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Exercice 1.
Donner l’infimum et le supremum des sous-ensembles de R ci-dessous et préciser s’il s’agit d’un mini-
mum ou d’un maximum (pas besoin de faire la demonstration).

(i) A = ] − 1,
√

2 ] (ii) B = ]
√

3, ∞ [ (iii) C = {x ∈ R : |2x − 1| ≤ 1}

Solution :
(i) On a inf A = −1 et sup A =

√
2. Comme sup A =

√
2 ∈ A, il s’agit d’un maximum. Par contre

inf A = −1 /∈ A, donc ce n’est pas un minimum.
(ii) On a inf B =

√
3 /∈ B et sup B = +∞ puisque B n’est pas majoré. Ainsi B n’admet ni minimum

ni maximum.
(iii) C = {x ∈ R : −1 ≤ 2x − 1 ≤ 1} = [0, 1]. Ainsi inf C = min C = 0 et sup C = max C = 1.

Exercice 2.
Montrer que ∀z ∈ C

Re(z) = z + z̄

2 et Im(z) = z − z̄

2i
.

Solution :
Notons z = a + i b , où Re(z) = a et Im(z) = b . Le complexe conjugué de z est z̄ = a − i b. Ainsi,
on a :

z + z̄ = a + i b + a − i b = 2a soit Re(z) = z + z̄

2 .

De même :
z − z̄ = a + i b − (a − i b) = 2b i soit Im(z) = z − z̄

2i
.

Exercice 3.
Réecrire les sous-ensembles suivants en utilisant la notation des intervalles :

1. A = {x ∈ R | x < 1}
2. B = {x ∈ R | x ≤ 1}
3. C = {x ∈ R | − x ≤ 1}

4. D = {x ∈ R | x2 ≤ 2}
5. E = {x ∈ R | x2 ≥ 2}
6. F = {x ∈ R | − x3 ≥ 3}

Solution :

1. A =] − ∞, 1[

2. B =] − ∞, 1]

3. C = [−1, ∞[

4. D =
[
−

√
2,

√
2
]

5. E =
]
−∞, −

√
2
]

∪
[√

2, ∞
[

6. F =
]
−∞, − 3√3

]
Exercice 4.
Exprimer chacun des sous-ensembles de R ci-dessous en termes de réunions ou d’intersections d’inter-
valles (ouverts, fermés ou non).

1. A = {x ∈ R : |x| < 1000}
2. B = {x ∈ R : x2 ≥ 100}
3. C = {x ∈ R : x3 = 27}

4. D = {x ∈ R : x ̸= 33}

5. E = {x ∈ R : |x2 − 2| < 1}

Solution :



1. A =] − 1000, 1000[
2. B =] − ∞, −10] ∪ [10, +∞[
3. C = [3, 3] = {3}

4. D =] − ∞, 33[ ∪ ]33, +∞[

5. E =] −
√

3, −1[ ∪ ]1,
√

3[

Exercice 5.
Soit b ∈ R.

(i) Montrer que I =] − ∞, b[ n’est pas minoré et sup I = b.
(ii) Montrer que I = [b, +∞[ n’est pas majoré et inf I = b.

Solution :
(i) Commençons par montrer que I n’est pas minoré. Vu que la définition de "I est minoré" est

∃x ∈ R tel que ∀a ∈ I, x ≤ a,

on doit montrer que la négation de ceci est vraei. La négation est donnée par (voir Remarque
A.6 du polycopié)

¬ (∃x ∈ R tel que ∀a ∈ I, x ≤ a)
∀x ∈ R, ¬ (∀a ∈ I, x ≤ a)
∀x ∈ R, ∃a ∈ I tel que ¬ (x ≤ a)
∀x ∈ R, ∃a ∈ I tel que x > a.

Soit donc x ∈ R quelconque. On distingue deux cas :
Cas 1 : x > b

On peut alors prendre a ∈ I quelconque et on a

a < b < x,

qui est le résultat voulu.
Cas 2 : x ≤ b.
Soit alors a = x − 1. Alors, on doit montrer que a ∈ I et x > a.
On a

a = x − 1 ≤ b − 1 < b.

