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Raisonnement Logique



Raisonnement mathématique

Principe général :

1 On part d'hypothèses (clauses logiques, contraintes,
propriétés) que l'on suppose vraies.

2 On applique à ces hypothèses des règles de raisonnement

logique pour montrer qu'une autre clause logique ou
propriété est aussi vraie.

3 On appelle cette nouvelle clause logique conclusion.



Raisonnement mathématique

Un théorème est la donnée d'un certain nombre d'hypothèses et
d'une conclusion. La preuve d'un théorème est la description de
la suite de règles logiques que l'on a appliquées pour passer des
hypothèses à la conclusion.

ATTENTION : si on part avec des hypothèses fausses, on peut
tout à fait arriver à une conclusion fausse (le point 1 est de
supposer que les hypothèses sont véri�ées).



Notations logiques

On associe aux hypothèses/propriétés/etc., des variables

booléennes : des variables A,B,X,□,⌣, . . . qui peuvent prendre
les valeurs V (Vrai) ou F (Faux) et qui représentent si la
proposition/... est véri�ée.



Notations logiques

Les opérations logiques de bases transforment deux variables
booléennes, A,B, en une nouvelle variable booléennes. Elles
sont données par

¬ non : ¬A est vrai si et seulement si A est faux ;

∧ et : A ∧B est vrai si et seulement si A et B sont tous les
deux vrais ;

∨ ou : A∨B est faux si et seulement si A et B sont tous les
deux faux ;

=⇒ implique : A =⇒ B est vrai si et seulement si A = V
implique B = V (en particulier, si A = F, A =⇒ B est
toujours vrai) ;

⇐⇒ est équivalent à : A ⇐⇒ B est vrai si et seulement si
A =⇒ B et B =⇒ A sont vrais.



Notations logiques

Tableau récapitulatif :

A B ¬A ¬B A ∧B A ∨B A =⇒ B A ⇐⇒ B

V V F F V V V V

V F F V F V F F

F V V F F V V F

F F V V F F V V



Grammaire mathématique : l'ordre importe !

Un exemple : est-ce que ces deux phrases ont le même sens ?

En Suisse en 2020, 10 enfants sont nés chaque heure.

En Suisse en 2020, chaque heure, 10 enfants sont nés.

En mathématique, non ! Les éléments d'une phrase ont le droit
de dépendre des éléments mentionnés avant.
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Grammaire mathématique : l'ordre importe !

En Suisse en 2020, 10 enfants sont nés chaque heure.

En Suisse en 2020, chaque heure, 10 enfants sont nés.

Dans le premier cas, le bloc bleu peut dépendre du bloc rouge :
pour que cette phrase soit vraie, il faudrait pouvoir trouver 10
enfants qui sont nés chaque heure de l'année. Comme on ne nait
qu'une fois, cette phrase est donc clairement fausse.

Dans le second cas, le bloc rouge peut dépendre du bloc bleu :
pour que la phrase soit vraie, il faut que pour chaque heure de
l'année, on puisse trouver 10 enfants qui sont nés durant cette
heure. Cette phrase peut être vraie (il faudrait véri�er tous les
bulletins de naissance de 2020 pour en être sûr).



Deux symboles de plus

On utilisera les notations

∀ : pour tout,

∃ : il existe.

Avec ces symboles, l'exemple précédent devient

En Suisse en 2020, ∃ 10 enfants tels que ∀ heure, ces 10
enfants sont nés pendant cette heure.

En Suisse en 2020, ∀ heure, ∃ 10 enfants tels que ces 10
enfants sont nés pendant cette heure.



Ensembles



Ensembles

De�nition

Un ensemble est une collection d'éléments. Les ensembles sont
dénotés en utilisant { }. On les dé�nit soit via une propriété :

{x : x est un mammifère},

soit via une énumération des éléments contenus :

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

On note x ∈ A pour �x est un élément de l'ensemble A�. On
notera aussi ∅ = {} l'ensemble qui ne contient aucun élément
(ensemble vide).



