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Exercice 1.
Donner I'infimum et le supremum des sous-ensembles de R ci-dessous et préciser s’il s’agit d’un mini-
mum ou d’'un maximum (pas besoin de faire la demonstration).

(i) A=]-1,vV2]  (ii)) B=]V3,00[ (iii) C={z €R:[22 —1] < 1}

Solution :
(i) Onainf A = —1 et sup A = /2. Comme sup A = /2 € A, il s’agit d’'un maximum. Par contre
inf A=—-1¢ A, donc ce n’est pas un minimum.

(ii) On a inf B = /3 ¢ B et sup B = +oco puisque B n’est pas majoré. Ainsi B n’admet ni minimum
ni maximum.

(iii) C={reR:-1<2x—-1<1} =]0,1]. Ainsi inf C =minC =0 et supC = maxC = 1.

Exercice 2.
Montrer que Vz € C

Solution :
Notons z=a+ib, ou Re(z) =a et Im(z) =b. Le complexe conjugué de z est z = a — i b. Ainsi,
ona:

24+ zZ=a+1ib + a—1ib=2a soit Re(z)zzgz.

De méme : 3
z—ZzZ=a+1ib — (a—1ib)=2bi soit Im(z)zzz,z

i

Exercice 3.
Réecrire les sous-ensembles suivants en utilisant la notation des intervalles :

1. A={zeR|z <1} 4. D={z eR|2? <2}

2. B={zeR|z <1} 5. E={reR|z?>2}

3. C={zeR| —z<1} 6. F={reR| —a>3}
Solution :

1. A=]—o00,1] 4. D
2. B=]—o00,1] 5.E:]—oo,—\@}u{ﬂ,oo{
3. C=[-1,00] 6. F

Exercice 4.
Exprimer chacun des sous-ensembles de R ci-dessous en termes de réunions ou d’intersections d’inter-
valles (ouverts, fermés ou non).

1. A={z e R : |z| < 1000} 4. D={xcR: z#33}
2. B={r R : 2?>100}
3. C={reR:23=27} 5. E={zecR: |22 -2 <1}

Solution :



1. A =] — 1000, 1000] 4. D =] — 00,33[ U 33, -+oo
2. B =] —00,—10] U [10, 00|
3. C=[3,3] = {3} 5. E=]—+3,—-1] U |1,V/3]
Exercice 5.
Soit b € R.
(7) Montrer que I =] — 0o, b[ n’est pas minoré et sup I = b.
(79) Montrer que I = [b, +oo[ n’est pas majoré et inf I = b.
Solution :

(7) Commengons par montrer que I n’est pas minoré. Vu que la définition de "I est minoré" est
dJreRtel que Va eI, z < a,

on doit montrer que la négation de ceci est vraei. La négation est donnée par (voir Remarque
A.6 du polycopié)

—(Jx e Rtel que Va € I, z < a)
VeeR, =(Vael, z<a)
Ve € R, Ja € I tel que = (x < a)
Vr € R, da € I tel que z > a.

Soit donc = € R quelconque. On distingue deux cas :
Cas1:x>0b
On peut alors prendre a € I quelconque et on a

a<b<u,
qui est le résultat voulu.
Cas 2 : x <b.
Soit alors @ = & — 1. Alors, on doit montrer que a € I et x > a.
On a

a=x—1<b—-1<b.

Ainsi, par définition de I, a € I.
De plus,
a=x—1<ux,
ce qui termine la démonstration du fait que I n’est pas minoré dans ce cas.
La combinaison des deux cas montre que I n’est pas minoré.

Remarque : Dans le cas 2, on a choisi x — 1 pour garantir que a < x Ici, n’importe quel a < x
fait Uaffaire, on aurait pu prendre a =z — 14, a =z — 10714, a =z — 7, etc...

Passons maintenant & la démonstration du fait que sup I = b. Par le théoreme 1.11 (ii), on doit
montrer deux choses :

(a) VaeI,a<b

(b) Ve >0,3a €I tel que a > b—e.
Commencons par (a). Soit a € I quelconque. Par définition de I, on a a < b ce qui implique
a < b, qui est le résultat voulu.

Passons a la démonstration (b). Soit € > 0 quelconque. Choisissons a = b—¢. Il faut maintenant
montrer deux choses : que a € [ et que a > b — .



