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Raisonnement Logique



Raisonnement mathématique

Principe général :
1 On part d’hypothéses (clauses logiques, contraintes,
propriétés) que 'on suppose vraies.

2 On applique a ces hypotheses des régles de raisonnement
logique pour montrer qu’une autre clause logique ou
propriété est aussi vraie.

3 On appelle cette nouvelle clause logique conclusion.



Raisonnement mathématique

Un théoréme est la donnée d’un certain nombre d’hypothéses et
d’une conclusion. La preuve d’un théoréme est la description de
la suite de régles logiques que 'on a appliquées pour passer des
hypothéses a la conclusion.

ATTENTION : si on part avec des hypothéses fausses, on peut
tout a fait arriver & une conclusion fausse (le point 1 est de
supposer que les hypothéses sont vérifiées).



Notations logiques

On associe aux hypothéses/propriétés/etc., des variables
booléennes : des variables A, B, X,, —, ... qui peuvent prendre
les valeurs V (Vrai) ou F (Faux) et qui représentent si la
proposition/... est vérifiée.



Notations logiques

Les opérations logiques de bases transforment deux variables
booléennes, A, B, en une nouvelle variable booléennes. Elles
sont données par

= non : 0 A est vrai si et seulement si A est faux;

A et : AN B est vrai si et seulement si A et B sont tous les
deux vrais;

V ou : AV B est faux si et seulement si A et B sont tous les
deux faux;

— implique : A —> B est vrai si et seulement si A =V
implique B =V (en particulier, si A=F, A = B est
toujours vrai) ;

< est équivalent ¢ : A <= B est vrai si et seulement si
A = Bet B = A sont vrais.
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Tableau récapitulatif :
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Grammaire mathématique : 'ordre importe !

Un exemple : est-ce que ces deux phrases ont le méme sens ?

En Suisse en 2020, 10 enfants sont nés chaque heure.

En Suisse en 2020, chaque heure, 10 enfants sont nés.



Grammaire mathématique : 'ordre importe !

Un exemple : est-ce que ces deux phrases ont le méme sens ?

En Suisse en 2020, 10 enfants sont nés chaque heure.

En Suisse en 2020, chaque heure, 10 enfants sont nés.

En mathématique, non! Les éléments d’une phrase ont le droit
de dépendre des éléments mentionnés avant.



Grammaire mathématique : 'ordre importe !

En Suisse en 2020, 10 enfants sont nés chaque heure.

En Suisse en 2020, chaque heure, 10 enfants sont nés.

Dans le premier cas, le bloc bleu peut dépendre du bloc rouge :
pour que cette phrase soit vraie, il faudrait pouvoir trouver 10
enfants qui sont nés chaque heure de l’'année. Comme on ne nait
qu’une fois, cette phrase est donc clairement fausse.

Dans le second cas, le bloc rouge peut dépendre du bloc bleu :
pour que la phrase soit vraie, il faut que pour chaque heure de
I’année, on puisse trouver 10 enfants qui sont nés durant cette
heure. Cette phrase peut étre vraie (il faudrait vérifier tous les
bulletins de naissance de 2020 pour en étre sir).



Deux symboles de plus

On utilisera les notations

Y : pour tout,
3 : il existe.

Avec ces symboles, I'exemple précédent devient

En Suisse en 2020, 3 10 enfants tels que V heure, ces 10
enfants sont nés pendant cette heure.

En Suisse en 2020, V heure, 3 10 enfants tels que ces 10
enfants sont nés pendant cette heure.



Ensembles



Ensembles

Definition

Un ensemble est une collection d’éléments. Les ensembles sont
dénotés en utilisant { }. On les définit soit via une propriété :

{z : 2 est un mammifére},
soit via une énumeération des éléments contenus :

{0,1,2,3,4,5,6,7,8,9}.

On note x € A pour “z est un élément de I’ensemble A”. On
notera aussi @ = {} l'ensemble qui ne contient aucun élément
(ensemble vide).



Ensembles

Quelques propriétés importantes :
1) Les éléments d’'un ensemble sont distinguables; en d’autres
mots, un ensemble ne contient qu’une seule copie d’'un
élément donné.