Ainsi, par définition de I, a ∈ I.
De plus,

a = x − 1 < x,

ce qui termine la démonstration du fait que I n’est pas minoré dans ce cas.
La combinaison des deux cas montre que I n’est pas minoré.
Remarque : Dans le cas 2, on a choisi x − 1 pour garantir que a < x Ici, n’importe quel a < x
fait l’affaire, on aurait pu prendre a = x − 14, a = x − 10−14, a = x − π, etc...

Passons maintenant à la démonstration du fait que sup I = b. Par le théorème 1.11 (ii), on doit
montrer deux choses :
(a) ∀a ∈ I, a ≤ b

(b) ∀ε > 0, ∃a ∈ I tel que a ≥ b − ε.

Commençons par (a). Soit a ∈ I quelconque. Par définition de I, on a a < b ce qui implique
a ≤ b, qui est le résultat voulu.
Passons à la démonstration (b). Soit ε > 0 quelconque. Choisissons a = b − ε. Il faut maintenant
montrer deux choses : que a ∈ I et que a ≥ b − ε.



On a
a = b − ε < b,

donc a < b et a ∈ I. Pour finir, a = b − ε implique a ≥ b − ε qui est le résultat voulu et montre
que

sup I = b.

(ii) Commençons par montrer que I n’est pas majoré. Vu que la définition de "I est majoré" est

∃x ∈ R tel que ∀a ∈ I, x ≥ a,

on doit montrer que la négation de ceci est vraie. La négation est donnée par (voir Remarque
A.6 du polycopié)

¬ (∃x ∈ R tel que ∀a ∈ I, x ≥ a)
∀x ∈ R, ¬ (∀a ∈ I, x ≥ a)
∀x ∈ R, ∃a ∈ I tel que ¬ (x ≥ a)
∀x ∈ R, ∃a ∈ I tel que x < a.

Soit donc x ∈ R quelconque. On distingue deux cas :
Cas 1 : x < b

On peut alors prendre a ∈ I quelconque et on a

x < b ≤ a

qui est le résultat voulu.
Cas 2 : x ≥ b.
Soit alors a = x + 1. Alors, on doit montrer que a ∈ I et x < a.
On a

a = x + 1 ≥ b + 1 ≥ b.

Ainsi, par définition de I, a ∈ I.
De plus,

a = x + 1 > x,

ce qui termine la démonstration du fait que I n’est pas majoré dans ce cas.
La combinaison des deux cas montre que I n’est pas majoré.
Passons à la démonstration de b = inf I. On a dans ce cas deux possibilités.
1. Méthode par la caractérisation : Par le théorème 1.11 (i), on doit montrer deux choses :
(a) ∀a ∈ I, a ≥ b

(b) ∀ε > 0, ∃a ∈ I tel que a ≤ b + ε.

Commençons par (a). Soit a ∈ I quelconque. Par définition de I, on a a ≥ b, qui est le résultat
voulu.

Passons à la démonstration (b). Soit ε > 0 quelconque. Choisissons a = b + ε. Il faut maintenant
montrer deux choses : que a ∈ I et que a ≥ b − ε.
On a

a = b + ε ≥ b,

donc a ≥ b et a ∈ I. Pour finir, a = b + ε implique a ≤ b + ε qui est le résultat voulu et montre
que

sup I = b.

2. Méthode par le maximum : Par la remarque 1.15, il suffit ici de montrer que b = min I pour
avoir que b = inf I.
On a b ∈ I, par définition de I. De plus, pour tout a ∈ I, on a b ≤ a. Ainsi, par définition du
minimum (Définition 1.14) on a b = min I et donc par la Remarque 1.15, ceci implique b = inf I.



Exercice 6.
Soit A ⊂ R un intervalle borné non vide.
Vrai ou faux ?

Q1 : Il suit que sup A ∈ A et inf A ∈ A.
Q2 : Si sup A ∈ A et inf A ∈ A, alors A est fermé.
Q3 : Si A est fermé, alors sup A ∈ A et inf A ∈ A.
Q4 : Si sup A ̸∈ A et inf A ̸∈ A, alors A est ouvert.
Q5 : Si A est ouvert, alors inf A ̸∈ A et sup A ̸∈ A.

Solution :
Q1 : FAUX.

Prendre par exemple l’intervalle borné A = [1, 2[ . Alors sup A = 2 /∈ A.
Q2 : VRAI.

