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Remarque
Certains exercices consistent en des questions de type Vrai ou Faux (V/F). Pour chaque question,
répondre VRAI si l’affirmation est toujours vraie ou par FAUX si elle n’est pas toujours vraie.

Exercice 1.
Soient les ensembles X = {1, 2}, Y = {3, 4}, Z = {5, 6}.

1. Est-ce que le couple (3, 2) est un élément du produit cartésien X × Y ?
2. Montrer que le produit cartésien n’est pas associatif, c’est-à-dire que (X ×Y )×Z ̸= X ×(Y ×Z).

Solution :
1. On a X × Y = {(1, 3), (1, 4), (2, 3), (2, 4)}. Le couple (3, 2) n’est donc pas un élément du produit

cartésien X × Y .
2. En utilisant la définition du produit cartésien, on trouve que les deux ensembles sont

(X × Y ) × Z = {(1, 3), (1, 4), (2, 3), (2, 4)} × {5, 6}
=

{
((1, 3), 5), ((1, 4), 5), ((2, 3), 5), ((2, 4), 5), ((1, 3), 6),

((1, 4), 6), ((2, 3), 6), ((2, 4), 6)} ,

et
X × (Y × Z) = {1, 2} × {(3, 5), (3, 6), (4, 5), (4, 6)}

=
{
(1, (3, 5)), (1, (3, 6)), (1, (4, 5)), (1, (4, 6)), (2, (3, 5)),

(2, (3, 6)), (2, (4, 5)), (2, (4, 6))
}

.

Ils ne sont donc pas égaux.
Remarque :
Les deux ensembles (X × Y ) × Z et X × (Y × Z) sont équivalents dans le sens que la fonction
qui associe à ((a, b), c) ∈ (X × Y ) × Z l’élément (a, (b, c)) ∈ X × (Y × Z) est bijective.

Exercice 2 (Grammaire mathématique).
Pour les paires d’énoncés ci-dessous, comprendre la différence entre les deux et déterminer si ils sont
vrais ou faux

(i)

énoncé 1 :Pour chaque pomme, il existe un arbre tel que la pomme a poussé sur cet arbre
énoncé 2 :Il existe un arbre tel que pour chaque pomme, la pomme a poussé sur cet arbre

(ii)

énoncé 1 :Pour chaque étudiant·e de l’EPFL, il existe un numéro à 6 chiffres
tel que ce numéro est le numéro SCIPER de l’étudiant·e

énoncé 2 :Il existe un numéro à 6 chiffres tel que pour chaque étudiant·e
de l’EPFL, ce numéro est le numéro SCIPER de l’étudiant·e

(iii)

énoncé 1 :Pour chaque sommet des Alpes, il existe un sommet dans l’Himalya
qui est plus haut

énoncé 2 :Il existe un sommet dans l’Himalaya qui est plus haut que chaque
sommet des Alpes



(iv)

énoncé 1 :Pour chaque point à la surface de la planète A, il existe un point B
qui est pile à l’antipode.

énoncé 2 :Il existe un point B à la surface de la planette tel que chaque point
à la surface de la planète A à pile à l’antipode de B.

(v)

énoncé 1 :Pour chaque anneau de puissance que Sauron a donné aux humains,
il existe un anneau pour les gouverner tous.

énoncé 2 :Il existe un anneau tel que chaque anneau de puissance que Sauron
a donné aux humains est gouverné par cet anneau.

Solution :
On rappelle que la règle de grammaire mathématique permet à un concept de dépendre de ceux
mentionnés avant mais pas ceux mentionnés après.

(i) Au vu de la règle de grammaire, l’énoncé 1 permet à l’arbre de dépendre de la pomme, tandis
que l’énoncé 2 ne permet pas à l’arbre de dépendre de la pomme. C’est-à-dire, dans l’énoncé 1,
a priori, l’arbre peut changer si on considère des pommes différentes tandis que dans l’énoncé 2,
ça doit être le même arbre pour toutes les pommes. Vu que pas toutes les pommes poussent sur
le même arbre, l’énoncé 2 est faux, tandis que le 1 est vrai.

(ii) Au vu de la règle de grammaire, l’énoncé 1 permet au numéro SCIPER de dépendre de l’étu-
diant·e, tandis que l’énoncé 2 ne permet pas au numéro SCIPER de dépendre de l’étudiant·e.
C’est-à-dire, dans l’énoncé 1, a priori, le numéro SCIPER peut changer lorsqu’on considère deux
étudiant·es différent·es, tandis que dans l’énoncé 2, ça doit être le même numéro SCIPER
pour tout·es les étudiant·es. Vu que le numéro SCIPER est unique pour chaque étudiant·e,
l’énoncé 2 est vrai, tandis que le 1 est faux.

(iii) Au vu de la règle de grammaire, l’énoncé 1 permet au sommet de l’Himalaya de dépendre du
sommet des Alpes, tandis que l’énoncé 2 ne permet pas au sommet de l’Himalaya de dépendre
du sommet des Alpes. C’est-à-dire, dans l’énoncé 1, a priori, le sommet de L’Himalaya peut
changer si on considère des sommets des Alpes différents, tandis que dans l’énoncé 2, ça doit
être le même sommet de l’Himalaya pour tous les sommets des Alpes. Or, l’Everest est le sommet
le plus haut de la planète et est donc plus haut que n’importe quel sommet des Alpes. Ainsi,
les deux énoncés sont vrais : Pour l’énoncé 1, on peut choisir l’Everest pour chaque sommet des
Alpes (même si on a beaucoup de choix à priori, on pourrait choisir K2 ou Kanchenjunga pour
certains sommets des Alpes). Pour l’énoncé 2 on choisit d’abord l’Everest et ensuite quelque soit
le sommet des Alpes, l’Everest sera plus haut.

