.
Un espace dans lequel les suites de Cauchy convergent est
appelé complet.



Suites de Cauchy, application

On va donner une définition du nombre d’Fuler, e = 2.71828 . ..
que l'on reverra plus tard. On pose

! 1+1+ ! +--- 4+ :
a, = _—= — _— .. .
" k! 2 2.3 2:3---(n—=1)-n

On voudrais poser e := lim,,_. an, il faut donc montrer que a,,
converge. On montre qu’elle est de Cauchy (c.f. tableau ou slide
suivant).



Soient n, m € N. Les deux ayant des roles symétrique, supposons
n>m. On a

- k!> 21 pour k > 1,
_\\n 1 n 1-k
- donc |an — am| =2 p_pi1 71 € Dpmmir 2
- on peut utiliser un changement d’indice dans la somme :
pour toute suite (bg)r>1,

n—m-—1
Z bk = b1 Fbmiot Abmitin-mo1= > bmiisk
k=m-+1 k=0
- on obtient
n—m—1 n—m—1
lan —am| < Y 27 R =27 N ok
k=0 k=0
" 1—2nt



On a donc que pour n’importe quel € > 0, si n,m > ng = ng(e),
lan, — am| < 2l=n0 < ¢

La suite (an)n>1 est donc de Cauchy et elle est donc bien
convergente.



Séries



Rappel de notation : )

On rappelle que si a; € R,k € N, et que m < n, on note

n n—m
Zak:am+am+1+"'+an—l+an: E Qm+k,
k=m k=0

la seconde égalité est appelé ré-indezage de la somme (ou
changement de variable).

On a la propriété que si l < m < n,
n m n
D k=2 ax+
k=l k=l k

ag.
+1

=m



Rappel de notation : )

ATTENTION : la variable de sommation (k dans Y ,_; ax), est
locale : elle est définie uniquement & l'intérieur de la somme et la
valeur de la somme ne dépend pas du symbole choisit (k peut
étre remplacé par O, 1,4, i, . . .).

On peut penser & >_,_  ap comme & une fonction qui prend en
entrée la suite (a)r>0, et les bornes m, n : en pseudo-code,
> p—m @k est donnée par 'output de
Let k=m, X =0;
While £ <n do:
Update ¥ «+ ¥ 4 ay;
Update k + k+1;

Return X



Rappel de notation : )

On a aussi que l'ordre dans lequel on somme les termes
n’importe pas : si 0 : {0,...,n} = {0,...,n} est une bijection
(une permutation des indices) on a que

Z ak = Z o (k)-
k=0 k=0

Exemple : sin =2et 0:{0,1,2} — {0,1,2} est donnée par
0(0) =2,0(1) =1, 0(2) = 0, I’égalité est simplement

ap + a1 + a2 = Gy(0) + Gy(1) + Ag(2) = A2 + a1 + aop.



Série infinie

Soit (an)n>0 une suite. La série infinie associée est

oo
E Q.-
n=0

PROBLEME : est-ce que cette somme infinie fait du sens et si
oui, lequel 7



de séries

On peut faire du sens de la somme infinie en introduisant :
n
Aﬂ/zzjz:aka n >0,
k=0

la suite des sommes partielles. Si (Ap)n>0 converge, on peut
alors définir la somme infinie comme

o n

E ar = lim g a-
n—0o0

k=0 k=0

On dit alors que la série > ;2 ai converge.



Converge

Est-ce que la série Y ;2 aj peut converger si la suite aj ne
satisfait pas ap — 07



Est-ce que la série Y ;2 aj peut converger si la suite aj ne
satisfait pas ap — 07

Non! Si A, = >} _oak, on a |[Ay 1 — Ap| = |ant1]. Sila suite
(Apn)n>0 converge, on doit avoir |A,41 — A,| — 0 (pour le
montrer, on peut utiliser que si A,, converge elle est de Cauchy).



de séries

Le probléme avec cette maniére de faire est que [’ordre
d’apparition des a, importe. On ne peut a priori donc pas faire
comme dans une somme finie et modifier 'ordre dans lequel on
somme les termes & loisir.