Ensembles

Quelques propriétés importantes :

1) Les éléments d'un ensemble sont distinguables ; en d'autres
mots, un ensemble ne contient qu'une seule copie d'un
élément donné.

2) Deux ensembles sont les mêmes, notés A = B, si ils
contiennent les mêmes éléments.

3) L'ordre dans lequel on énumère les éléments d'un ensemble
n'a pas d'importance : par exemple

{1, 2} = {2, 1}.



Notations concernant les ensembles

Pour A,B des ensembles,

Notation Traduction

x ∈ A x est un élément de A

x /∈ A x n'est pas un élément de A

A ⊂ B A est un sous-ensemble de B (x ∈ A =⇒ x ∈ B)

A = B A et B sont égaux

A ̸= B A et B ne sont pas égaux

∅ = {} l'ensemble vide

On remarque que A = B si et seulement si A ⊂ B et B ⊂ A.



Opérations sur les Ensembles

De�nition

Soient A,B deux ensembles. On dé�nit

A ∩B : l'intersection de A et B :

A ∩B = {x : x ∈ A et x ∈ B}

A ∪B : l'union de A et B :

A ∪B = {x : x ∈ A ou x ∈ B}

A \B : A privé de B :

A \B = {x : x ∈ A et x /∈ B}.



Listes

De�nition

Une liste est une suite d'objets. On peut imaginer des boîtes
portant les numéros 1, 2, 3, 4, . . . dans chacune desquelles on
peut ranger un élément. On dé�nit une liste en spéci�ant ses
entrées : par exemple

L = (a,G, 45, π, 1, 1, 3.4,□).

On accède aux entrées de la liste en spéci�ant le numéro de la
boîte dont on veut accéder au contenu : dans l'exemple
précédent,

L1 = a, L3 = 45, L8 = □.

Deux listes sont égales si elles contiennent le même nombre
d'entrées et les mêmes entrées dans chaque boîte.



Listes, propriétés

Contrairement aux ensembles, l'ordre est important pour les

listes. Par exemple :

(1, 2, 3) ̸= (2, 1, 3).

Comme l'ordre importe, on peut avoir plusieurs fois la même
entrée dans une liste : par exemple

(1, 1, 0, 1, 1, 0, 1, 1, 0)

est une liste à 9 entrées.



Produit d'ensembles

De�nition

Soient A,B deux ensembles. On dé�nit le produit cartésien de A
et B par

A×B = {(a, b) : a ∈ A, b ∈ B}.

Les éléments du produit cartésien sont des listes à deux entrées.

Exemple au tableau.



Produit d'ensembles

On peut généraliser à plus de deux ensembles.

De�nition

Soient A,B,C des ensembles. On dé�nit le produit cartésien de

A, B et C par

A×B × C = {(a, b, c) : a ∈ A, b ∈ B, c ∈ C}.

On procède de la même manière pour plus de trois ensembles.

ATTENTION : le produit d'ensemble n'est pas associatif :

A× (B × C) ̸= (A×B)× C ̸= A×B × C.

Voir série 2. Indice : les éléments du produit cartésien sont des
listes, quel est le nombre d'entrées de ces listes dans chaque cas ?



Fonctions



Fonctions

De�nition

Soient A,B deux ensembles. Une fonction f de A vers B, noté
f : A → B est une application qui associe à chaque élément
a ∈ A un élément b ∈ B :

∀a ∈ A, f(a) ∈ B.

A est appelé le domaine de f . B est appelé l'ensemble d'arrivée

de f (ou co-domaine de f). f(a) est appelé l'image par f de a.
Si f(a) = b, a est une pré-image par f de b.

ATTENTION : pour dé�nir une fonction, il est impératif de
préciser le domaine et l'ensemble d'arrivée et pas juste de
donner une expression pour la fonction.

Exemple au tableau.