(iv) Au vu de la règle de grammaire, l’énoncé 1 permet au point B de dépendre du point A tandis
que l’énoncé 2 ne permet pas au point B de dépendre du point A. C’est-à-dire, dans l’énoncé 1,
a priori, le point B peut changer si on considère des points A différents, tandis que dans l’énoncé
2 ne permet par au point B de dépendre du point A. L’énoncé 1 est vrai et le 2 est faux : Pour
le 1, si on considère un point à la surface de la planète A, en tirant une droite qui passe par A
et le centre de la planète, on trouve un point B qui est à l’antipode. Pour le 2, quel que soit
le point B qu’on considère, si on choisit A = B, alors A et B ne sont pas à l’antipode l’un de
l’autre.

(v) Au vu de la règle de Grammaire, l’énoncé 1 permet à l’anneau qui gouverne les autres de dépendre
de l’anneau de puissance donné aux humains qu’on considère, tandis que l’énoncé 2 ne permet
pas à l’anneau qui gouverne les autres de dépendre de l’anneau de puissance donné aux humains
qu’on considère. C’est-à-dire, dans l’énoncé 1, a priori, l’anneau qui gouverne peut changer en



fonction de l’anneau de puissance donné aux humains qu’on considère, tandis que dans l’énoncé
2, l’anneau qui gouverne les autres n’a pas le droit de changer lorsqu’on considère des anneaux
de puissance donné aux humains. Les deux énoncés sont vrais : Dans la mythologie de Tolkien,
Sauron a forgé un anneau unique qui gouverne tous les anneaux de puissance donnés aux humains
qui dans les ténèbres les lient. Ainsi, pour l’énoncé 1, pour chaque anneau de puissance donné
aux humains, on peut choisir l’anneau unique de Sauron et dans l’énoncé 2, on peut commencer
par choisir l’anneau unique de Sauron qui gouverne tous les anneaux de puissance donné aux
humains.

Exercice 3.
Soient A, B, C ⊂ R des ensembles non vides.
On note A \ B pour la différence des ensembles A et B, et A ∩ B pour leur intersetion, c.-à-d.

A \ B = {x ∈ A : x /∈ B} et A ∩ B = {x : x ∈ A et x ∈ B}.

Vrai ou faux ?
Q1 : R \ (A ∩ B) = (R \ A) ∩ (R \ B)
Q2 : Soient A, B ̸= ∅. A × B = B × A ⇔ A = B

Q3 : A × (B ∩ C) = (A × B) ∩ (A × C)

Solution :
Q1 : FAUX.

Prendre par exemple A = [0, 2] et B = [1, 3]. Dans ce cas on a

R \ (A ∩ B) = R \ [1, 2]

et
(R \ A) ∩ (R \ B) = (R \ [0, 2]) ∩ (R \ [1, 3]) = R \ [0, 3].

Q2 : VRAI.
La réciproque (⇐) est triviale.
Pour démontrer l’implication directe (⇒), on procède par l’absurde. Supposons que A × B =
B × A et que A ̸= B. Sans perte de généralité, on peut supposer que A ̸⊂ B et donc il existe
a ∈ A tel que a /∈ B. Soit encore b ∈ B. Ainsi (a, b) ∈ A × B = B × A, ce qui veut dire que
a ∈ B. Contradiction.

Q3 : VRAI.
La preuve se fait par double-inclusion.
⊂ : Soit (x, y) ∈ A×(B∩C). Alors x ∈ A, y ∈ B et y ∈ C et donc (x, y) ∈ A×B et (x, y) ∈ A×C.
Cela montre que A × (B ∩ C) ⊂ (A × B) ∩ (A × C).
⊃ : Soit maintenant (x, y) ∈ (A×B)∩(A×C). Alors (x, y) ∈ A×B et (x, y) ∈ A×C et donc x ∈ A,
y ∈ B et y ∈ C. Cela prouve que (x, y) ∈ A × (B ∩ C) et donc (A × B) ∩ (A × C) ⊂ A × (B ∩ C).

Exercice 4.
Soit X un ensemble et A ⊆ X. Notons Ac = {x ∈ X : x /∈ A} le complémentaire de A dans X.

a) Donner ∅c et Xc.
b) Montrer que (Ac)c = A pour toute partie A ⊆ X.
c) Montrer que X = A ∪ Ac et que A ∩ Ac = ∅ pour tout A ⊆ X.
d) Montrer que si A ⊆ B ⊆ X alors Bc ⊆ Ac.
e) Montrer que (A ∩ B)c = Ac ∪ Bc et que (A ∪ B)c = Ac ∩ Bc pour toutes parties A, B ⊆ X.

Indication : Pour montrer une égalité entre deux ensembles non-vides, procéder par double inclusion.
Pour montrer qu’un ensemble est vide procéder par l’absurde : supposer que l’ensemble est non vide,
considérer un élément de cet ensemble et arriver à une contradiction.
Solution :



a) On a ∅c = {x ∈ X : x /∈ ∅}. Or vu que l’ensemble vide est vide, tous les éléments x de X
vérifient x /∈ ∅. Donc, ∅c = X. D’un autre côté, on a Xc = {x ∈ X : x /∈ X}. On voit à la
définition qu’un élément de cet ensemble doit vérifier à la fois x ∈ X et sa négation : x /∈ X, ce
qui est impossible. Il n’y a donc aucun élément dans cet ensemble et Xc = ∅.