Si un intervalle borné A n’est pas fermé, au moins une de ses extrémités n’appartient pas à
l’intervalle. Mais les extrémités de A sont inf A et sup A qui sont dans A par hypothèse. Ainsi
A est forcément fermé.

Q3 : VRAI.
Un intervalle fermé et borné est de la forme [a, b] avec a, b ∈ R, a ≤ b. Ainsi inf A = a et
sup A = b qui sont bien dans A.

Q4 : VRAI.
Comme a = inf A /∈ A, on a a < x pour tout x ∈ A. Par définition de l’infimum il existe pour
tout ε > 0 un x ∈ A tel que x ≤ a + ε, ce qui assure qu’il n’y a pas de "trou" entre a et les
éléments de A. De même on montre à partir de la définition du supremum que x < sup A =: b
pour tout x ∈ A. Ainsi A = ]a, b[ est un intervalle ouvert.

Q5 : VRAI.
Par l’absurde, supposons que a = inf A ∈ A. Alors a ≤ x pour tout x ∈ A et comme a ∈ A, A
ne peut pas être ouvert. Donc inf A /∈ A. De même pour b = sup A.

Remarque.
Si A ⊂ R n’est pas nécessairement un intervalle, Q2 et Q4 sont faux.

Exercice 7.
Résoudre les inéquations suivantes :

(i) x2 − 2x − 2 < 0 pour x ∈ R

(ii) |x − 2| ≤ |x + 3| pour x ∈ R

(iii) 1
1 − |x|

< 1 pour x ∈ R \ {±1}

(iv) x

|x| − 2 + |x|
x + 1 ≥ 0 pour x ∈ R\{±2, −1}

c’est-à-dire spécifier (en termes d’unions d’intervalles) les ensembles A ⊂ R tels que les inéquations
sont satisfaites pour tout x ∈ A et pas satisfaites pour x /∈ A.
Indication : il est parfois utile de considérer plusieurs cas séparément.

Solution :
(i) Comme x2 − 2x − 2 = (x − 1)2 − 3, l’inégalité à résoudre devient (x − 1)2 < 3, qui est satisfaite si

−
√

3 < x − 1 <
√

3 . En ajoutant 1, on trouve 1 −
√

3 < x < 1 +
√

3 et la solution du problème
est

x ∈
]
1 −

√
3, 1 +

√
3
[

.



(ii) L’inégalité |x−2| ≤ |x+3| est équivalente à (x−2)2 ≤ (x+3)2. On trouve x2−4x+4 ≤ x2+6x+9,
et donc 10x ≥ −5. La solution du problème est

x ∈
[
−1

2 , +∞
[

.

(iii) Il faut distinguer quatre cas : (a) x < −1, (b) −1 < x < 0, (c) 0 ≤ x < 1, (d) x > 1.
(a) Pour x < −1 on a 1 − |x| = 1 + x < 0, et l’inégalité peut donc être réécrite comme

1 > 1 + x ,

ce qui est vrai si x < 0. Cette inégalité est satisfaite pour x < −1.
(b) Pour −1 < x < 0 on a 1 − |x| = 1 + x > 0, et l’inégalité peut donc être réécrite comme

1 < 1 + x ,

ce qui est vrai si x > 0. Cette inégalité n’est jamais satisfaite pour x < 0.
(c) Pour 0 ≤ x < 1 on a 1 − |x| = 1 − x > 0, et l’inégalité peut donc être réécrite comme

1 < 1 − x ,

ce qui est vrai si x < 0. Cette inégalité n’est jamais satisfaite.
(d) Pour x > 1 on a 1 − |x| = 1 − x < 0, et l’inégalité peut donc être réécrite comme

1 > 1 − x ,

ce qui est vrai si x > 0. Cette inégalité est satisfaite pour x > 1.
Pour résumer, l’inégalité est donc satisfaite pour

x ∈ ]−∞, −1[ ∪ ]1, +∞[ .

(iv) On réécrit l’inégalité sous la forme

x

|x| − 2 ≥ − |x|
x + 1 .