Convergence absolue

Pour palier & ce probléme, on introduit une condition plus forte :

Definition

Soit (an)n>0 une suite. On définit

n

Bn = Z'ak|7 n = 07
k=0

. i 00 .
On dit que la série infinie )" a,, converge absolument si la
suite (By,)n>0 converge. On note cette condition

Yoo lan| < 00. Sila série ne converge pas absolument, on
notera » 2 o |an| = +o0.

Notez que la suite B,, peut soit converger, soit diverger vers 400
car elle est croissante.



Convergence absolue

Theorem

Soit (an)n>0 une suite. Supposons que Y |ay| < co. Alors, il
existe A € R tel que

n
lim Z ap = A,
n—oo
k=0

et pour toute bijection o : N — N,

nh_)rrolo kz ag(k) = A.
=0

Sans preuve.



Convergence absolue

En mots : si la série converge absolument, alors la suite des
sommes partielles converge et changer 'ordre des termes dans la
suite (an)n>0 ne change pas la valeur de la limite des sommes
partielles. En particulier, la "somme infinie peut étre sommeée
dans l'ordre voulu sans changer sa valeur".



Pour la culture, convergence pas absolue

Théoréme de réarrangement de Riemann :

Theorem

Soit (an)n>0 une suite. Supposons que Y .~ an converge mais
que > 7 o |an| = +00. Alors, pour tout L € R U {—o00,+00}, il
existe une bijection o : N — N telle que

n
Jim ) aoty = L

En d’autre mots : si la série converge mais ne converge pas
absolument, on peut changer 'ordre de sommation des termes
de sorte & obtenir n’importe quel nombre (et méme +00) comme
limite des sommes partielles (et donc comme “valeur” de la
somme infinie) !



Convergence absolue, exemple

n., 9-n

On regarde la suite a, = (—1) ,n > 0. On a alors que

—n—1

i|ak| 22— =g =2-2"<2
k=0

Donc, limy, 00 Y p_g |ak| = 2 < 00. On a alors que la série
infinie est bien définie et vaut

o N 1N\ ) 1 1
Sae=Jin () = im (- (5)")
k=0 k=0

1"

- (
= lim =
a3t g on

OJIM



Pour la culture : Exemple de convergence pas absolue

( n > 0. On a alors que

On regarde la suite a,, = n+)1 ;

(1)t
2 T e

mais » ;- k+r1 =2 i>1 1 = +00 (on le verra plus tard).



Convergence de série alternées

Theorem (Régle de Leibniz)

Soit a, € Ry, n € N une suite & valeurs dans Ry. Alors, si
ant1 < ayn pour tout n et que a, — 0, la série

o

S (-1)"a,

n=0

converge.

ATTENTION : la convergence n’est pas absolue!

En particulier, les séries

o (=D (=D
Zn—i-l’ Z n+1

n=0 n=0

convergent.



5 de convergence

On a vu que pour que la série (somme infinie) fasse du sens et
que l'on puisse y penser comme 4 une somme normale, on a
besoin que la série converge absolument. On veut donc trouver
des critéres qui garantissent que la série converge absolument.



Comparaison de séries (convergence dominée)

Theorem

Soient (an)n>0 une suite a valeurs dans R et (by)n>0 une suite a
valeur dans Ry. Si|an| < by et que Y ;2 by < 00, alors

> 120 lax] < oo

Réciproquement, si |ay| > by, et que > oy by, = +00, alors

>0 laxl = +oo.



Application

P o0 —_n
On a vu que la série Y >° ;27" converge. On peut alors en
déduire que la série associée a la suite

(="

o 1+ n2)

converge absolument car

la,| <277



e géométrique

Un exemple fondamental de série infinie est la série géométrique.
C’est la série associée a une suite de la forme a, = 2" :

o0

Zx”.

n=0



e géométrique : convergence

Si|z| > 1, 2™ 4 0, donc la série diverge.

Si |z| < 1, on a alors que les sommes partielles des valeurs
absolues sont données par

n n

1_|m|n+1 N 1
k . k: n OO,

en particulier, la série géométrique converge absolument dans ce
cas.



