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Exercice 1.
Montrer par récurrence que pour tout n ∈ N,

n∑
k=0

(2k + 1) = (n + 1)2.

Solution :
Ancrage : Pour n = 0, le membre de gauche est

0∑
k=0

(2k + 1) = 2 · 0 + 1 = 1,

tandis que le membre de droite est
(0 + 1)2 = 1,

Vu qu’on obtient la même chose, le résultat est vrai pour n = 1.
Pas d’induction : Supposons que

n∑
k=0

(2k + 1) = (n + 1)2 (H.R.)

et montrons que
n+1∑
k=0

(2k + 1) = (n + 2)2.

On a
n+1∑
k=0

(2k + 1) =
n∑

k=0
(2k + 1) + (2(n + 1) + 1) H.R= (n + 1)2 + (2n + 3) = n2 + 2n + 1 + 2n + 3

=n2 + 4n + 4 = (n + 2)2,

qui est le résultat voulu.

Exercice 2.
Le but de cet exercice est d’utiliser la définition du sinus et du cosinus comme rapports préservés dans
les triangles rectangles semblables pour déterminer certaines valeurs du sinus, cosinus et tangente.

(i) En étudiant un triangle isocèle ABC rectangle en C de côtés AB =
√

2, AC = 1 et BC = 1,
déterminer les valeurs de sin(π/4), cos(π/4) et tan(π/4).

(ii) En étudiant un triangle équilatéral de côté 1 et hauteur
√

3
2 déterminer les valeurs de sin(π/6),

sin(π/3), cos(π/6), cos(π/3), tan(π/6) et tan(π/3).
Solution : On rappelle qu’on peut définir les fonctions sinus, cosinus à l’aide des rapports préservés
dans les triangles rectangles semblables.
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On a alors, pour tout x ∈]0, π/2[,

sin(x) = opposé
hypothénuse

cos(x) = adjacent
hypothénuse

tan(x) = opposé
adjacent .

(i) On s’intéresse à un triangle isocèle.
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Vu que la somme de tous les angles d’un triangle font π, on a x = π/4.
Ainsi,

sin(π/4) = 1√
2

=
√

2
2

cos(π/4) = 1√
2

=
√

2
2

tan(π/4) =1
1 = 1.

(ii) On s’intéresse à un triangle équilatéral.
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Vu que la somme de tous les angles d’un triangle font π, on a x = π/3.



Ainsi,

sin(π/3) =
√

3/2
1 =

√
3

2

cos(π/3) =1/2
1 = 1

2

tan(π/3) =
√

3/2
1/2 =

√
3

sin(π/6) =1/2
1 = 1

2

cos(π/6) =
√

3/2
1 =

√
3

2

tan(π/6) = 1/2√
3/2

=
√

3
3 .

Exercice 3.
Soit X = {0, 1} et f, g : X → X deux fonctions.
Vrai ou faux ?

Q1 : f ◦ g = g ◦ f ⇔ f = g.
Q2 : Si f et g sont injectives, alors f ◦ g est injective.
Q3 : Si f ◦ f est injective, alors f est injective.
Q4 : Si f ◦ g est injective, alors g est injective.
Q5 : Si f ◦ g est surjective, alors f est surjective.

Solution :

Q1 : FAUX.
Prendre par exemple f(1) = 1, f(0) = 0, g(1) = g(0) = 1. Alors (f ◦ g)(1) = f(g(1)) = f(1) =
1 = (g ◦ f)(1), (f ◦ g)(0) = f(1) = 1 = (g ◦ f)(0), et donc f ◦ g = g ◦ f mais f ̸= g.

Q2 : VRAI.
Soient x1, x2 ∈ X tels que f(g(x1)) = f(g(x2)). Comme f est injective, on a g(x1) = g(x2), et
par l’injectivité de g, il suit que x1 = x2. Ainsi f ◦ g est bien injective.

Q3 : VRAI.
Soient x1, x2 ∈ X tels que f(x1) = f(x2). Donc on a f(f(x1)) = f(f(x2)). Comme f ◦ f est
injective, on conclut que x1 = x2 et donc f est injective.

Q4 : VRAI.
Soient x1, x2 ∈ X tels que g(x1) = g(x2). Donc on a f(g(x1)) = f(g(x2)). Comme f ◦ g est
injective, on conclut que x1 = x2 et donc g est injective.

Q5 : VRAI.
Soit y ∈ X. Comme f ◦g est surjective, il existe x ∈ X tel que (f ◦g)(x) = y. En posant z = g(x)
on a trouvé un z ∈ X tel que f(z) = y. Ainsi f est surjective.