Il faut distinguer cinq cas : x < −2, −2 < x < −1, −1 < x < 0, 0 ≤ x < 2, x > 2.
(a) Pour x < −2 on a |x| − 2 = −x − 2 > 0 et x + 1 < 0, et l’inégalité peut donc être réécrite

comme
x (x + 1) ≤ x (−x − 2) ,

ce qui est vrai si 2x2 + 3x = x(2x + 3) ≤ 0. Cette inégalité n’est jamais satisfaite.
(b) Pour −2 < x < −1 on a |x| − 2 = −x − 2 < 0 et x + 1 < 0, et l’inégalité peut donc être

réécrite comme
x (x + 1) ≥ x (−x − 2) ,

ce qui est vrai si 2x2 +3x = x(2x+3) ≥ 0. Cette inégalité est satisfaite pour −2 < x ≤ −3
2.

(c) Pour −1 < x < 0, on a |x| − 2 = −x − 2 < 0 et x + 1 > 0, et l’inégalité peut donc être
réécrite comme

x (x + 1) ≤ x (−x − 2) ,

ce qui est vrai si 2x2 + 3x = x(2x + 3) ≤ 0. Cette inégalité est satisfaite pour −1 < x < 0.
(d) Pour 0 ≤ x < 2 on a |x| − 2 = x − 2 < 0 et x + 1 > 0, et l’inégalité peut donc être réécrite

comme
x (x + 1) ≤ −x (x − 2) ,

ce qui est vrai si 2x2 − x = x(2x − 1) ≤ 0. Cette inégalité est satisfaite pour 0 ≤ x ≤ 1
2.



(e) Pour x > 2 on a |x| − 2 = x − 2 > 0 et x + 1 > 0, et l’inégalité peut donc être réécrite
comme

x (x + 1) ≥ −x (x − 2) ,

ce qui est vrai si 2x2 − x = x(2x − 1) ≥ 0. Cette inégalité est satisfaite pour x > 2.
Pour résumer, l’inégalité est donc satisfaite pour

x ∈
]
−2, −3

2

] ⋃ ]
−1,

1
2

] ⋃
]2, ∞[ .

Exercice 8.
Le plus grand sous-ensemble A ⊂ R tel que pour tout x ∈ A

||x − 1| − 1| ≤ ||x| − 1|

est

□
[
−1

2 , 1
2

]
∪
[

3
2 , ∞

[
□

[
0, 1

2

]
∪ [2, ∞[

□
[
−1

2 , 0
]

∪ ]1, 2[ □
[

3
2 , ∞

[
Solution :
⊠

[
−1

2 , 1
2

]
∪
[

3
2 , ∞

[
Le plus grand sous-ensemble A ⊂ R tel que ∀x ∈ A, ||x − 1| − 1| ≤ ||x| − 1| est

[
−1

2 , 1
2

]
∪
[

3
2 , ∞

[
.

Ce resultat peut être interpreté, par exemple, à partir du graphe des fonctions f : x 7→ ||x − 1| − 1| et
g : x 7→ ||x| − 1| :

f (x) = ||x−1|−1|
g (x) = ||x|−1|

-4 -3 -2 -1 0 1 2 3 4

0

1

2

3

4

5

Nous pouvons réécrire l’inégalité comme (|x − 1| − 1)2 ≤ (|x| − 1)2. En dévelopant, nous obtenons :

(|x − 1| − 1)2 ≤ (|x| − 1)2

|x − 1|2 − 2|x − 1| + 1 ≤ |x|2 − 2|x| + 1
(x − 1)2 − 2|x − 1| + 1 ≤ x2 − 2|x| + 1

x2 − 2x + 1 − 2|x − 1| + 1 ≤ x2 − 2|x| + 1
−2(x − |x|) − 2|x − 1| + 1 ≤ 0

ce qui nous ramène à l’inégalité suivante :

(x − |x|) + |x − 1| ≥ 1
2 .



— Pour x ≥ 0, nous avons |x| = x et l’inégalité se simplifie en

|x − 1| ≥ 1
2 ,

ce qui est vrai si x ≤ 1
2 ou si x ≥ 3

2 . Cette inégalité est satisfaite pour x ∈ [0, 1
2 ] ∪ [3

2 , ∞[.
— Pour x ≤ 0, nous avons |x| = −x, ainsi que x − 1 ≤ 0 c’est-à-dire |x − 1| = −x + 1. L’inégalité

se simplifie en
x + 1 ≥ 1

2 ,

ce qui est vrai si x ≥ −1
2 . Cette inégalité est satisfaite pour x ∈ [−1

2 , 0].
Pour résumer, l’inégalité de départ est satisfaite pour :

x ∈ [−1
2 , 0] ∪ [0, 1

2 ] ∪ [3
2 , ∞[ ou encore x ∈ [−1

2 , 1
2 ] ∪ [3

2 , ∞[ .