On a
a=b—¢e<b,

donc a < b et a € I. Pour finir, a = b — € implique a > b — ¢ qui est le résultat voulu et montre
que
supl =b.

Commencons par montrer que I n’est pas majoré. Vu que la définition de "I est majoré" est
JreRtel que Vae I, ¢ > a,

on doit montrer que la négation de ceci est vraie. La négation est donnée par (voir Remarque
A.6 du polycopié)

—“(JzeRtelqueVael, x> a)

VeeR, =(Vael, x>a)

Vz € R, Ja € I tel que = (z > a)

Vr € R, da € I tel que = < a.

Soit donc =z € R quelconque. On distingue deux cas :
Cas1:x<b
On peut alors prendre a € I quelconque et on a

r<b<a
qui est le résultat voulu.
Cas 2 : x> b.
Soit alors @ = x + 1. Alors, on doit montrer que a € I et x < a.
On a

a=x+1>b+1>0.

Ainsi, par définition de I, a € I.
De plus,
a=z+1>ux,
ce qui termine la démonstration du fait que I n’est pas majoré dans ce cas.
La combinaison des deux cas montre que I n’est pas majoré.
Passons a la démonstration de b = inf I. On a dans ce cas deux possibilités.
1. Méthode par la caractérisation : Par le théoreme 1.11 (i), on doit montrer deux choses :
(a) Vael,a>b
(b) Ve >0,3a €I tel que a < b+e.
Commencons par (a). Soit a € I quelconque. Par définition de I, on a a > b, qui est le résultat
voulu.

Passons a la démonstration (b). Soit € > 0 quelconque. Choisissons a = b+ ¢. Il faut maintenant
montrer deux choses : que a € I et que a > b — ¢.
On a

a=b+e>b,

donc a > b et a € I. Pour finir, a = b+ ¢ implique a < b+ ¢ qui est le résultat voulu et montre
que
supl =b.

2. Méthode par le maximum : Par la remarque 1.15, il suffit ici de montrer que b = min I pour
avoir que b = inf I.

On a b € I, par définition de I. De plus, pour tout a € I, on a b < a. Ainsi, par définition du
minimum (Définition 1.14) on a b = min I et donc par la Remarque 1.15, ceci implique b = inf I.



Exercice 6.
Soit A C R un intervalle borné non vide.
Vrai ou faux?

Q1 : Il suit que supA € A et inf A € A.

Q2 : SisupAec A et inf Ae A, alors A est fermé.
Q3 : Si A est fermé, alors sup A € A et inf A € A.
Q4 : SisupAd A et infA¢g A, alors A est ouvert.
Q5 : Si A est ouvert, alors inf A ¢ A et supA & A.

Solution :
Ql : FAUX.
Prendre par exemple I'intervalle borné A = [1,2[. Alors sup A =2 ¢ A.
Q2 : VRAL

Si un intervalle borné A n’est pas fermé, au moins une de ses extrémités n’appartient pas a
Iintervalle. Mais les extrémités de A sont inf A et sup A qui sont dans A par hypothese. Ainsi
A est forcément fermé.

Q3 : VRAL
Un intervalle fermé et borné est de la forme [a,b] avec a,b € R, a < b. Ainsi inf A = a et
sup A = b qui sont bien dans A.

Q4 : VRAL
Comme a = inf A ¢ A, on a a < x pour tout x € A. Par définition de l'infimum il existe pour
tout € > 0 un = € A tel que z < a + ¢, ce qui assure qu’il n’y a pas de "trou" entre a et les
éléments de A. De méme on montre a partir de la définition du supremum que z < sup A =: b
pour tout = € A. Ainsi A = |a,b| est un intervalle ouvert.

Q5 : VRAL
Par I'absurde, supposons que a = inf A € A. Alors a < x pour tout z € A et comme a € A, A
ne peut pas étre ouvert. Donc inf A ¢ A. De méme pour b = sup A.

Remarque.
Si A C R n’est pas nécessairement un intervalle, Q2 et Q4 sont faux.

Exercice 7.
Résoudre les inéquations suivantes :

(1) 2* =20 —-2<0 powz€R (#41) o < pour = € R\ {£1}

(it) |z —2|<|z+3| pourzeR () !w\—2+$+120 pour z € R\ {£2, -1}

c’est-a-dire spécifier (en termes d’unions d’intervalles) les ensembles A C R tels que les inéquations
sont satisfaites pour tout x € A et pas satisfaites pour = ¢ A.
Indication : il est parfois utile de considérer plusieurs cas séparément.