2) Deux ensembles sont les mémes, notés A = B, si ils
contiennent les mémes éléments.

3) L’ordre dans lequel on énumeére les éléments d’un ensemble
n’a pas d’importance : par exemple

(1,2} = {2,1}.



Notations concernant les ensembles

Pour A, B des ensembles,

Notation Traduction

reA x est un élément de A

x¢ A x n’est pas un élément de A

A CB | Aestunsous-ensemble de B (r € A = z € B)
A=B A et B sont égaux

A#B A et B ne sont pas égaux

o=} Pensemble vide

On remarque que A = B si et seulement si A C B et B C A.



Opérations sur les Ensembles

Definition
Soient A, B deux ensembles. On définit
AN B : lintersection de A et B :

ANB={z: z€ Aet z € B}
AUB : l'union de A et B :

AUB={z: z€ Aouzx e B}
A\ B : A privé de B :

A\B={x: x € Aet x ¢ B}.



Listes

Definition

Une liste est une suite d’objets. On peut imaginer des boites
portant les numéros 1,2, 3,4, ... dans chacune desquelles on

peut ranger un élément. On définit une liste en spécifiant ses
entrées : par exemple

L =(a,G,45,7,1,1,3.4,0).

On acceéde aux entrées de la liste en spécifiant le numéro de la
boite dont on veut accéder au contenu : dans I'exemple
précédent,

Ll = a, L3 = 45, Lg =L

Deux listes sont égales si elles contiennent le méme nombre
d’entrées et les mémes entrées dans chaque boite.



Listes, propriétés

Contrairement aux ensembles, l'ordre est important pour les
listes. Par exemple :

(1,2,3) # (2,1, 3).

Comme l'ordre importe, on peut avoir plusieurs fois la méme
entrée dans une liste : par exemple

(1,1,0,1,1,0,1,1,0)

est une liste & 9 entrées.



Produit d’ensembles

Definition

Soient A, B deux ensembles. On définit le produit cartésien de A
et B par
AxB={(a,b): a€ A,be B}.

Les éléments du produit cartésien sont des listes a deux entrées.

Exemple au tableau.



Produit d’ensembles

On peut généraliser & plus de deux ensembles.

Definition

Soient A, B, C' des ensembles. On définit le produit cartésien de
A, B et C par

Ax BxC={(a,b,c): a€ A,be B,ce C}.

On procéde de la méme maniére pour plus de trois ensembles.

ATTENTION : le produit d’ensemble n’est pas associatif :
Ax(BxC)#(AxB)xC#AxBxC.

Voir série 2. Indice : les éléments du produit cartésien sont des
listes, quel est le nombre d’entrées de ces listes dans chaque cas?



Fonctions



Fonctions

Definition

Soient A, B deux ensembles. Une fonction f de A vers B, noté
f: A — B est une application qui associe a chaque élément
a € Aun élément b € B :

Va € A, f(a) € B.

A est appelé le domaine de f. B est appelé 'ensemble d’arrivée
de f (ou co-domaine de f). f(a) est appelé l"image par f de a.
Si f(a) = b, a est une pré-image par f de b.

ATTENTION : pour définir une fonction, il est impératif de
préciser le domaine et ’ensemble d’arrivée et pas juste de

donner une expression pour la fonction.

Exemple au tableau.



Fonctions

Pour f: A— BetI C A, J C B, on définit

- lensemble 1tmage de I par f via
f()y=4{be B: Jacl, f(a)=>}.
- Uensemble image de f via
Image(f) = f(A).
- lensemble pré-image de J par f via

Y ={acA: 3f(a) € J}.



Fonctions injectives, surjectives, bijectives

Une fonction f: A — B est dite

- injective si elle attribue des éléments différents de B a des
éléments différents de A :

Va,a' € A, sia#d, alors f(a) # f(d');

- surjective si tout élément de B est 'image par f d’un
élément de A : f(A) = Image(f) = B ou, de maniére
équivalente,

Vb € B, Ja € A tel que f(a) =1b;

- byective si elle est injective et surjective.



Composition de fonctions

Definition

Soient A, B, C trois ensembles. Soit f: A — B, g: B — C deux
fonctions. On définit la composée de f par g, go f : A — C par

go f(a)=g(f(a)).