Remarque : les propositions Q2, Q4 et Q5 sont vraies pour n’importe quelles fonctions f : Y → Z et
g : X → Y et Q3 est vraie pour n’importe quelle fonction f : X → X.

Exercice 4.
On note R− := {x ∈ R : x ≤ 0}.
Montrer que la fonction f : R− → R+ définie par

f(x) =
√

−x

est bijective.
Solution :



Il existe deux méthodes pour montrer que cette fonction est bijective : soit on montre qu’elle est
injective et surjective à l’aide de la définition, soit on montre qu’elle admet une fonction réciproque.
Une des deux suffit, on donne les deux dans ce corrigé.
Méthode 1 : montrer que la fonction admet une fonction réciproque.
Soit g : R+ → R− définie par

g(x) = −x2.

Alors, pour tout x ∈ R+, on a

f(g(x)) =
√

−g(x) =
√

−(−x2) =
√

x2 = |x| = x,

où la dernière inégalité vient du fait que x ∈ R+ implique x ≥ 0.
De plus, pour tout x ∈ R−, on a

g(f(x)) = −f(x)2 = −
(√

−x
)2

= −(−x) = x.

Ceci montre que f admet une fonction réciproque et donc, par le théorème 0.36 du polycopié, f est
bijective.
Remarque : Ici, en vérifiant que g satisfait la définition de réciproque de f , on montre que c’est bien
la fonction réciproque. Pour trouver la fonction g, comme dans la remarque 0.38, on pose f(x) = y et
on résout pour x :

f(x) =y
√

−x =y

−x =y2

x = − y2.

L’égalité avec laquelle on termine est x = f−1(y) donc f−1(x) = −x2 est la fonction qu’on choisit
pour essayer de montrer qu’il s’agit de la fonction réciproque de f .
Méthode 2 : Utiliser la définition de fonction bijective
Á partir de la définition de fonction bijective, il nous faut montrer que f est injective et surjective.
Commençons par montrer que f est injective. On procède par contraposée et on montre que ∀x, y ∈ R−,
f(x) = f(y) ⇒ x = y.
Soit donc x, y ∈ R− quelconques et supposons que f(x) = f(y). Alors,

f(x) =f(y)
√

−x =
√

−y
√

−x
2 =

√
−y

2

−x = − y

x =y,

ce qui montre que x = y. Vu que x et y sont quelconques, on a bien montré ∀x, y ∈ R−, f(x) = f(y) ⇒
x = y, ce qui veut dire que f est injective.
Passons à la démonstration que f est surjective. On doit montrer : ∀y ∈ R+, ∃x ∈ R− tel que f(x) = y.
Soit donc y ∈ R+ quelconque. Considérons x = −y2 ∈ R−. Alors,

f(x) = f(−y2) =
√

−(−y2) =
√

y2 = |y| = y,

Où la dernière égalité vient du fait que y ∈ R+ implique y ≥ 0. La fonction f est alors surjective.



Exercice 5.
Montrer que la fonction f définie par :

f : Z → N

n 7→
{

2n si n ≥ 0,

2(−n) − 1 si n < 0.

est bijective.
Solution : Comme dans l’exercice précédent, il existe deux méthodes pour montrer que cette fonction
est bijective : soit on montre qu’elle est injective et surjective à l’aide de la définition, soit on montre
qu’elle admet une fonction réciproque. Une des deux suffit, on donne les deux dans ce corrigé.
Méthode 1 : montrer que la fonction admet une fonction réciproque.
Soit la fonction g : N → Z définie par

g(n) =

 n/2 si n est pair
−n + 1

2 si n est impair.

Commençons par montrer que pour tout n ∈ N, on a f ◦ g(n) = n.
Soit n ∈ N quelconque. On distingue deux cas.
Cas 1 : Si n est pair, on a g(n) = n/2.
Ainsi,

f(g(n)) = f(n/2) n/2≥0= 2(n/2) = n,

ce qui est le résultat voulu dans ce cas.
Cas 2 : Si n est impair, on a g(n) = −(n + 1)/2.
Ainsi,

f(g(n)) = f

(
−n + 1

2

)
− n+1

2 <0
= 2

(
−
(

−n + 1
2

))
− 1 = n + 1 − 1 = n,

ce qui est le résultat voulu dans ce cas.
Les deux cas réunis nous montrent que f ◦ g(n) = n. Vu que n est quelconque, on a bien montré que
∀n ∈ N, f ◦ g(n) = n.
Montrons maintenant encore que pour tout n ∈ Z, on a g ◦ f(n) = n.
Soit donc n ∈ Z quelconque. On distingue deux cas.
Cas 1 : Si n ≥ 0, on a f(n) = 2n.
Ainsi,