Fonctions

Pour f : A → B et I ⊂ A, J ⊂ B, on dé�nit

- l'ensemble image de I par f via

f(I) = {b ∈ B : ∃a ∈ I, f(a) = b}.

- l'ensemble image de f via

Image(f) = f(A).

- l'ensemble pré-image de J par f via

f−1(J) = {a ∈ A : ∃f(a) ∈ J}.



Fonctions injectives, surjectives, bijectives

Une fonction f : A → B est dite

- injective si elle attribue des éléments di�érents de B à des
éléments di�érents de A :

∀a, a′ ∈ A, si a ̸= a′, alors f(a) ̸= f(a′);

- surjective si tout élément de B est l'image par f d'un
élément de A : f(A) = Image(f) = B ou, de manière
équivalente,

∀b ∈ B, ∃a ∈ A tel que f(a) = b;

- bijective si elle est injective et surjective.



Composition de fonctions

De�nition

Soient A,B,C trois ensembles. Soit f : A → B, g : B → C deux
fonctions. On dé�nit la composée de f par g, g ◦ f : A → C par

g ◦ f(a) = g
(
f(a)

)
.

Exemple au tableau.



Fonction réciproque

Une fonction injective attribue des images di�érentes à des
éléments di�érents. Une fonction surjective atteint tous les
éléments de son ensemble d'arrivée. Une fonction bijective

associe donc chaque élément de A à un unique élément de B et
réciproquement, construit chaque élément de B comme l'image
d'un unique élément de A. Dans ce cas, il est possible de parler
de la fonction qui �inverse le procédé� : la réciproque de f .



Fonction réciproque

De�nition

Soient A,B deux ensembles. Soit f : A → B une fonction
bijective. On dé�nit la réciproque de f , f−1 : B → A par, pour
a ∈ A, b ∈ B,

f−1(b) = a ⇐⇒ f(a) = b.

La fonction réciproque satisfait que pour tout a ∈ A et tout
b ∈ B,

f(f1(b)) = b, f−1(f(a)) = a.



Fonction numérique

Dans ce cours on s'intéressera principalement à des fonctions
f : I → R où I est un sous-ensemble de R. En d'autre mots, des
fonctions qui transforment des nombres en d'autres nombres.



Graphe de fonctions

Dans le cas d'une fonction numérique f : E → R avec E ⊂ R, on
peut visualiser f à l'aide d'un dessin dans le plan R2 = R× R.

De�nition

Soit f : E → R une fonction avec E ⊂ R. Le graphe de f est le
sous-ensemble de R2 donné par

graphe(f) = {(x, y) ∈ R× R : x ∈ E et y = f(x)}.



Exemple

Si on regarde f : Z → R, donnée par f(n) = (n−1)2

2 − 3, on
obtient

1−1 x

f(x)



Ensembles de Nombres



Les nombres entiers

Les nombre entiers, dénotés N :

N = {0, 1, 2, 3, . . . }.

N est stable par addition :

n,m ∈ N =⇒ n+m ∈ N.

Mais pas par soustraction : 3− 6 /∈ N.

ATTENTION : dans certain textes (et langages de
programmation comme MATLAB, R), les entiers commencent à
1 et non à 0.



Les entiers relatifs

Les nombre entiers relatifs, dénotés Z, �complètent� les entiers
pour l'opération de soustraction.

Z = {. . . ,−2,−1, 0, 1, 2, . . . }.

Z est stable par addition et soustraction. De plus, Z est stable
par multiplication :

n,m ∈ Z =⇒ n ·m ∈ Z,

mais pas par division : 1/2 /∈ Z.



Les nombres rationnels

Les nombre rationnels, dénotés Q, �complètent� les entiers
relatifs pour l'opération de division.

Q = {p
q
: p ∈ Z, q ∈ N, q > 0}/ ∼ .

Le quotient / ∼ veut dire que deux fractions, p
q et p′

q′ , données
dans l'expression entre crochets sont considérées comme
identiques si il existe n ∈ N, n ≥ 2 tel que

p = np′ et q = nq′.