Exemple au tableau.



Fonction réciproque

Une fonction injective attribue des images différentes & des
éléments différents. Une fonction surjective atteint tous les
éléments de son ensemble d’arrivée. Une fonction bijective
associe donc chaque élément de A & un unique élément de B et
réciproquement, construit chaque élément de B comme l'image
d’un unique élément de A. Dans ce cas, il est possible de parler
de la fonction qui “inverse le procédé” : la réciproque de f.



Fonction réciproque

Definition

Soient A, B deux ensembles. Soit f : A — B une fonction
bijective. On définit la réciproque de f, f~' : B — A par, pour
a€ Abe B,

[7H0) =a <= fla)=b.

La fonction réciproque satisfait que pour tout a € A et tout
be B,



n numérique

Dans ce cours on s’intéressera principalement & des fonctions
f 1 — Rou I est un sous-ensemble de R. En d’autre mots, des
fonctions qui transforment des nombres en d’autres nombres.



Graphe de fonctions

Dans le cas d’une fonction numérique f : £ — R avec F C R, on
peut visualiser f a l'aide d’un dessin dans le plan R? =R x R.

Definition

Soit f: E — R une fonction avec ¥ C R. Le graphe de f est le
sous-ensemble de R? donné par

graphe(f) ={(z,y) e RxR: x € Fet y= f(z)}.



Si on regarde f : Z — R, donnée par f(n) = @ — 3, on

obtient
f(z)




Ensembles de Nombres



Les nombres entiers

Les nombre entiers, dénotés N :
N={0,1,2,3,...}.
N est stable par addition :
nmeN = n+meN.

Mais pas par soustraction : 3 — 6 ¢ N.

ATTENTION : dans certain textes (et langages de
programmation comme MATLAB, R), les entiers commencent a
1 et non a 0.



Les entiers relatifs

Les nombre entiers relatifs, dénotés Z, “complétent” les entiers
pour l'opération de soustraction.

Z={..,-2-1,01,2...}

Z est stable par addition et soustraction. De plus, Z est stable
par multiplication :

nm©e”Z = n-mE€Z,

mais pas par division : 1/2 ¢ Z.



Les nombres rationnels

Les nombre rationnels, dénotés Q, “complétent” les entiers
relatifs pour 'opération de division.

@={§: pEZ,geN,g>0}/~.

/
Le quotient / ~ veut dire que deux fractions, %’ et zi/, données
dans ’expression entre crochets sont considérées comme
identiques si il existe n € N, n > 2 tel que

p=np et g=ng.

On dit que la fraction 2 est srréductible si le seul n qui satisfait
la condition ci-dessus est n = 1. Tout nombre rationnel peut
s’écrire comme une fraction irréductible.



Pour la culture : structure de groupe

Definition

Soit A un ensemble et [J une loi de composition interne qui
associe & a,b € A un nouvel élément de A dénoté alJb. La pair
(A,0) est un groupe si O satisfait

- associativité : si a,b,c € A alors a0J(b0c) = (a0b)Oc;

- €lément neutre : il existe e € A tel que alJe = elJa = a pour
tout a € A;

- dnwerse : pour tout a € A, il existe a=! € A tel que ala™! =
a"'0a = e.



Pour la culture : structure de groupe

On dit de plus que le groupe (A,0) est commutatif si

Va,b € A, aldb = ba.

(Z,+) et (Q,+) sont des groupes commutatifs : le neutre est
donné par 0 et 'inverse de x est —z.

(Q*,-) (avec Q* = Q\ {0}) est un groupe commutatif : le neutre
est donné par 1 et l'inverse de g est %.



Les nombres réels

Il existe de nombreuses maniéres (équivalentes) de construire les
nombres réels a partir de Q. On ne le fera pas ici, et on
supposera simplement que ’ensemble des nombres réels, R,
existe et posséde un certain nombre de propriétés (approche
axiomatique).

Un aziome est une hypothése que 'on fait de maniére implicite
dans tous les théoréemes que 'on énonce. Comme on travaillera,
sur les nombres réels, on aura comme axiomes les régles de
logique vues précédemment et les axiomes d’existence de R que
I’on décrit maintenant.