g(f(n)) = g(2n) 2n est pair= 2n

2 = n,

qui est le résultat voulu dans ce cas.
Cas 2 : Si n < 0, on a f(n) = 2(−n) − 1.
Ainsi,

g(f(n)) = g(2(−n) − 1) 2(−n)−1 est impair= −(2(−n) − 1) + 1
2 = n

qui est le résultat voulu dans ce cas.
Les deux cas réunis nous montrent que g ◦ f(n) = n. Vu que n est quelconque, on a bien montré que
∀n ∈ Z, g ◦ f(n) = n.
Finalement la fonction g est bien la fonction réciproque de f , qui est donc une fonction bijective par
le theoreme 0.36 du cours.
Méthode 2 : Utiliser la définition de fonction bijective
Á partir de la définition de fonction bijective, il nous faut montrer que f est injective et surjective.
Commençons par montrer que f est injective. On montre que ∀n, m ∈ Z, f(n) = f(m) ⇒ n = m.
Soient donc n, m ∈ Z quelconques. Supposons que f(n) = f(m). On distingue 4 cas.
Cas 1 : n, m ≥ 0.



On a alors
f(n) = f(m) ⇒ 2n = 2m ⇒ n = m,

qui est le résultat voulu dans ce cas.
Cas 2 : n ≥ 0 > m.
On a que f(n) = 2n est un nombre pair, alors que f(m) = 2(−m) − 1 est un nombre impair. Par
conséquent, f(n) = f(m) n’est pas possible dans ce cas et il n’y a rien à vérifier.
Cas 3 : m ≥ 0 > n.
Par le même argument que dans le cas 2 avec les rôles de n et m inversés, f(n) = f(m) n’est pas
possible dans ce cas et il n’y a rien à vérifier.
Cas 4 : 0 > n, m.
On a alors

f(n) = f(m) ⇒ 2(−n) − 1 = 2(−m) − 1 ⇒ n = m,

qui est le résultat voulu dans ce cas.
La réunion de nos quatre cas montre que f(n) = f(m) ⇒ n = m. Vu que n et m sont quelconques, on
a le résultat.
Passons à la démonstration de la surjectivité de f . On montre que ∀m ∈ N, ∃n ∈ Z tel que f(n) = m.
Soit donc m ∈ N quelconque. On distingue deux cas :
Cas 1 : m est pair.
Soit alors n = m/2 ∈ Z. On a

f(n) = f(m/2) m/2≥0= 2m

2 = m,

qui est le résultat voulu dans ce cas.
Cas 2 : m est impair.
Soit alors n = −(m + 1)/2 ∈ Z. On a

f(n) = f

(
−m + 1

2

)
− m+1

2 <0
= 2

(
−
(

−m + 1
2

))
− 1 = m + 1 − 1 = m,

qui est le résultat voulu dans ce cas.
La réunion de nos deux cas montre bien qu’il existe n ∈ Z tel que f(n) = m. Vu que m est quelconque,
on a bien montré la surjectivité de f .

Exercice 6.
Démontrer par récurrence que pour tout n ∈ N∗

(i)
n∑

k=1
k2 = n(n + 1)(2n + 1)

6 (somme de carrés d’entiers) ;

(ii)
n∑

k=1
(−1)n−kk2 = n(n + 1)

2 (somme alternée de carrés d’entiers) ;

Calculer n =
1000∑
k=0

(k + 1)(3k + 2).

Solution :
(i) Ancrage : Pour n = 1, le membre de gauche est

1∑
k=1

k2 = 12 = 1,

tandis que le membre de droite est

1(1 + 1)(2 · 1 + 1)
6 = 2 · 3

6 = 1.

Vu qu’on obtient la même chose, le résultat est vrai pour n = 1.



Pas d’induction : Supposons que
n∑

k=1
k2 = n(n + 1)(2n + 1)

6 , (H.R.)

et montrons que
n+1∑
k=1

k2 = (n + 1)(n + 1 + 1)(2(n + 1) + 1)
6

On a

n+1∑
k=1

k2 =
n∑

k=1
k2 + (n + 1)2 H.R.= n(n + 1)(2n + 1)

6 + (n + 1)2

=n(n + 1)(2n + 1) + 6(n + 1)2

6 = (n + 1) (n(2n + 1) + 6(n + 1))
6

=(n + 1)(2n2 + 7n + 6)
6 = (n + 1)(n + 2)(2n + 3)

6 ,

qui est le résultat voulu.
(ii) Ancrage : Pour n = 1, le membre de gauche est

1∑
k=1

(−1)1−kk2 = (−1)1−112 = 1,

tandis que le membre de droite est
1(1 + 1)

2 = 1.