b) On procède par double inclusion : On commence par montrer que (Ac)c ⊂ A. Soit donc x ∈ (Ac)c

quelconque. Vu que par définition, (Ac)c = {x ∈ X : x /∈ Ac}, on a x /∈ Ac. à nouveau, vu que
Ac = {x ∈ X : x /∈ A} et x /∈ Ac, on n’a pas que x /∈ A. Donc, on a x ∈ A. Vu que x ∈ (Ac)c

est quelconque, tous les éléments de (Ac)c sont dans A et donc (Ac)c ⊂ A.
Passons à l’autre inclusion : montrons que A ⊂ (Ac)c. Soit donc x ∈ A quelconque. Vu que
(Ac)c = {x ∈ X : x /∈ Ac}, il faut montrer que x /∈ Ac. Or, Ac = {x ∈ X : x /∈ A}. Par
hypothèse, x ∈ A implique que "x /∈ A" est faux et donc x /∈ Ac, c’est-à-dire, x ∈ (Ac)c. Vu que
x ∈ A est quelconque, tous les éléments de A sont dans (Ac)c et donc A ⊂ (Ac)c.
Le fait qu’on a les deux inclusions implique (Ac)c = A.

c) On montre que X = A ∪ Ac par double inclusion. Commençons par montrer que X ⊂ A ∪ Ac.
Soit donc x ∈ X quelconque. Rappelons que A ∪ Ac = {x : x ∈ A ou x /∈ A}. Si x ∈ A,
x ∈ A ∪ Ac. Sinon, on a x /∈ A et par définition de Ac = {x ∈ X : x /∈ A}, on a x ∈ Ac et donc
x ∈ A ∪ Ac. Dans tous les cas, on déduit x ∈ A ∪ Ac. Vu que x est quelconque, on a que tous les
éléments de X sont dans A ∪ Ac et donc X ⊂ A ∪ Ac.
Passons à l’autre inclusion : A ∪ Ac ⊂ X. Soit donc x ∈ A ∪ Ac quelconque. Si x ∈ A, vu que
A ⊂ X, on a x ∈ X. Sinon, on a x ∈ Ac = {x ∈ X : x /∈ A} et donc x ∈ X par définition. Dans
tous les cas, on a x ∈ X. Vu que x est quelconque, tous les éléments de A ∪ Ac sont dans X et
donc A ∪ Ac ⊂ X.
Pour finir, montrons que A ∩ Ac = ∅. Par l’absurde, supposons que A ∩ Ac ̸= ∅ et soit x ∈
A ∩ Ac = {x ∈ X : x ∈ A et x /∈ A}. Par définition, on doit alors avoir x ∈ A et x /∈ A ce qui
est absurde. Ainsi, A ∩ Ac ne contient aucun élément et est donc l’ensemble vide.

d) Soit x ∈ Bc quelconque. Par définition x /∈ B. Si x ∈ A, alors, l’hypothèse A ⊂ B implique
x ∈ B ce qui est impossible. On a donc x /∈ A et donc x ∈ Ac.

e) Commençons par montrer que (A ∩ B)c ⊂ Ac ∪ Bc. Soit donc x ∈ (A ∩ B)c quelconque. Vu que
(A ∩ B)c = {x ∈ X : x /∈ A ∩ B}, on doit avoir x /∈ A ∩ B. Vu que A ∩ B = {x ∈ X : x ∈
A et x ∈ B}, la propriété "x ∈ A et x ∈ B" est fausse. Ceci veut dire soit que x /∈ A soit x /∈ B.
Si x /∈ A, x ∈ Ac et donc x ∈ Ac ∪ Bc. Si par contre, x /∈ B, alors x ∈ Bc et donc x ∈ Ac ∪ Bc.
Dans tous les cas, on a x ∈ Ac ∪ Bc. Vu que x est quelconque, on a que n’importe quel élément
de (A ∩ B)c est dans Ac ∪ Bc et donc (A ∩ B)c ⊂ Ax ∪ Bc.
Passons à la démonstration de Ac ∪ Bc ⊂ (A ∩ B)c. Soit donc x ∈ Ac ∪ Bc quelconque. Vu que
Ac ∪ Bc = {x ∈ X : x ∈ Ac ou x ∈ Bc}, on a x ∈ Ac ou x ∈ Bc. Si x ∈ Ac, alors x /∈ A et donc
x /∈ A ∩ B = {x ∈ X : x ∈ A et x ∈ B}, ce qui implique x ∈ (A ∩ B)c = {x ∈ X : x /∈ A ∩ B}.
Si x ∈ Bc, alors x /∈ B et donc x /∈ A ∩ B = {x ∈ X : x ∈ A et x ∈ B}, ce qui implique
x ∈ (A ∩ B)c = {x ∈ X : x /∈ A ∩ B}. Dans les deux cas, on a x ∈ (A ∩ B)c. Vu que x est
quelconque, n’importe quel élément de Ac ∪ Bc est un élément de (A ∩ B)c et donc Ac ∪ Bc ⊂
(A ∩ B)c.
Montrons que (A ∪ B)c ⊂ Ac ∩ Bc. Soit donc x ∈ (A ∪ B)c quelconque. Vu que (A ∪ B)c = {x ∈
X : x /∈ A ∪ B}, on doit avoir x /∈ A ∪ B. Vu que A ∪ B = {x ∈ X : x ∈ A et x ∈ B}, la
propriété "x ∈ A ou x ∈ B" est fausse. Ceci veut dire que x /∈ A et x /∈ B et donc x ∈ Ac et
x ∈ Bc. Finalement, on déduit de ceci que x ∈ Ac ∩ Bc = {x ∈ X : x ∈ Ac et x ∈ Bc}. Vu
que x est quelconque, on a que n’importe quel élément de (A ∪ B)c est un élément de Ac ∩ Bc