Les nombres réels

Les axiomes que 'on supposera sur R sont simplement la
formalisation des manipulations que vous connaissez déja.



Pour la culture : axiomes d’existence de R, groupe +, -

On suppose qu’il existe un ensemble R muni de deux lois de
compositions internes + et - tel que

- (R, +) est un groupe commutatif;
- (R*,-) est un groupe commutatif, ot R* =R\ {0} avec 0 le
neutre pour +. Le neutre pour - est noté 1;

- - est distributif par rapport & + :

Ve,y,z€R: z-(y+z2)=x-y+x-z



Pour la culture : Z C R

Comme 1 € R, on a que N C R : pour tout n € N,
n=1+14---41,
| S
n fois

comme R est stable par addition, n € R. De plus, comme z € R
implique —x € R, on a Z C R.



Pour la culture : Q C R

-1

Maintenant, si x € Q, alors x = %’ =p-q  avecp€EZ CRet

qg€{1,2,...} CR. De plus,
- comme y € R\ {0} implique que y~! € R\ {0}, on a que
g~ € R\ {0};
- comme R est stable par multiplication, p- ¢! € R;
d’ou x € R.

On vient de montrer que tout élément de Q est aussi un élément
de R, donc Q C R.



Pour la culture : axiomes d’existence de R, ordre

On suppose de plus que R est muni d’une structure d’ordre
strict total : il existe une opération < qui attribue a deux
éléments distincts, z,y € R, une valeur de vérité z < y € {F,V}
et qui satisfait :

- Vz,y € R exactement une des clauses suivantes est vraie :
<y, y<uw, T =y

- transitivité 1 six <y et y < z, alors z < z.

On notera = < y pour x <y V x = y. Aussi, on notera
T >y, >y pour y < x,y < x respectivement.

Du premier point, on remarque que si x < y et y < z, alors
T =y.



Pour la culture : axiomes d’existence de R, ordre

On supposera de plus que la structure d’ordre < se comporte
avec +, - comme suit :

- pour tout z,y,z € R, siz >y, alorsx + 2z > y+ z;
- pour tout z,y,z € R, siz >yet z>0,alorsz-2>y- 2.



Quelques notions importantes

Definition
Soit F C Ret M € R. On dit que M est
- un majorant de E si x < M pour tout x € F;

- le supremum (ou la borne supérieure) de E si M est un ma-
jorant de E et pour tout M’ majorant de E on a M’ > M.
On note alors M =sup F;

- le mazimum de E si M = supE et M € E. On note alors
M = max E.

Si E C R posséde un majorant, on dit que E est borné
supérieurement (ou majoré).



Quelques notions importantes

Definition
Soit F C Ret M € R. On dit que M est
- un minorant de E si x > M pour tout x € E;

- Uinfimum (ou la borne inférieure) de E si M est un minorant
de E et pour tout M’ minorant de E on a M’ < M. On note
alors M = inf F;

- le minimum de E si M = inf K et M € E. On note alors
M = min E.

Si E C R posséde un minorant, on dit que E est borné
inférieurement (ou minoré).



Quelques notions importantes

Si E C R est borné supérieurement et inférieurement, on dit que
E est borné.



Pour la culture : axiomes d’existence de R, borne

supérieure

Le dernier axiome concerne ’existence de supremum pour des
sous-ensembles majoré de R : si ' C R est non-vide (E # @) et
majoré, alors le supremum de E existe et est dans R.

De cet axiome, on déduit la propriété symétrique : si £ C R est
non-vide (E # &) et minoré, alors I'infimum de E existe et est
dans R.

Cet axiome est le seul que Q ne satisfait pas! (on le verra un
peu plus tard)



On notera

N*=N\{0}, Z*=7Z\{0}, Q" =Q\{0}, R*=R\{0}.



Intervalles

Pour < y, on définit les intervalles
- owvert (x,y) ={z €R: z <z <y};
- fermés [,y ={z € R: z <z <y};
ouvert a droite, fermé a gauche
[r,y) ={z€R: x <z <y};

ouwvert G gauche, fermé a droite
(x,y) ={z€eR: z<z<y}.