On dit que la fraction p
q est irréductible si le seul n qui satisfait

la condition ci-dessus est n = 1. Tout nombre rationnel peut
s'écrire comme une fraction irréductible.



Pour la culture : structure de groupe

De�nition

Soit A un ensemble et □ une loi de composition interne qui
associe à a, b ∈ A un nouvel élément de A dénoté a□b. La pair
(A,□) est un groupe si □ satisfait

- associativité : si a, b, c ∈ A alors a□(b□c) = (a□b)□c ;

- élément neutre : il existe e ∈ A tel que a□e = e□a = a pour
tout a ∈ A ;

- inverse : pour tout a ∈ A, il existe a−1 ∈ A tel que a□a−1 =
a−1□a = e.



Pour la culture : structure de groupe

On dit de plus que le groupe (A,□) est commutatif si

∀a, b ∈ A, a□b = b□a.

(Z,+) et (Q,+) sont des groupes commutatifs : le neutre est
donné par 0 et l'inverse de x est −x.

(Q∗, ·) (avec Q∗ = Q \ {0}) est un groupe commutatif : le neutre
est donné par 1 et l'inverse de p

q est q
p .



Les nombres réels

Il existe de nombreuses manières (équivalentes) de construire les
nombres réels à partir de Q. On ne le fera pas ici, et on
supposera simplement que l'ensemble des nombres réels, R,
existe et possède un certain nombre de propriétés (approche
axiomatique).

Un axiome est une hypothèse que l'on fait de manière implicite
dans tous les théorèmes que l'on énonce. Comme on travaillera
sur les nombres réels, on aura comme axiomes les règles de
logique vues précédemment et les axiomes d'existence de R que
l'on décrit maintenant.



Les nombres réels

Les axiomes que l'on supposera sur R sont simplement la
formalisation des manipulations que vous connaissez déjà.



Pour la culture : axiomes d'existence de R, groupe +, ·

On suppose qu'il existe un ensemble R muni de deux lois de
compositions internes + et · tel que

- (R,+) est un groupe commutatif ;

- (R∗, ·) est un groupe commutatif, où R∗ = R \ {0} avec 0 le
neutre pour +. Le neutre pour · est noté 1 ;

- · est distributif par rapport à + :

∀x, y, z ∈ R : x · (y + z) = x · y + x · z.



Pour la culture : Z ⊂ R

Comme 1 ∈ R, on a que N ⊂ R : pour tout n ∈ N,

n = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n fois

,

comme R est stable par addition, n ∈ R. De plus, comme x ∈ R
implique −x ∈ R, on a Z ⊂ R.



Pour la culture : Q ⊂ R

Maintenant, si x ∈ Q, alors x = p
q = p · q−1 avec p ∈ Z ⊂ R et

q ∈ {1, 2, . . . } ⊂ R. De plus,

- comme y ∈ R \ {0} implique que y−1 ∈ R \ {0}, on a que
q−1 ∈ R \ {0} ;

- comme R est stable par multiplication, p · q−1 ∈ R ;

d'où x ∈ R.

On vient de montrer que tout élément de Q est aussi un élément
de R, donc Q ⊂ R.



Pour la culture : axiomes d'existence de R, ordre

On suppose de plus que R est muni d'une structure d'ordre

strict total : il existe une opération < qui attribue à deux
éléments distincts, x, y ∈ R, une valeur de vérité x < y ∈ {F,V}
et qui satisfait :

- ∀x, y ∈ R exactement une des clauses suivantes est vraie :

x < y, y < x, x = y;

- transitivité : si x < y et y < z, alors x < z.

On notera x ≤ y pour x < y ∨ x = y. Aussi, on notera
x ≥ y, x > y pour y ≤ x, y < x respectivement.

Du premier point, on remarque que si x ≤ y et y ≤ x, alors
x = y.