et donc Ac ∪ Bc ⊂ (A ∪ B)c ⊂ Ac ∩ Bc.
Finalement, montrons que Ac ∩ Bc ⊂ (A ∪ B)c. Soit donc x ∈ Ac ∩ Bc quelconque. Vu que
Ac ∩ Bc = {x ∈ X : x ∈ Ac et x ∈ Bc}, on a x ∈ Ac et x ∈ Bc, c’est-à-dire, x /∈ A et x /∈ B. Vu
que x n’est ni dans A, ni dans B, il ne peut pas être dans leur union, donc x /∈ A ∪ B. Vu que
(A ∪ B)c = {x ∈ X : x /∈ A ∪ B}, on a x ∈ (A ∪ B)c. Vu que x est quelconque, n’importe quel
élément de Ac ∩ Bc est un élément de (A ∪ B)c et donc Ac ∩ Bc ⊂ (A ∪ B)c.



Toutes ces inclusions montrent bien le résultat.
Remarque :
On aurait pu se contenter de montrer une égualité et utiliser le point b). Si (A ∩ B)c = Ac ∪ Bc,
alors,

Ac ∩ Bc b)= ((Ac ∩ Bc)c)c = ((Ac)c ∪ (Bc)c)c b)= (A ∪ B)c.

Ou à l’inverse, si on a (A ∪ B)c = Ac ∩ Bc, alors,

Ac ∪ Bc b)= ((Ac ∪ Bc)c)c = ((Ac)c ∩ (Bc)c)c b)= (A ∩ B)c.

Exercice 5.
Soit f : X → Y une fonction et soient A, B ⊆ X. Montrer que

1. f(A ∩ B) ⊆ f(A) ∩ f(B),
2. f(A ∪ B) = f(A) ∪ f(B).

Donner un exemple où f(A ∩ B) ̸= f(A) ∩ f(B).
Solution :
1. Soit y ∈ f(A ∩ B) quelconque. Vu que par définition de l’ensemble image f(A ∩ B) = {y ∈ Y :

∃x ∈ A ∩ B tel que f(x) = y}, on sait qu’il existe x ∈ A ∩ B tel que f(x) = y. En particulier,
x ∈ A et donc, y = f(x) avec x ∈ A, d’où y ∈ f(A). On a également x ∈ B et donc y = f(x)
avec x ∈ B, d’où y ∈ f(B). Ainsi, y ∈ f(A) ∩ f(B) = {y : y ∈ f(A) et y ∈ f(B)}. L’élément y
étant quelconque, on a bien montré que n’importe quel élément de f(A ∩ B) est un élément de
f(A) ∩ f(B), c’est-à-dire f(A ∩ B) ⊆ f(A) ∩ f(B).

2. On procède par double inclusion. Commençons par montrer que f(A ∪ B) ⊂ f(A) ∪ f(B). Soit
donc y ∈ f(A ∪ B) quelconque. Par définition de l’ensemble image, il existe x ∈ A ∪ B tel que
y = f(x). Si x ∈ A, alors, y = f(x) avec x ∈ A et donc y ∈ f(A) ce qui implique y ∈ f(A) ∪ f(B).
Si x ∈ B, alors, y = f(x) avec x ∈ B et donc y ∈ f(B) ce qui implique y ∈ f(A) ∪ f(B). Dans les
deux cas, on a y ∈ f(A) ∪ f(B). L’élément y étant quelconque, on a bien montré que n’importe
quel élément de f(A ∪ B) est un élément de f(A) ∪ f(B), c’est-à-dire f(A ∪ B) ⊆ f(A) ∪ f(B).

Montrons maintenant que f(A) ∪ f(B) ⊂ f(A ∪ B). Soit donc y ∈ f(A) ∪ f(B) quelconque. Par
définition de l’union, on a y ∈ f(A) ou y ∈ f(B). Si y ∈ f(A), on a par définition de l’ensemble
image qu’il existe x ∈ A tel que f(x) = y. En particulier, on a alors x ∈ A ∪ B, et on a donc
y ∈ f(A ∪ B). Si y ∈ f(B), on a par définition de l’ensemble image qu’il existe x ∈ B tel que
f(x) = y. En particulier, on a alors x ∈ A ∪ B, et on a donc y ∈ f(A ∪ B). Dans les deux cas, on
a y ∈ f(A) ∪ f(B). L’élément y étant quelconque, on a bien montré que n’importe quel élément
de f(A) ∪ f(B) est un élément de f(A ∪ B), c’est-à-dire f(A ∪ B) ⊆ f(A) ∪ f(B).

Prenons X = {1, 2, 3} et Y = {0, 1}. Soit A = {1, 2}, B = {2, 3} et f définie par f(1) = 0, f(2) = 1,
f(3) = 0. Alors f(A) = f(B) = {0, 1} tandis que et f(A ∩ B) = f(2) = {1}.