Criteére de d’Alembert (critére du quotient)

Soit (an)n>0 une suite a valeurs dans R. Supposons qu’il eziste

Theorem
L € R tel que
an+1
Qnp
Alors,

L <1, S fan] < oo,
- st |Ll > 1, Y02 lan| = oo.

— L.



Pour la culture : idée de la preuve

Si apt1/an — L, on sait |apt1/an| € [|L| — €, |L| + €] pour
n > ng (avec ng qui dépend de €). On écrit, alors

|an| |an—1| |ano+1|

lan—1] |an—2] |an0|

lan| = | |-

Mais ce nombre est borné par en dessus par (|L| + €)™ "0 |ay,,| et
par en dessous par (|L| — €)" " |ay,,|. On peut alors comparer
par en dessus/dessous la série >_.>2 |a,| avec les séries

n=ng

o) o)
D UL+ )" ™ lan| et > (L] =)™ an,,
n=no n=no

qui sont des multiples de la série géométrique.



Pour la culture : idée de la preuve

Si |L| < 1, alors |L| 4+ € < 1 pour € > 0 assez petit et donc, pour
un ng correspondant & un tel e,

no—1 00

|, |
Z|an| < Z |CLn|-|- |L|—ZO) Z(|L|+€)n<oo7
n=no

car on reconnait la série géométrique. On procéde de fagon
similaire pour |L| > 1, qui implique que |L| — ¢ > 1 pour € > 0
assez petit.



Application

Est-ce que la série

converge absolument ?

Est-ce que ce critére permet de dire quelque chose sur la série

S



Regle de Cauchy (critére de la racine)

Theorem

Soit (an)n>0 une suite a valeurs dans R. Si il existe ¢ € [0,1) tel
que pour tout n > 1
janV" < ¢,

alors Y72 lag| < occ.



Pour la culture : idée de la preuve

On a que |a,|'/™ < ¢ est équivalent & |a,| < ¢™. On peut alors
o1 N . oo
utiliser le critére de comparaison pour comparer y > . |a,| avec
st 2 P : [e.e] n P
la série géométrique Y >~ ;. Comme c € [0, 1) cette série est

absolument convergente.



Regle de Cauchy (critére de la racine)

Du méme argument, on déduit cette version plus facile a
appliquer :

Theorem

Soit (an)n>0 une suite ¢ valeurs dans R. Si il existe ¢ € [0,1) et
N € N tel que pour tout n > N

|an|1/n S ¢,

alors Y 7 lag| < oco.

Preuve au tableau (ou slide suivant).



On veut montrer que la suite B, = > _;_ |ai| converge. Comme
elle est croissante, il suffit de montrer qu’elle est majorée. Soit
N € N tel que pour tout n > N, |a,| < " (ou ¢ < 1).

On a alors

B, < By : s%ngN,
BN+ h_ny1lak]  sin>N.

Comme |ay| < ¢* pour k > N, on en deduit que
B, < By + ZZ:O ck pour tout n > 0. On a alors que

1
B, <sup (BN—i—Z )— lim <BN+Z ) BN—i-i < 0.

n>0

Donc la suite B,, est majorée.



Application

Est-ce que la série
o0

> (B+nHam

n=0

converge absolument ?

Trois méthodes :
- utiliser le critére de la racine;
- utiliser le critére du quotient ;

- comparer avec un multiple de la série géométrique.



Méthode 1 : critére de la racine

On veut montrer que A, = > p_,(3 + k%)47" est une suite
convergente. On veut appliquer le critére de la racine. On va
utiliser la condition avec ¢ =1/2, N = 5.

On veut donc montrer que pour tout n > 5,
(B+nHa <2

ce qui est équivalent 4 montrer que (3 +n?)27" < 1.



Méthode 1 : critére de la racine

On montre que pour tout n > 5, (3 +n?)27" < 1. On procéde
en deux étapes.