Pour la culture : axiomes d'existence de R, ordre

On supposera de plus que la structure d'ordre < se comporte
avec +, · comme suit :

- pour tout x, y, z ∈ R, si x > y, alors x+ z > y + z ;

- pour tout x, y, z ∈ R, si x > y et z > 0, alors x · z > y · z.



Quelques notions importantes

De�nition

Soit E ⊂ R et M ∈ R. On dit que M est

- un majorant de E si x ≤ M pour tout x ∈ E ;

- le supremum (ou la borne supérieure) de E si M est un ma-
jorant de E et pour tout M ′ majorant de E on a M ′ ≥ M .
On note alors M = supE ;

- le maximum de E si M = supE et M ∈ E. On note alors
M = maxE.

Si E ⊂ R possède un majorant, on dit que E est borné

supérieurement (ou majoré).



Quelques notions importantes

De�nition

Soit E ⊂ R et M ∈ R. On dit que M est

- un minorant de E si x ≥ M pour tout x ∈ E ;

- l'in�mum (ou la borne inférieure) de E si M est un minorant
de E et pour tout M ′ minorant de E on a M ′ ≤ M . On note
alors M = inf E ;

- le minimum de E si M = inf E et M ∈ E. On note alors
M = minE.

Si E ⊂ R possède un minorant, on dit que E est borné

inférieurement (ou minoré).



Quelques notions importantes

Si E ⊂ R est borné supérieurement et inférieurement, on dit que
E est borné.



Pour la culture : axiomes d'existence de R, borne
supérieure

Le dernier axiome concerne l'existence de supremum pour des
sous-ensembles majoré de R : si E ⊂ R est non-vide (E ̸= ∅) et
majoré, alors le supremum de E existe et est dans R.

De cet axiome, on déduit la propriété symétrique : si E ⊂ R est
non-vide (E ̸= ∅) et minoré, alors l'in�mum de E existe et est
dans R.

Cet axiome est le seul que Q ne satisfait pas ! (on le verra un
peu plus tard)



Notation

On notera

N∗ = N \ {0}, Z∗ = Z \ {0}, Q∗ = Q \ {0}, R∗ = R \ {0}.



Intervalles

Pour x ≤ y, on dé�nit les intervalles

- ouvert (x, y) = {z ∈ R : x < z < y} ;
- fermés [x, y] = {z ∈ R : x ≤ z ≤ y} ;
- ouvert à droite, fermé à gauche

[x, y) = {z ∈ R : x ≤ z < y} ;
- ouvert à gauche, fermé à droite

(x, y] = {z ∈ R : x < z ≤ y}.
On notera aussi :

(x, x) = ∅, [x, x] = {x}.

La notation ] à la place de (, et [ à la place ) (expl : ]x, y[ à la
place de (x, y)) est aussi souvent utilisée. Les deux sont
interchangeables.



Intervalles

Pour x ∈ R, on dé�nit les intervalles semi-in�nis

- in�ni à droite, ouvert à gauche (x,+∞) = {z ∈ R : z > x} ;
- in�ni à droite, fermé à gauche [x,+∞) = {z ∈ R : z ≥ x} ;
- in�ni à gauche, ouvert à droite (−∞, x) = {z ∈ R : z < x} ;
- in�ni à gauche, fermé à droite (−∞, x] = {z ∈ R : z ≤ x}.

Finalement, on a que l'intervalle bi-in�ni est (−∞,+∞) = R.



Caractérisation des intervalles

Theorem

Soit E ⊂ R non vide (E ̸= ∅). Alors E est un intervalle (�ni,

semi-in�ni ou bi-in�ni) si et seulement si pour tout x, y ∈ E
avec x ≤ y, [x, y] ⊂ E.

Sans preuve.



Majorants, minorants, exemples

- (−∞,
√
2) est-il majoré ? minoré ? Admet-il un maximum?

- Mêmes questions pour (−∞,
√
2].

- (−1, 1] admet-il un maximum? un minimum?

- N est-il majoré ? minoré ?

- Mêmes questions pour Z et Q.