Exercice 6.
Une “proposition (logique)” est un énoncé qui peut être vrai ou faux (mais pas les deux à la fois). Soit
p et q des propositions. Par les tableaux de vérité suivants, on introduit les opérations non (“non”
logique), et (“et” logique), ou (“ou” logique), ⇔ (l’équivalence logique) et ⇒ (l’implication logique),
où V := vrai, et F := faux.

p non p

V F
F V

p q p et q

V V V
V F F
F V F
F F F

p q p ou q

V V V
V F V
F V V
F F F

p q p ⇔ q

V V V
V F F
F V F
F F V

p q p ⇒ q

V V V
V F F
F V V
F F V



(i) (Équivalences logiques)
Soient p, q et r des propositions. Montrer que :
(a) (non (non p)) ⇔ p (loi de la double négation).
(b) (p et p) ⇔ p,

(p ou p) ⇔ p (idempotence).
(c) (p et q) ⇔ (q et p),

(p ou q) ⇔ (q ou p) (commutativité).
(d) (non (p et q)) ⇔ ((non p) ou (non q)),

(non (p ou q)) ⇔ ((non p) et (non q)) (lois de de Morgan).
(e) ((p et q) et r) ⇔ (p et (q et r)),

((p ou q) ou r) ⇔ (p ou (q ou r)) (associativité).
(f) ((p et q) ou r) ⇔ ((p ou r) et (q ou r)),

((p ou q) et r) ⇔ ((p et r) ou (q et r)) (distributivité).
(g) (p ⇒ q) ⇔ ((non p) ou q) (définition de l’implication).
(h) (non (p ⇒ q)) ⇔ (p et (non q)) (négation de l’implication).
(i) ((p ⇒ q) et (q ⇒ r)) ⇒ (p ⇒ r) (transitivité de l’implication).
(j) (p ⇔ q) ⇔ ((p ⇒ q) et (q ⇒ p)) (propositions équivalentes).
(k) ((non q) ⇒ (non p)) ⇔ (p ⇒ q) (contraposé de l’implication).

A noter que la véracité de la réciproque de la proposition p ⇒ q c’est-à-dire la proposition q ⇒ p
n’a aucun rapport avec la véracité de la proposition p ⇒ q.

Dans la suite, pour économiser des parenthèses, nous utiliserons les priorités habituelles sur les
opérations et, si convenable, nous écrirons que p ⇐ q au lieu de q ⇒ p.

(ii) (Les quantificateurs ∀ et ∃, une variable)
Soit E un ensemble et pour x ∈ E soit p(x) et q(x) des propositions (dont les valeurs de vérité
peuvent dépendre de x). On écrira ∀x ∈ E, p(x) pour dire que “pour tous les éléments x ∈ E, la
proposition p(x) est vraie”, et ∃x ∈ E : p(x) pour dire que “il existe x ∈ E tel que la proposition
p(x) est vraie”. Se convaincre que (il ne s’agit pas de le montrer) :

(a) (non (∀x ∈ E, p(x))) ⇔ (∃x ∈ E : non (p(x))).
(b) (non (∃x ∈ E : p(x))) ⇔ (∀x ∈ E, non (p(x))).
(c) (∀x ∈ E, p(x) et q(x)) ⇔ ((∀x ∈ E, p(x)) et (∀x ∈ E, q(x))).
(d) (∃x ∈ E : p(x) ou q(x)) ⇔ ((∃x ∈ E : p(x)) ou (∃x ∈ E : q(x))).
(e) (∀x ∈ E, p(x) ou q(x)) ⇐ ((∀x ∈ E, p(x)) ou (∀x ∈ E, q(x))).
(f) (∃x ∈ E : p(x) et q(x)) ⇒ ((∃x ∈ E : p(x)) et (∃x ∈ E : q(x))).

Pour les deux cas où il n’y a pas équivalence, trouver un contre-exemple à la proposition réci-
proque.

(iii) (Les quantificateurs ∀ et ∃, deux variables)
Soit E et F des ensembles et pour x ∈ E et y ∈ F soit p(x, y) des propositions (dont les valeurs
de vérité peuvent dépendre de x et de y). Se convaincre que (il ne s’agit pas de le montrer) :

(a) ((∀x ∈ E) , (∀y ∈ F ) , p(x, y)) ⇔ ((∀y ∈ F ) , (∀x ∈ E) , p(x, y)).
(b) ((∃x ∈ E) : (∃y ∈ F ) : p(x, y)) ⇔ ((∃y ∈ F ) : (∃x ∈ E) : p(x, y)).
(c) ((∃x ∈ E) : (∀y ∈ F ) , p(x, y)) ⇒ ((∀y ∈ F ) , (∃x ∈ E) : p(x, y)).



Pour le cas où il n’y a pas équivalence, trouver un contre-exemple à la proposition réciproque.
Solution :

(i) (Équivalences logiques)
Tous les propositions de cet exercice se montrent par la construction des tableaux de vérité à
partir des tableaux de vérité des définitions :

(a)
p non p non (non p)
V F V
F V F

(b)
p p p et p

V V V
F F F

et
p p p ou p

V V V
F F F

(c)

p q p et q q et p

V V V V
V F F F
F V F F
F F F F

et

p q p ou q q ou p

V V V V
V F V V
F V V V
F F F F

(d)

p q p et q non (p et q) non p non q (non p) ou (non q)
V V V F F F F
V F F V F V V
F V F V V F V
F F F V V V V
p q p ou q non (p ou q) non p non q (non p) et (non q)
V V V F F F F
V F V F F V F
F V V F V F F
F F F V V V V

(e)

p q r p et q (p et q) et r q et r p et (q et r)
V V V V V V V
V V F V F F F
V F V F F F F
V F F F F F F
F V V F F V F
F V F F F F F
F F V F F F F
F F F F F F F
p q r p ou q (p ou q) ou r q ou r p ou (q ou r)
V V V V V V V
V V F V V V V
V F V V V V V
V F F V V F V
F V V V V V V
F V F V V V V
F F V F V V V
F F F F F F F



(f)

p q p et q r (p et q) ou r p ou r q ou r (p ou r) et (q ou r)
V V V V V V V V
V V V F V V V V
V F F V V V V V
V F F F F V F F
F V F V V V V V
F V F F F F V F
F F F V V V V V
F F F F F F F F
p q p ou q r (p ou q) et r p et r q et r (p et r) ou (q et r)
V V V V V V V V
V V V F F F F F
V F V V V V F V
V F V F F F F F
F V V V V F V V
F V V F F F F F
F F F V F F F F
F F F F F F F F