Solution :

(i) Comme 22 — 2z —2 = (z — 1) — 3, I'inégalité a résoudre devient (x —1)? < 3, qui est satisfaite si
—V3 <x—1<+/3.En ajoutant 1, on trouve 1 — v/3 < & < 1+ v/3 et la solution du probléme

o me}l—\/i,1+\/§[.



(71) L’inégalité |z—2| < |z+3| est équivalente & (x—2)? < (z+3)2. On trouve 22 —4z+4 < 2246249,
et donc 10x > —5. La solution du probléme est

<[z
T ——,TOoO| .
27

(7ii) 11 faut distinguer quatre cas : (a) x < —1, (b) =1 <2 <0, (c) 0<x <1, (d) z > 1.

(a) Pourx < —lonal—|z| =14z <0, et I'inégalité peut donc étre réécrite comme
1>1+4+2z,

ce qui est vrai si x < 0. Cette inégalité est satisfaite pour x < —1.
(b) Pour -1 <z <0onal-—|z|=14z >0, et l'inégalité peut donc étre réécrite comme

1<1l+4+z,

ce qui est vrai si x > 0. Cette inégalité n’est jamais satisfaite pour z < 0.
(¢c) Pour0<z<lonal-—|z|=1—z >0, et I'inégalité peut donc étre réécrite comme

1<1l—2,

ce qui est vrai si x < 0. Cette inégalité n’est jamais satisfaite.
(d) Pour x >1onal—|z|]=1—2x <0, et 'inégalité peut donc étre réécrite comme

1>1—x,

ce qui est vrai si x > 0. Cette inégalité est satisfaite pour x > 1.

Pour résumer, I'inégalité est donc satisfaite pour
x € ]—o00,—1[ U |1, 4+o00[ .
(v) On réécrit I'inégalité sous la forme

x — ||
|lz] =2~z +1°

Il faut distinguer cinqcas 1z < =2, 2 <z < -1, -1<zx<0,0<x <2, 2 >2.

(a) Pourx < —2onalz|—2=—-2—-2>0et x+1 <0, et 'inégalité peut donc étre réécrite
comme
z(x+1)<z(-z-2),

ce qui est vrai si 222 + 3x = z(2z + 3) < 0. Cette inégalité n’est jamais satisfaite.
(b) Pour -2 <z < —lonalz|]-2=—-2—-2<0et x4+ 1 <0, et 'inégalité peut donc étre
réécrite comme
zx+1)>z(-z—-2),
3

ce qui est vrai si 222 + 3z = x(2z +3) > 0. Cette inégalité est satisfaite pour —2 < z < —5

(¢c) Pour -1 <z <0,onalr]-—2=—-x—-2<0et z+1>0, et 'inégalité peut donc étre
réécrite comme
z(xz+1) <zx(—z-2),
ce qui est vrai si 222 + 3z = 2(2z + 3) < 0. Cette inégalité est satisfaite pour —1 < < 0.
(d) Pour0<z<2onalr]-2=z—-2<0et z+1>0, et 'inégalité peut donc étre réécrite

comme
r(r+1)< —z(z—-2),

1
ce qui est vrai si 222 — 2 = (22 — 1) < 0. Cette inégalité est satisfaite pour 0 < x < 3



() Pourx >2onalz]—2=2—-2>0et z+1>0,et I'inégalité peut donc étre réécrite
comme
x(x+1)>—x(x—2),
ce qui est vrai si 222 — x = x(2x — 1) > 0. Cette inégalité est satisfaite pour z > 2.
Pour résumer, I'inégalité est donc satisfaite pour
1

xe]—Q,—;] U }—1,2} J 12, 00[

Exercice 8.
Le plus grand sous-ensemble A C R tel que pour tout z € A

|z = 1] = 1] < ||| — 1]

est
0 (=33 0 [3oc] 0 0.4 Uzl
0 [-30[ul,2 0 [3,00|
Solution :
9 [-5.3]u 500
Le plus grand sous-ensemble A C R tel que Vo € A, ||z — 1] — 1| < ||z — 1] est {—%, %} U [%, oo[.