On notera aussi :
(x,2) =2, [z,z] ={z}.

La notation | a la place de (, et [ a la place ) (expl : |Jz,y[ a la
place de (x,y)) est aussi souvent utilisée. Les deux sont
interchangeables.



Intervalles

Pour z € R, on définit les intervalles semi-infinis
- infini o droite, ouvert a gauche (z,+00) ={z € R: z > z};
- infini a droite, fermé a gauche [x,+00) ={z € R: z > x};
- infini G gauche, ouvert a droite (—oo,z) ={z € R: z < z};
- infini a gauche, fermé a droite (—oo,z] = {z e R: z < x}.

Finalement, on a que l'intervalle bi-infini est (—oo, +00) = R.



Caractérisation des intervalles

Theorem

Soit E C R non vide (E # @). Alors E est un intervalle (fini,
semi-infini ou bi-infini) si et seulement si pour tout v,y € E
avec x <y, [x,y] C E.

Sans preuve.



Majorants, minorants, exemples

- (—00,1/2) est-il majoré? minoré? Admet-il un maximum ?
- Mémes questions pour (—oo,v/2].

- (—1,1] admet-il un maximum ? un minimum ?

- N est-il majoré? minoré ?

- Mémes questions pour Z et Q.



Inclusion d’ensembles et majorants, minorants

Theorem
Soit A, B C R non vides. Supposons que A C B. Alors,
- 8t M est un majorant de B, c’est un majorant de A ;

- st M est un minorant de B, c¢’est un minorant de A.

Preuve du cas majorant au tableau. Expl : (1,4.2) C [1,4.2] et
((07 1) N Q) - [_3v 4]



Caractérisation alternative de inf et sup

Theorem
Soit A C R non vide. Alors,

- x =sup A si et seulement si x est un majorant de A et pour
tout € > 0, il existe y € A tel que y > x —¢€;

- x =1inf A si el seulement si © est un minorant de A el pour
tout € > 0, il existe y € A tel que y < x + €.

Sans preuve. Expl : 0 = inf N au tableau.



La fonction valeur absolue

On définit la fonction | | : R — Ry par

T six >0,
|z| = .
—xr siz<O.



La fonction valeur absolue




La fonction valeur absolue

Theorem

La fonction | | satisfait : si x,y € R et ¢ >0,

(i) —la| <@ < |zf;

(i) | — x| = [x];
(111) |z| < ¢ est équivalent & © € [—c,c]; en particulier |x| < 0

impliqgue x =0 ;

(w) |z -yl = || - lyl;

(v) |x £y| < |z|+ |y| inégalité du triangle ;

(vi) |z £yl > ||z| — |y|| inégalité du triangle inverse.

Preuve en exercice pour les motivés.



Ecriture décimale

On représente souvent les nombres réels comme l'ensemble des
“nombres & virgule” :

T = 0apa1as...a,,b1bs. ..

avecn €N, o e {+,—}, a0 €{l,...,9}sin>1, a9 € {0,...,9}
sin=0,ay,...,a, €{0,1,...,9}, by, €{0,1,...,9} pour tout
m > 1.

On dit alors que le nombre agaias ... a, est la partie entiére de
x et bibs ... la partie déctmale.



Ecriture décimale

ATTENTION! Quand la partie décimale est infinie, il faut faire
un peu attention : les nombres

0.99999999999999999999999

et
1 = 1.000000000

sont-ils différents ?



Les nombres complexes

Les nombres complexes sont une extension des nombres réels. Ils
sont donnés par

C={z+iy: =,y e R},

otl i est un symbole avec la propriété i = —1.

On les étudiera plus tard dans le cours.



Méthodes de preuves et
applications



Rappels

Au tableau : fonction, domaine, bijectivité, réciproque.



2.0 9
Réciproque de = — z*

On regarde la fonction

f(z) =22

On pose Ry :={z e R: x>0} =:[0,400) (a := b veut dire
"on définit a comme étant égal a b").
- Si on regarde f: Ry — R, est-elle injective 7 surjective ?

- Meéme question si on regarde f: R — R,.