(g)

p q p ⇒ q non p (non p) ou q

V V V F V
V F F F F
F V V V V
F F V V V

(h)

p q p ⇒ q non (p ⇒ q) non q p et (non q)
V V V F F F
V F F V V V
F V V F F F
F F V F V F

(i)

p q r p ⇒ q q ⇒ r (p ⇒ q) et (q ⇒ r) p ⇒ r ((p ⇒ q) et (q ⇒ r)) ⇒ (p ⇒ r)
V V V V V V V V
V V F V F F F V
V F V F V F V V
V F F F V F F V
F V V V V V V V
F V F V F F V V
F F V V V V V V
F F F V V V V V

(j)

p q p ⇔ q p ⇒ q q ⇒ p (p ⇒ q) et (q ⇒ p)
V V V V V V
V V V V V V
V F F F V F
V F F F V F
F V F V F F
F V F V F F
F F V V V V
F F V V V V



(k)

p q non q non p p ⇒ q (non q) ⇒ (non p)
V V F F V V
V V F F V V
V F V F F F
V F V F F F
F V F V V V
F V F V V V
F F V V V V
F F V V V V



(ii) (Les quantificateurs ∀ et ∃, une variable)
On propose ici quelques arguments qui peuvent aider à se convaincre que les équivalences sont
justes :
(a) Voir exemple A.5 (i) du polycopié.
(b) Voir exemple A.5 (i) du polycopié.
(c) Dans ce point, les énoncés logiques sont deux façons de dire que p et q sont tout le temps

vrai dans E.
(d) Dans ce point, les deux énoncés logiques sont deux façons de dire qu’il y a un élément de

E pour lequel p est vrai ou q est vrai.
(e) Dans ce point, le membre de droite prétend que soit p est tout le temps vrai, soit q est tout

le temps vrai. Le membre de gauche prétend que p ou q est tout le temps vrai, mais qui de
p ou q est vrai peut changer en fonction de x.
Contre-example
Soit E = {1, 2} et p(x) et q(x) telles que p(1) et q(2) sont vraies et p(2) et q(1) sont fausses.
Alors, on a

p(1) p(2) q(1) q(2) p(1) ou q(1) p(2) ou q(2)
V F F V V V

et par conséquence

∀x ∈ E, p(x) ∀x ∈ E, q(x) ∀x ∈ E
p(x) ou q(x)

∀x ∈ E, p(x)
ou

∀x ∈ E, q(x)
F F V F

et donc en effet

∀x ∈ E
p(x) ou q(x) ⇐=

∀x ∈ E, p(x)
ou

∀x ∈ E, q(x)

∀x ∈ E
p(x) ou q(x) =⇒

∀x ∈ E, p(x)
ou

∀x ∈ E, q(x)
V F

(f) Dans ce point, le membre de droite prétend que p et q sont vraies au moins une fois, tandis
que le membre de gauche prétend en plus que le x pour lequel p et q sont vraies est le
même.
Contre-example
Similairement on a

p(1) p(2) q(1) q(2) p(1) et q(1) p(2) et q(2)
V F F V F F

et par conséquence

∃x ∈ E, p(x) ∃x ∈ E, q(x) ∃x ∈ E
p(x) et q(x)

∃x ∈ E, p(x)
et

∃x ∈ E, q(x)
V V F V

et donc en effet

∃x ∈ E
p(x) et q(x) =⇒

∃x ∈ E, p(x)
et

∃x ∈ E, q(x)

∃x ∈ E
p(x) et q(x) ⇐=

∃x ∈ E, p(x)
et

∃x ∈ E, q(x)
V F



(iii) (Les quantificateurs ∀ et ∃, deux variables)
(a) Il s’agit ici de deux façons d’écrire que p est tout le temps vrai.
(b) Il s’agit ici de deux façons d’écrire que p est vrai au moins une fois.
(c) Comme vu dans l’introduction du cours, la différence entre ces deux énoncés est la question

de si x a le droit de dépendre de y. Dans le membre de droite, x peut changer lorsque y
change tandis que dans le membre de gauche , il y a un x universel qui fonctionne pour
tout y.
Contre-example
Soit E = {1, 2} et F = {1, 2} et p(x, y) telle que p(1, 1) et p(2, 2) sont vraies et p(1, 2) et
p(2, 1) sont fausses. Alors

p(1, 1) p(1, 2) p(2, 1) p(2, 2) ∃x ∈ E, ∀y ∈ F
p(x, y)

∀y ∈ F, ∃x ∈ E
p(x, y)

V F F V F V

et donc en effet
∃x ∈ E, ∀y ∈ F

p(x, y) =⇒ ∀y ∈ F, ∃x ∈ E
p(x, y)

∃x ∈ E, ∀y ∈ F
p(x, y) ⇐= ∀y ∈ F, ∃x ∈ E

p(x, y)
V F

Exercice 7.
On rappelle que la négation logique d’un énoncé P est l’unique autre énoncé noté ¬P tel que soit P
soit ¬P est vrai, mais jamais les deux.
Pour les énoncés suivants, les réécrire en utilisant les quantificateurs ∀ et ∃, puis donner la négation
de ces énoncés.
Remarques :

◦ Nous ne prétendons pas que ces énoncés sont vrais ou faux.
◦ Il existe généralement plusieurs façons de réécrire ces phrases ; le but est plus de vous faire

réfléchir sur la négation que de trouver la bonne réponse.