Exercice 9.
Trouver la partie réelle et la partie imaginaire des nombres complexes suivants :

(i) (2 − 3i)(3 + 2i)

(ii) 2 − 3i

4 − 5i

(iii) 1
1 + i

+ 1
1 + 2i

+ 1
1 + 3i

(iv) 2 − 3i

2 + i
+ 1 − i

1 + 3i

(v)
(10 − 15i

2 + i

)( 1 + i

1 − 3i

)

Solution : Les résultats ci-après sont écrits sous la forme z = a + ib, avec Re(z) = a et Im(z) = b.
(i) z = (2 − 3i)(3 + 2i) = 12 − 5i

(ii) z = 2 − 3i

4 − 5i
= 2 − 3i

4 − 5i

4 + 5i

4 + 5i
= 23

41 − i
2
41

(iii) z = 1
1 + i

+ 1
1 + 2i

+ 1
1 + 3i

= 1 − i

2 + 1 − 2i

5 + 1 − 3i

10 = 4
5 − i

6
5

(iv) z = 2 − 3i

2 + i
+ 1 − i

1 + 3i
= (2 − 3i)(2 − i)

5 + (1 − i)(1 − 3i)
10 = 0 − 2i

(v) z =
(10 − 15i

2 + i

)( 1 + i

1 − 3i

)
= (1 − 8i)

(
−1

5 + i
2
5

)
= 3 + 2i

Exercice 10.
Trouver le module et l’argument des nombres complexes suivants :

(i) −2
(ii) 2 + 2i

(iii) −1 + i
√

3
(iv) −1 + i tan(3)

(v) 8i21 − 2i11

1 − i

Solution :
Les résultats ci-dessous sont écrits sous la forme z = ρeiϕ, avec |z| = ρ et arg(z) = ϕ.

(i) z = −2 = 2(−1 + 0i) = 2(cos π + i sin π) = 2eiπ

(ii) z = 2 + 2i = 2
√

2
( 1√

2
+ i

1√
2

)
= 2

√
2
(
cos
(

π
4
)

+ i sin
(

π
4
))

= 2
√

2 ei π
4

(iii) z = −1 + i
√

3 = 2
(

−1
2 + i

√
3

2

)
= 2

(
cos
(2π

3

)
+ i sin

(2π

3

))
= 2 ei 2π

3

(iv) z = −1 + i tan(3) = −1 + i
sin(3)
cos(3) = 1

|cos(3)|
(

cos(3) − i sin(3)
)

= 1
|cos(3)| e−3i

(v) z = 8i21 − 2i11

1 − i
= 8i − 2i3

1 − i
= 8i + 2i

1 − i
= 10i

1 − i
=10i

1 + i

2 =5
√

2
(

− 1√
2

+ i
1√
2

)
=5

√
2ei 3π

4



Exercice 11.
Dans la série 1, on avait rappelé les formules suivantes :

sin2(x) + cos2(x) = 1
sin(x + y) = sin(x) cos(y) + cos(x) sin(y)
cos(x + y) = cos(x) cos(y) − sin(x) sin(y)

2 cos
(

x + y

2

)
sin
(

x − y

2

)
= sin(x) − sin(y)

Montrer ces formules à l’aide des formules d’Euler.

Solution :
On rappelle d’abord les formules d’Euler :

sin(x) = eix − e−ix

2i

cos(x) = eix + e−ix

2

Commençons par la première. On a

sin2(x) + cos2(x) =
(

eix − e−ix

2i

)2

+
(

eix + e−ix

2i

)2

=e2ix − 2 + e−2ix

−4 + e2ix + 2 + e−2ix

4

=−e2ix + 2 − e−2ix + e2ix + 2 + e−2ix

4 = 1.

Passons à la deuxième. On a

sin(x) cos(y) + cos(x) sin(y) =eix − e−ix

2i

eiy + e−iy

2 + eix + e−ix

2
eiy − e−iy

2
= 1

4i

(
eixeiy + eixe−iy − e−ixeiy − e−ixe−iy

)
+ 1

4i

(
eixeiy − eixe−iy + e−ixeiy − e−ixe−iy

)
= 1

4i

(
2ei(x+y) − 2e−i(x+y)

)
=ei(x+y) − e−i(x+y)

2i
= sin(x + y).