(1) Montrons par récurrence : pour n > 5, (2n +1)27" < 1.
(1.1) Initialisation : 11 - g5 < 1.
(1.2) Pas de récurrence : on suppose (2n + 1)27" < 1 et on
montre que (2(n + 1) +1)27""1 < 1.

1<2n+1

2mn+1)+1)2" ! = 3 +

n

~—

H.R.
<1

[N}
IXCIS

<

(1+1) =1

N =



Méthode 1 : critére de la racine

On montre que pour tout n > 5, (3 +n?)27" < 1. On procéde
en deux étapes.

(2) Montrons par récurrence : pour n > 5, (3 4+n?)27" < 1.
(2.1) Initialisation : 28 - 3% <1
(2.2) Pas de récurrence : on suppose (3 +n?)27" < 1 et on
montre que (3 + (n + 1)%)27"1 < 1.

13+n*4+2n+1

B+(n+1)?H2" ! =

2 on
1/34n?2 2n+1
2(3 )<t
2\ 9on on

N——
H.R. (1)
<1 <1

Ce qui conclu la preuve.



Méthode 2 : critére du quotient

Dans notre cas, le critére du quotient est applicable si la suite

((3 +(n+ 1)2)4‘”‘1)
(3+n2)4—n n>0

converge vers un nombre L tel que |L| < 1.
On a
B+m+1Ha ™ In?+2n4+4

(34 n2)4—n 4 n?2+3
2

1( n " 2n n 4 )
4\n?2+3 n?2+3 n2+3/




Méthode 2 : critére du quotient

On étudie les trois suites dans la parenthése :

4
im —— =0,
n—)oon2—|—3
0 < 2n 2n 1 51
— = —pourn
~n243 " 4n? on P =7
n? 1

n2+3 1+3/n? pourn = 1.

Par le théoréme des gendarmes, la seconde suite converge vers 0.
La troisiéme suite converge vers 1 car la limite d’une suite ne
dépend pas de la premiére valeur et la suite est 'inverse d’une
suite qui converge vers un nombre non-zéro (1).



Méthode 2 : critére du quotient

La limite de la somme de suites convergentes est égale a la
somme des limites, on obtient que la suite

(n2 N 2n N 4 )
n24+3 n2+3 nZ2+3/n>1

converge vers 1 +-0+0 = 1.



Méthode 2 : critére du quotient

On obtient que notre suite de départ est le produit d’une suite
constante, 1/4, et d’une suite qui converge vers 1. La limite du
produit de suites convergentes est égale au produit des limites.
Donc,

B+ (m+1?Hamt

A B a2)an
i 1( n? N on N 4 ) 1 )
im — — — .
nsood\n2+3 n2+3 n24+3 4

On a donc que la suite des ratios converge vers un nombre L
(L =1/4) avec |L| < 1. Donc la série converge absolument.



Méthode 3 : comparaison avec la série géométrique

On va utiliser le critére de comparaison. On commence par
montrer
(3+n?)4™m<3.27"
- Par la récurrence de la méthode 1, on a que
(3+n?)27" <1 pour n > 5.

- Pour n =0,1,2,3,4, on a que (3 +n?)27" vaut (dans
Pordre)

J

3,2<3, —<3 12<3 19<3
8 T 716

- Donc, (3 +n?)27" < 3 pour tout n > 0. En particulier,

S

(34n?)4™m=(3+n%)2 .27 "<3.27",



Méthode 3 : comparaison avec la série géométrique

On montre ensuite que la série

o
> 3.2
n=0

converge (ce qui permet d’utiliser le théoréme de convergence
dominée).



Méthode 3 : comparaison avec la série géométrique

On regarde la suite des sommes partielles :

A, = 2%3-2*’c :32%2*’“.
k=0 k=0

La suite (A )n>0 est croissante. Il suffit de montrer qu’elle est
majorée. Pour tout n > 0, on a

n

n 1
An=322—k5 lim 3) 27F=3 =6,
k=0

n—00 ’ 1—-—92-1
k=0
car la limite est la limite d’un produit de suites convergentes.
On a donc que la suite (A4,),>0 est majorée (par 6) et
croissante. Donc elle converge.