Les énoncés :
— Les ours polaires sont tous gauchers.
— Les films hollywoodiens sont tous de bonne qualité.
— Tous les chats sont mignons et gentils.
— Il y a un pays où on ne parle pas le français.
— Il y a une ville où toutes les lignes de transports publiques sont gratuites.
— Il existe une personne qui est célèbre et heureuse.
— Il existe un nombre réel r tel que quel que soit la fonction réelle f : R → R, on a f(r) ̸= 0

Solution :
Les ours polaires sont tous gauchers :
∀ ours polaire, cet ours polaire est gaucher.
Ou encore
∀ ours polaire O, O est gaucher.
La négation :

¬ (∀ ours polaire O, O est gaucher) .

∃ un ours polaire O, tel que ¬ ( O est gaucher) .

∃ un ours polaire O, tel que O est droitier ou ambidextre.



On pourrait aussi lire la phrase comme :
∀ animal A, A est un ours polaire ⇒ A est gaucher. i.e.
∀ animal A, A n’est pas un ours polaire ou A est gaucher.
Dans ce cas, la négation :

¬ (∀ animal A, A n’est pas un ours polaire ou A est gaucher) .

∃ un animal A tel que ¬ (A n’est pas un ours polaire ou A est gaucher) .

∃ un animal A tel que ¬ (A n’est pas un ours polaire) et ¬ ( A est gaucher) .

∃ un animal A tel que A est un ours polaire et A est droitier ou ambidextre

Les films holywoodiens sont tous de bonne qualité :
∀ film holywoodien f , f est de bonne qualité.
La négation :

¬ (∀ film holywoodien f , f est de bonne qualité) .

∃ un film holywoodien f tel que ¬ ( f est de bonne qualité) .

∃ un film holywoodien f tel que f n’est pas de bonne qualité.

Comme dans beaucoup de cas on aurait aussi pu écrire
∀ film f , f est holywoodien ⇒ f est de bonne qualité.
Auquel cas la négation est :

¬ (∀ film f , f est holywoodien ⇒ f est de bonne qualité) .

∃ un film f tel que ¬ ( f est holywoodien ⇒ f est de bonne qualité) .

∃ un film f tel que ¬ (¬ (f est holywoodien) ou f est de bonne qualité) .

∃ un film f tel que ( f est holywoodien et ¬ ( f est de bonne qualité)) .

∃ un film f tel que ( f est holywoodien et f n’est pas de bonne qualité) .

Tous les chats sont mignons et gentils :
∀ chat c, c est mignon et c est gentil.
La négation :

¬ (∀ chat c, c est mignon et c est gentil) .

∃ un chat c tel que ¬ ( c est mignon et c est gentil) .

∃ un chat c tel que (¬ ( c est mignon) ou ¬ ( c est gentil)) .

∃ un chat c tel que c n’est pas mignon ou c n’est pas gentil.

Il y a un pays où on ne parle pas le français :
∃ un pays P tel qu’on ne parle pas le français dans P .
La négation :

¬ (∃ un pays P tel qu’on ne parle pas le français dans P ) .

∀ pays P ¬ ( on ne parle pas le français dans P ) .

∀ pays P on parle le français dans P .



Il y a une ville où toutes les lignes de transports publiques sont gratuites :
∃ un ville V telle que ∀ L, ligne de transport publique de V , L est gratuite.
La négation :

¬ (∃ un ville V telle que ∀ L, ligne de transport publique de V , L est gratuite) .

∀ ville V ¬ ( ∀ L, ligne de transport publique de V , L est gratuite) .

∀ ville V , ∃ L, une ligne de transport publique de V telle que ¬ ( L est gratuite) .

∀ ville V , ∃ L, une ligne de transport publique de V telle que L est payante.

Il existe une personne qui est célèbre et heureuse :
∃ une personne P telle que P est célèbre et P est heureuse.
La négation :

¬ (∃ une personne P telle que P est célèbre et P est heureuse) .

∀ personne P , ¬ ( P est célèbre et P est heureuse) .

∀ personne P , (¬ ( P est célèbre) ou ¬ ( P est heureuse)) .

∀ personne P , P n’est pas célèbre ou P est malheureuse.

Il existe un nombre réel r tel que quel que soit la fonction réelle f : R → R, on a f(r) ̸= 0 :
∃ un nombre réel r tel que ∀f : R → R, on a f(r) ̸= 0.
La négation :

¬ ( ∃ un nombre réel r tel que ∀f : R → R, on a f(r) ̸= 0) .

∀ nombre réel r, ¬ (∀f : R → R, on a f(r) ̸= 0) .

∀ nombre réel r, ∃f : R → R telle que ¬ (f(r) ̸= 0) .

∀ nombre réel r, ∃f : R → R telle que f(r) = 0.



Appendix
Exercise 5 (ii).
On donne ici les démonstrations des équivalences (c)-(f) de l’exercice 5 (ii). Au vu du niveau d’abs-
traction qu’elles demandent, il n’est pas recommandé de les lire, mais elles sont quand même données
dans une volonté de complétude.