Vu qu’on obtient la même chose, le résultat est vrai pour n = 1.
Pas d’induction : Supposons que

n∑
k=1

(−1)n−kk2 = n(n + 1)
2 , (H.R.)

et montrons que
n+1∑
k=1

(−1)n+1−kk2 = (n + 1)(n + 2)
2 .

On a
n+1∑
k=1

(−1)n+1−kk2 =
n∑

k=1
(−1)n+1−kk2 + (n + 1)2 =

n∑
k=1

(−1)(−1)n−kk2 + (n + 1)2

= −
n∑

k=1
(−1)n−kk2 + (n + 1)2 H.R.= −n(n + 1)

2 + (n + 1)2

=(n + 1)
(

n + 1 − n

2

)
= (n + 1)2n + 2 − n

2 = (n + 1)(n + 2)
2 ,

qui est le résultat voulu.



Par l’exercice 1, le point précédent et l’exemple 0.17 (iii) du cours, on peut calculer la dernière somme
comme suit.

S :=
1000∑
k=0

(k + 1)(3k + 2) =
1000∑
k=0

(3k2 + 5k + 2)

=3
1000∑
k=0

k2 + 5
1000∑
k=0

k +
1000∑
k=0

2 |k = 0 ⇒ k2 = k = 0

=3
1000∑
k=1

k2 + 5
1000∑
k=1

k +
1000∑
k=0

2

=31000 · 1001 · 2001
6 + 51000 · 1001

2 + 1001 · 2

(=1004005002)

Exercice 7.
Pour n, k ∈ N des entiers avec 0 ≤ k ≤ n on définit par

(
n
k

)
= n!

k!(n − k)! le coefficient binomial. On

rappelle que par convention 0! = 1.

(i) Montrer l’identité de Pascal, c’est-à-dire, ∀n ∈ N∗ et ∀k tel que 1 ≤ k ≤ n,(
n
k

)
+
(

n
k − 1

)
=
(

n + 1
k

)

par un calcul direct.
(ii) Montrer, par récurrence et en utilisant le point précédent que, que ∀n ∈ N∗ et 0 ≤ k ≤ n,(

n
k

)
est un entier.

Solution :
(i) On a, en utilisant que m! = (m+1)!

m+1 ,(
n

k − 1

)
+
(

n
k

)
= n!

(k − 1)!(n + 1 − k)! + n!
k!(n − k)!

= kn!
k!(n + 1 − k)! + (n + 1 − k)n!

k!(n + 1 − k)!

= (n + 1)!
k!(n + 1 − k)!

=
(

n + 1
k

)

(ii) Définissons la propriété

P (n) : pour tout k ∈ {0, 1, . . . , n} le nombre
(

n
k

)
est entier.

On doit montrer que pour tout n ∈ N, P (n) est vraie.
Ancrage : Pour n = 0, la propriété à montrer est

P (0) : pour tout k ∈ {0} le nombre
(

0
k

)
est entier.



Soit donc k = 0. On a alors, (
0
k

)
=
(

0
0

)
= 0!

0!(0 − 0)! = 1,

qui est bien un nombre entier.
Pas d’induction : Supposons que

P (n) : pour tout k ∈ {0, 1, . . . , n} le nombre
(

n
k

)
est entier.

est vrai et montrons que

P (n + 1) : pour tout k ∈ {0, 1, . . . , n + 1} le nombre
(

n + 1
k

)
est entier.

est vrai.
Soit donc k ∈ {0, 1, . . . , n + 1} quelconque. On distingue 3 cas :
Cas 1 : k = 0.
On a alors, (

n + 1
k

)
= (n + 1)!

0!(n + 1 − 0)! = 1,

qui est un nombre entier.
Cas 2 : k = n + 1.
On a alors, (

n + 1
k

)
= (n + 1)!

(n + 1)!(n + 1 − n − 1)! = 1,

qui est un nombre entier.
Cas 3 : 1 ≤ k ≤ n.
On a alors, par l’identité de Pascal,(

n + 1
k

)
=
(

n
k

)
+
(

n
k − 1

)
.

Or, par hypothèse de récurrence, vu que k, k − 1 ∈ {0, ..., n}, on a(
n
k

)
et
(

n
k − 1

)
sont des nombres entiers.