Inclusion d'ensembles et majorants, minorants

Theorem

Soit A,B ⊂ R non vides. Supposons que A ⊂ B. Alors,

- si M est un majorant de B, c'est un majorant de A ;

- si M est un minorant de B, c'est un minorant de A.

Preuve du cas majorant au tableau. Expl : (1, 4.2) ⊂ [1, 4.2] et
((0, 1) ∩Q) ⊂ [−3, 4].



Caractérisation alternative de inf et sup

Theorem

Soit A ⊂ R non vide. Alors,

- x = supA si et seulement si x est un majorant de A et pour

tout ϵ > 0, il existe y ∈ A tel que y ≥ x− ϵ ;

- x = inf A si et seulement si x est un minorant de A et pour

tout ϵ > 0, il existe y ∈ A tel que y ≤ x+ ϵ.

Sans preuve. Expl : 0 = inf N au tableau.



La fonction valeur absolue

On dé�nit la fonction | | : R → R+ par

|x| =

{
x si x ≥ 0,

−x si x < 0.



La fonction valeur absolue

x

|x|

1−1



La fonction valeur absolue

Theorem

La fonction | | satisfait : si x, y ∈ R et c ≥ 0,

(i) −|x| ≤ x ≤ |x| ;
(ii) | − x| = |x| ;
(iii) |x| ≤ c est équivalent à x ∈ [−c, c] ; en particulier |x| ≤ 0

implique x = 0 ;

(iv) |x · y| = |x| · |y| ;
(v) |x± y| ≤ |x|+ |y| inégalité du triangle ;

(vi) |x± y| ≥
∣∣|x| − |y|

∣∣ inégalité du triangle inverse.

Preuve en exercice pour les motivés.



Écriture décimale

On représente souvent les nombres réels comme l'ensemble des
�nombres à virgule� :

x = σa0a1a2 . . . an, b1b2 . . .

avec n ∈ N, σ ∈ {+,−}, a0 ∈ {1, . . . , 9} si n ≥ 1, a0 ∈ {0, . . . , 9}
si n = 0, a1, . . . , an ∈ {0, 1, . . . , 9}, bm ∈ {0, 1, . . . , 9} pour tout
m ≥ 1.

On dit alors que le nombre a0a1a2 . . . an est la partie entière de
x et b1b2 . . . la partie décimale.



Écriture décimale

ATTENTION ! Quand la partie décimale est in�nie, il faut faire
un peu attention : les nombres

0.99999999999999999999999̄

et
1 = 1.000000000̄

sont-ils di�érents ?



Les nombres complexes

Les nombres complexes sont une extension des nombres réels. Ils
sont donnés par

C = {x+ iy : x, y ∈ R},

où i est un symbole avec la propriété i2 = −1.

On les étudiera plus tard dans le cours.



Méthodes de preuves et

applications



Rappels

Au tableau : fonction, domaine, bijectivité, réciproque.



Réciproque de x 7→ x2

On regarde la fonction

f(x) = x2.

On pose R+ := {x ∈ R : x ≥ 0} =: [0,+∞) (a := b veut dire
"on dé�nit a comme étant égal à b").

- Si on regarde f : R+ → R, est-elle injective ? surjective ?

- Même question si on regarde f : R → R+.



Réciproque de x 7→ x2

Theorem

La fonction

f : R+ → R+, f(x) = x2,

est bijective.

�Preuve� par le dessin au tableau. On verra comment prouver
ceci rigoureusement quand on étudiera les fonctions continues.

Comme f est bijective, on peut dé�nir sa réciproque : la
fonction racine x 7→

√
x. Quel est le domaine de cette fonction ?



Méthode de preuve I : raisonner par l'absurde

Cadre : on suppose des hypothèses, notées H (on inclut les
axiomes dans H), et on veut montrer une conclusion, notée C.

On va utiliser que

(H =⇒ C) ⇐⇒ (¬C =⇒ ¬H).