(c) Notons A = (∀x ∈ E, p(x) et q(x)), B = (∀x ∈ E, p(x)), C = (∀x ∈ E, q(x)). Le but est de
montrer que A est vrai si et seulement si B et C sont tous deux vrais.
Commençons par supposer que A est vrai et montrons qu’alors B et C sont tous deux vrais.
Commençons par B :
Il s’agit de montrer que ∀x ∈ E, p(x) est vrai. Soit donc x ∈ E quelconque. Par hypothèse, vu
que A et vrai et x ∈ E, on sait que p(x) et q(x) sont vrais. En particulier, p(x) est vrai. Vu que
x est quelconque, ceci montre que ∀x ∈ E, p(x) est vrai, et donc B est vrai.
En faisant le même raisonnement, on arrive à montrer que C est également vrai et donc on a
montré que A ⇒ (B et C).
Passons à la réciproque : supposons que B et C sont vrais et montrons qu’alors A est aussi vrai.
Il s’agit de montrer que ∀x ∈ E, p(x) et q(x) est vrai. Soit donc x ∈ E quelconque. Par hypo-
thèse, vu que B est vrai et x ∈ E, on a que p(x) est vrai. De plus, vu que par hypothèse, C
est vrai et x ∈ E, on a que q(x) est vrai. On a donc que p(x) et q(x) sont tous deux vrais, i.e.
p(x) et q(x) est vrai. Vu que x est quelconque, ceci montre que ∀x ∈ E, p(x) et q(x) est vrai, et
donc A est vrai. On a montré que (B et C) ⇒ A et donc, on a l’équivalence entre les deux.

(d) Soit A = (∃x ∈ E, tel que p(x) ou q(x)), B = (∃x ∈ E, tel que p(x)) et C = (∃x ∈ E,
tel que q(x)). Il s’agit de montrer que A est vrai si et seulement si B ou C est vrai.
Commençons par supposer que A est vrai, c’est-à-dire qu’il existe au moins un élément de E,
appelons le x, pour lequel soit p(x) est vrai ou q(x) est vrai.
On distingue deux cas :

— Si p(x) est vrai, alors, on a que l’énoncé ∃x ∈ E tel que p(x) est vrai. En effet, en prenant
x = x, on a que p(x) = p(x) est vrai. Ainsi, quelle que soit la valeur de vérité de ∃x ∈
E tel que q(x), on a que la valeur de vérité de B ou C = ((∃x ∈ E tel que p(x)) ou (∃x ∈
E tel que q(x))) est vraie. On a donc bien que B ou C est vraie dans ce cas.

— Si par contre, p(x) est faux, alors, vu que p(x) ou q(x) est vrai, on doit avoir que q(x) est
vrai. Donc, l’énoncé ∃x ∈ E tel que q(x) est vrai, vu que, prenant x = x, on a q(x) = q(x)
est vrai. Ainsi, quelle que soit la valeur de vérité de ∃x ∈ E tel que p(x), on a que la valeur
de vérité de B ou C = ((∃x ∈ E tel que p(x)) ou (∃x ∈ E tel que q(x))) est vraie. On a
donc bien que B ou C est également vraie dans ce cas

Vu que dans tous les cas B ou C est vrai, on a montré que A ⇒ B ou C.
Passons à la réciproque. Supposons que B ou C est vrai et distinguons deux cas :

— Si B est vrai, alors il existe au moins un élément de E, appelons le x̃, pour lequel p(x̃)
est vrai. Ainsi, on a que p(x̃) ou q(x̃) est vrai, quelle que soit la valeur de vérité de q(x̃).
Donc, l’énoncé ∃x ∈ E tel que p(x) ou q(x) est vrai vu que x = x̃ est tel que p(x) ou q(x) =
p(x̃) ou q(x̃) est vrai. Ainsi, A est vrai dans ce cas.

— Si B est faux, alors, vu qu’on a supposé B ou C vrai, on a nécessairement que C = (∃x ∈
E tel que q(x)) est vrai. En faisant le même raisonnement que ci-dessus, en échangeant les
rôles de p est q on peut aussi montrer que A est vrai dans ce cas.

On a donc que A est vrai dans les deux cas, ce qui montre que (B ou C) ⇒ A et termine la
démonstration de la réciproque.

(e) Supposons que (∀x ∈ E, p(x)) ou (∀x ∈ E, q(x)) est vrai et montrons qu’alors ∀x ∈ E, p(x) ou q(x)
est vrai.
Soit donc x ∈ E quelconque. On distinque deux cas :



— Si ∀x ∈ E, p(x) est vrai, alors, vu que x ∈ E, p(x) est vrai. Ainsi, p(x) ou q(x) est vrai. Vu
que x est quelconque, on a montré que ∀x ∈ E, p(x) ou q(x) est vrai, ce qui est le résultat
voulu dans ce cas.

— Si ∀x ∈ E, p(x) est faux, alors, vu que (∀x ∈ E, p(x)) ou (∀x ∈ E, q(x)), on a nécessaire-
ment que ∀x ∈ E, q(x) est vrai, donc q(x) est vrai. En faisant le même raisonnement que
ci-dessus en échangeant les rôles de p et q, on montre que ∀x ∈ E, p(x) ou q(x) est vrai,
ce qui est le résultat voulu dans ce cas.

On a le résultat dans tous les cas, donc, l’implication est vraie.
(f) Supposons que (∃x ∈ E, tel que p(x) et q(x)) est vrai et montrons qu’alors (∃x ∈ E, tel que p(x)) et (∃x ∈

E, tel que q(x)) est vrai aussi.
Vu que (∃x ∈ E, tel que p(x) et q(x)) est vrai, il existe un élément de E, appelons le x tel que
p(x) et q(x) est vrai.
On montre maintenant séparément que ∃x ∈ E, tel que p(x) est vrai et que ∃x ∈ E, tel que q(x)
est vrai.
Commençons par montrer que ∃x ∈ E, tel que p(x) est vrai. Soit x = x. Alors, vu que p(x) et q(x) =
p(x) et q(x) est vrai, on doit avoir que p(x) = p(x) est vrai. Ceci montre que ∃x ∈ E, tel que p(x)
est vrai vu que x = x fait l’affaire.
La démonstration de ∃x ∈ E, tel que q(x) est en tout point similaire.
En conclusion, on a que (∃x ∈ E, tel que p(x)) et (∃x ∈ E, tel que q(x)) est vrai ce qui est le
résultat voulu.