Vu que la somme de nombres entiers est un nombre entier, on a le résultat.
Vu que dans tous les cas, on arrive à la même conclusion, on a le résultat.

Exercice 8.
Ceci est un exercice sur la formule du binome de Newton.

(i) Montrer, par récurrence, que pour tout n ∈ N et a, b ∈ R,

(a + b)n =
n∑

k=0

(
n
k

)
akbn−k.

(ii) En déduire que, pour tout entier n, on a

2n =
n∑

k=0

(
n
k

)
.



Solution :
(i) Ancrage : Pour n = 0, le membre de gauche est (a + b)0 = 1, tandis que le membre de droite est

0∑
k=0

(
0
k

)
akb0−k =

(
0
0

)
a0b0 = 1.

Vu qu’on obtient la même chose, le résultat est vrai pour n = 0.
Pas d’induction : Supposons que

(a + b)n =
n∑

k=0

(
n
k

)
akbn−k (H.R.)

et montrons que

(a + b)n+1 =
n∑

k=0

(
n + 1

k

)
akbn+1−k.

On a

(a + b)n+1 =(a + b)(a + b)n H.R.= (a + b)
n∑

k=0

(
n
k

)
akbn−k

=
n∑

k=0

(
n
k

)
ak+1bn−k +

n∑
k=0

(
n
k

)
akbn+1−k

En faisant le changement de variables k + 1 = j dans la première somme, on obtient

(a + b)n+1 =
n+1∑
j=1

(
n

j − 1

)
ajbn−j+1 +

n∑
k=0

(
n
k

)
akbn+1−k

=
(

n
n

)
an+1b0 +

n∑
j=1

(
n

j − 1

)
ajbn−j+1 +

n∑
k=1

(
n
k

)
akbn+1−k +

(
n
0

)
a0bn+1

Vu que la variable de sommation (j ou k) est muette (i.e. le nom de la variable ne change pas la
valeur de la somme) on peut remplacer j par k dans la première somme. On obtient

(a + b)n+1 =
(

n
n

)
an+1b0 +

n∑
k=1

(
n

k − 1

)
akbn−k+1 +

n∑
k=1

(
n
k

)
akbn+1−k +

(
n
0

)
a0bn+1

=
(

n
n

)
an+1b0 +

n∑
k=1

((
n

k − 1

)
akbn−k+1 +

(
n
k

)
akbn+1−k

)
+
(

n
0

)
a0bn+1

=
(

n
n

)
an+1b0 +

n∑
k=1

((
n

k − 1

)
+
(

n
k

))
akbn+1−k +

(
n
0

)
a0bn+1.

On utilise l’identité de Pascal et le fait que pour tout m,
(

m
m

)
= 1 et

(
m
0

)
= 1 pour déduire

(a + b)n+1 =an+1b0 +
n∑

k=1

(
n + 1

k

)
akbn+1−k + a0bn+1

=
(

n + 1
n + 1

)
an+1b0 +

n∑
k=1

(
n + 1

k

)
akbn+1−k +

(
n + 1

0

)
a0bn+1

=
n+1∑
k=0

(
n + 1

k

)
akbn+1−k,

qui est le résultat voulu.



(ii) Pour a = b = 1, on a par le binôme de Newton,

2n = (1 + 1)n =
n∑

k=0

(
n
k

)
1k1n−k =

n∑
k=0

(
n
k

)
,

qui est le résultat voulu.

Exercice 9.
Vrai ou faux ?

Q1 : La somme de deux rationnels est rationnelle.
Q2 : La somme de deux irrationnels est irrationnelle.
Q3 : La somme d’un rationnel et d’un irrationnel est rationnelle.
Q4 : Le produit de deux rationnels est rationnel.
Q5 : Le produit de deux irrationnels est irrationnel.
Q6 : Le produit d’un rationnel et d’un irrationnel est rationnel.

Solution :

Q1 : VRAI.
En effet a

b + c
d = ad+bc

bd ∈ Q. Cela est vrai pour la différence aussi.
Q2 : FAUX.

Par exemple a =
√

2 et b = −
√

2 sont irrationnels mais leur somme est rationnelle.
Q3 : FAUX.

En effet si a ∈ Q et b ∈ R \Q alors si a + b ∈ Q on aurait b = (a + b) − a ∈ Q ce qui est absurde.
Q4 : VRAI.

En effet a
b · c

d = ac
bd ∈ Q

Q5 : FAUX.
Prendre par exemple a =

√
2 = b sont irrationnels, mais ab = 2 ne l’est pas.

Q6 : FAUX.
Prendre par exemple a = 1 et b =

√
2.