En e�et,
H C ¬H ¬C H =⇒ C ¬C =⇒ ¬H
V V F F V V

V F F V F F

F V V F V V

F F V V V V



Méthode de preuve I : raisonner par l'absurde

L'idée du raisonnement par l'absurde est de supposer que la

conclusion (C) est fausse et arriver à une �contradiction� :
déduire que les hypothèses (H) sont fausses. On aura alors
montré que la non-validité de la conclusion entraine la
non-validité des hypothèses. Par l'équivalence précédente, ceci
est identique à avoir montré que la validité des hypothèses
entraine la validité de la conclusion.



Application :
√
2 /∈ Q

Theorem
√
2 n'est pas un nombre rationnel. En particulier, R ̸⊂ Q.

Démonstration.

Par l'absurde :

- On suppose
√
2 ∈ Q : on peut écrire

√
2 = p

q avec p
q une

fraction irréductible.

- En prenant le carré, on a p2

q2
= 2.

- On en déduit que p2 = 2q2 est pair, et donc que p est pair.
Posons p = 2p′, p′ ∈ Z.

- On a alors que q2 = p2/2 = 2(p′)2, donc q2 et q sont pair.
Posons q = 2q′, q′ ∈ N∗.

- On a montré que q = 2q′ et p = 2p′ avec p′ ∈ Z, q′ ∈ N∗, ce
qui contredit le premier point.



Méthode de preuve II : raisonner par récurrence

Cadre : on suppose des hypothèses, notées H (on inclut les
axiomes dans H), et on veut montrer une famille de conclusions,
notées C1, C2, . . ..

L'idée du raisonnement par récurrence est un principe de
dominos : on utilise H pour montrer C1, puis on utilise H et C1

pour montrer C2, puis on utilise H et C1 et C2 pour montrer C3,
etc.



Méthode de preuve II : raisonner par récurrence

Procédé :

- on introduit une famille d'hypothèses de récurrence,

Hn, n ≥ 1, via

H1 = H∧C1, H2 = H∧C1∧C2, H3 = H∧C1∧C2∧C3, . . .

On a Hn+1 = Hn ∧ Cn+1 ;

- on montre que H =⇒ H1, c'est le pas d'initialisation (faire
tomber le premier domino) ;

- on montre que pour tout n ≥ 1, Hn =⇒ Hn+1, c'est le pas

de récurrence (faire tomber un domino entraine la chute du
suivant). Comme Hn+1 = Hn ∧ Cn+1, il su�t de montrer
que Hn =⇒ Cn+1.

Résultat : on a montré que H1 est vrai et que sa validité entraine
celle de H2, qui entraine celle de H3, etc.... On obtient que Hn

est vrai pour tout n, et donc que Cn est vrai pour tout n !



Application 1 : somme d'entiers

Theorem

Pour tout n ∈ N∗, on a

n∑
k=1

k = 1 + 2 + · · ·+ (k − 1) + k =
n(n+ 1)

2
.

Preuve au tableau (et sur le slide suivant).



Application 1 : somme d'entiers

Démonstration.

La conclusion no n (Cn) est que l'identité
∑n

k=1 k = 1
2n(n+ 1)

est valide. L'hypothèse de récurrence Hn est donc que pour tout
m ∈ {1, . . . , n},

m∑
k=1

k =
m(m+ 1)

2
.

On commence par montrer H1 :
∑1

k=1 k = 1 = 1(1+1)
2 .

On montre ensuite de Hn implique Hn+1 :

n+1∑
k=1

k = (n+ 1) +

n∑
k=1

k
Hn= (n+ 1) +

n(n+ 1)

2

= (n+ 1)
(
1 +

n

2

)
=

1

2
(n+ 1)(n+ 2),

ce qui conclue la preuve.



Application 2 : série géométrique

Theorem

Pour tout n ∈ N∗ et tout x ∈ R \ {1}, on a

n∑
k=0

xk =
1− xn+1

1− x
.

Preuve au tableau.