L . 2
Réciproque de = — z*

Theorem
La fonction

f:R+_>R+7 f((E):(L’Q,
est bijective.

“Preuve” par le dessin au tableau. On verra comment prouver
ceci rigoureusement quand on étudiera les fonctions continues.

Comme f est bijective, on peut définir sa réciproque : la
fonction racine z — /2. Quel est le domaine de cette fonction ?



Méthode de preuve I : raisonner par I’absurde

Cadre : on suppose des hypothéses, notées H (on inclut les
axiomes dans H), et on veut montrer une conclusion, notée C.

On va utiliser que

(H = C) <= (-C = —H).

En effet,

H|C|-H|-C|H=C(C|-C = -H
V|V| F F Vv Vv
V|F| F \% F F

F| V|V F Vv A%
F|F|V |V A% Vv




Méthode de preuve I : raisonner par I’absurde

L’idée du raisonnement par 'absurde est de supposer que la
conclusion (C) est fausse et arriver & une “contradiction” :
déduire que les hypothéses (H) sont fausses. On aura alors
montré que la non-validité de la conclusion entraine la
non-validité des hypothéses. Par I’équivalence précédente, ceci
est identique & avoir montré que la validité des hypothéses
entraine la validité de la conclusion.



Application : V2 ¢ Q

Theorem

V2 nest pas un nombre rationnel. En particulier, R ¢ Q.

Démonstration.

Par 'absurde :

- On suppose V2 € Q : on peut écrire V2 = g avec %7 une

fraction irréductible.

- En prenant le carré, on a flfg =2.

- On en déduit que p? = 2¢> est pair, et donc que p est pair.
Posons p = 2p/, p' € Z.

- On a alors que ¢ = p?/2 = 2(p/)?, donc ¢? et ¢ sont pair.
Posons g = 2¢', ¢’ € N*.

- On a montré que ¢ = 2¢' et p = 2p' avec p’ € Z, ¢ € N*, ce
qui contredit le premier point.

O



Méthode de preuve II : raisonner par récurrence

Cadre : on suppose des hypothéses, notées H (on inclut les
axiomes dans H), et on veut montrer une famille de conclusions,
notées Cq,Cy, .. ..

L’idée du raisonnement par récurrence est un principe de
dominos : on utilise H pour montrer C7, puis on utilise H et Cy
pour montrer Cy, puis on utilise H et C et Cy pour montrer Cs,
etc.



Méthode de preuve II : raisonner par récurrence

Procédé :

- on introduit une famille d’hypothéses de récurrence,
Hn, n>1, via

H1=HANCy, Ho=HANCINCy, Hz= HANCIACoNCs,...

OnaHpi1=Ha ACpit;
- on montre que H = Hj, c’est le pas d’initialisation (faire
tomber le premier domino) ;

- on montre que pour tout n > 1, H,, = Hn41, c’est le pas
de récurrence (faire tomber un domino entraine la chute du
suivant). Comme H,, 41 = Hp A Cpt1, il suffit de montrer
que H, = Cpi1.

Résultat : on a montré que H; est vrai et que sa validité entraine
celle de Hs, qui entraine celle de Hs, etc.... On obtient que H,,
est vrai pour tout n, et donc que C), est vrai pour tout n!



Application 1 : somme d’entiers

Theorem

Pour tout n € N*, on a

n(n+1).

dk=1+42+4-+ (k-1 +k= .
k=1

Preuve au tableau (et sur le slide suivant).



Application 1 : somme d’entiers

Démonstration.

La conclusion no n (Cy,) est que Uidentité Y ), k = sn(n + 1)
est valide. L’hypothése de récurrence H,, est donc que pour tout

m € {1,...,n},
“ m(m+1)
k=1

On commence par montrer Hj : leczl k=1= w
On montre ensuite de H,, implique Hy41 :

= n(n+1)

Zk— (n+1)+ Zk = (0 1)+ =g
=1
:(n+1)(1+g) :%(n+1)(n+2),

ce qui conclue la preuve. ]



Application 2 : série géométrique

Theorem
Pour tout n € N* et tout v € R\ {1}, on a

n+1

1—2"
Zm l-z

Preuve au tableau.