Passons par la troisième. On a

cos(x) cos(y) − sin(x) sin(y) =eix + e−ix

2
eiy + e−iy

2 + eix − e−ix

2i

eiy − e−iy

2i

=1
4
(
eixeiy + eixe−iy + e−ixeiy + e−ixe−iy

)
− 1

4i2

(
eixeiy − eixe−iy − e−ixeiy + e−ixe−iy

)
=1

4
(
2ei(x+y) + 2e−i(x+y)

)
=ei(x+y) + e−i(x+y)

2 = cos(x + y).



Finisson par la quatrième. On a

2 cos
(

x + y

2

)
sin
(

x − y

2

)
= 2ei x+y

2 + e−i x+y
2

2
ei x−y

2 − e−i x−y
2

2i

= 1
2i

(
ei x+y

2 ei x−y
2 − ei x+y

2 e−i x−y
2 + e−i x+y

2 ei x−y
2 − e−i x+y

2 e−i x−y
2
)

= 1
2i

(eix − eiy + e−iy − e−ix)

=eix − e−ix

2i
− eiy − e−iy

2i
= sin(x) − sin(y).

Exercice 12.
Le but de cet exercice est de se familiariser avec la "règle de grammaire" mentionnée dans le cours et
comment l’appliquer dans l’écriture des mathématiques.
Soit f : R∗

+ → R définie par f(x) = 1
x2 . On a alors que la propriété

∀ε > 0, ∃M > 0 tel que ∀x ≥ M, |f(x)| ≤ ε.

est vraie.
Ci-dessous, deux démonstration du résultat. Dans l’une d’elles, nous avons glissé deux erreurs.
Laquelle de ces deux démonstrations est correcte et où sont les problèmes ?

Remarque.
la propriété ci-dessus sera étudiée dans le chapitre 4, c’est-à-dire, vous n’êtes pas sensé·e comprendre
ce que la propriété veut dire. Les problèmes dans la démonstration ne sont pas dûs à ce que la
démonstration raconte, mais plutôt, dans la grammaire employée dans la démonstration.

Démonstration. On doit montrer qu’on peut
trouver M ≥ 0 tel que dès que x ≥ M ,
|f(x)| = 1

x2 ≤ ε, quelque soit ε > 0.
Posons M := 1√

ε
> 0 et considérons x ≥ M

quelconque. Alors,

|f(x)| = 1
x2

x≥M
≤ 1

M2
M=1/

√
ε= 1(

1√
ε

)2 = ε.

ε étant quelconque, on a le résultat voulu.

Démonstration. On doit montrer que
quelque soit ε > 0, on peut trouver M ≥ 0
tel que dès que x ≥ M , |f(x)| = 1

x2 ≤ ε.
Soit ε > 0 quelconque. Posons M := 1√

ε
> 0

et considérons x ≥ M quelconque. Alors,

|f(x)| = 1
x2

x≥M
≤ 1

M2
M=1/

√
ε= 1(

1√
ε

)2 = ε,

ε étant quelconque, on a le résultat voulu.

Solution :
Les deux problèmes dans la démonstration de gauche sont les suivants :

— Dans la reformulation de ce qu’il y a à montrer, "il existe M ≥ 0 tel que dès que x ≥ M ,
|f(x)| = 1

x2 ≤ ε quelque soit ε > 0" vu que ε > 0 est mentionné après M , la grammaire
mathématique nous indique que M ne dépend pas de ε tandis que ε peut a priori dépendre de
M . Alors que dans l’énoncé de la propriété "∀ε > 0, ∃M > 0 tel que ∀x ≥ M, |f(x)| ≤ ε", c’est
l’inverse.

— Lorsqu’on pose M := 1√
ε
, vu que ε n’a pas été mentionné avant, on ne sait pas si on est en train

de définir M ou ε.
Morale de l’histoire : Dans l’examen vous aurez une démonstration du cours à redonner. Il est
important, lorsque vous redonnez la démonstration que vous respectiez l’ordre dans lequel les choses
sont écrites.