Ce resultat peut étre interpreté, par exemple, a partir du graphe des fonctions f : x — ||z — 1| — 1] et
gz |lx]—1]:

5 - —_— (%) = lIx=TI1]
—_— g (x) =lIxI-1l

4 -

3 4

2 ]

1 -

0 -

Nous pouvons réécrire I'inégalité comme (|x — 1| — 1)2 < (|2 — 1)2. En dévelopant, nous obtenons :
(Jo = 1] = 1) < (Ja] = 1)?
=1 =2z — 1]+ 1 < |z — 22| + 1
(z—1)2%—2)z—1]+1<2*—2z|+1
2? =20+ 1-2z—1+1<a”—2z[+1
—2(x —|z|) =2z —1|4+1<0

ce qui nous ramene a l'inégalité suivante :

(@ —[zf) + |z 1] =

DN | =



— Pour x > 0, nous avons |z| = z et l'inégalité se simplifie en

1
|z —1] > =,
2

ce qui est vrai si z < § ousi z > 3. Cette inégalité est satisfaite pour = € [0, 3] U [2, oo].
— Pour x < 0, nous avons |z| = —z, ainsi que z — 1 < 0 c’est-a-dire |z — 1| = —z + 1. L’inégalité
se simplifie en

+1>1
T =t

ce qui est vrai si x > —%. Cette inégalité est satisfaite pour x € [—%, 0].

Pour résumer, I'inégalité de départ est satisfaite pour :

1

.’EG[*ﬁvO]U[O’%}U[%vOO[ ou encore T € [7 ’%]U[%’OO['

Do

Exercice 9.

Trouver la partie réelle et la partie imaginaire des nombres complexes suivants :

(1) (2 — 34)(3 + 2i) O - ! (v) (10_15i>(1+i>

1+ 1+2i+1+3i 241 1—-3¢
2—-3 2—-3 1—1

(@) 3 —; @) 57 i3

Solution : Les résultats ci-apres sont écrits sous la forme z = a + ib, avec Re(z) = a et Im(z) = b.
(1) 2 = (2 — 30)(3 + 2i) = 12 — 5
2—-3t 2-3t4+45 23 2

() 2= s =i midtsi 41 ‘4l

(i) N S I—i 1-2i 1-3i 46

Qi) z = = == _i=
1+i 1+2 143 2 5 10 5 '5
29-3i 1—i (2-3)(2—1) (1—i)(1—3i

(Z(U) = Z+ v _( Z)( Z)+( Z)( Z):O_QZ

244i  1+3i 5 10
10— 156\ / 1+ 12
- —(1-8)(—=+i2) =312
(v) 2 ( 2+ ><1—3i) ( Z)< 5“5) +a

Exercice 10.

Trouver le module et ’argument des nombres complexes suivants :

(i) —2 (i) —1+iv/3 () 8! — 2i'!
(ii) 2+ 2i (iv) —1 +itan(3) L—i
Solution :

Les résultats ci-dessous sont écrits sous la forme z = pe®, avec |z| = p et arg(z) = ¢.

(i) z=-2=2(—1+0i) =2(cosT + isinm) = 2¢'™

(i) z=2+2i=2V2 (\2 +i \}i) = 2v/2 (cos(%) +isin(F)) = 2v/2¢€'T

(i) z=—14+iy3=2 (—1+i\/§> =2 <cos<2;> +¢sm<2”>> — 27

2 2 3
. , . sin(3) 1 .. 1 .
— 14 itan(3) = —1 = 3) — 3)) — ~3i
(iv) =z + i tan(3) +Zcos(3) |COS(3)|(COS( ) — isin(3)) cos(3 |e
82l — 211 8 — 23 8 +2i 10d 1414 1 1 .
(v) 2= 1—i  1-i 1-i " f( \/§+Z\/§> v2ets



Exercice 11.
Dans la série 1, on avait rappelé les formules suivantes :

sin?(z) + cos?(z) =1
sin(z + y) = sin(z) cos(y) + cos(z) sin(y)
cos(z + y) = cos(x) cos(y) — sin(z) sin(y)

2 cos (x ;_ y) sin (CE ; y) = sin(x) — sin(y)

Montrer ces formules a 1’aide des formules d’Euler.

Solution :
On rappelle d’abord les formules d’Euler :

) el _ e—ia:
sin(z) = 5;
1T —iT
cos(x) = ¢ —;e

Commencons par la premiere. On a

T, —iT 2 T —1ix 2
sin?(x) 4 cos®(x) = <e,€> + (w)

21 21
_621':0 — 24 6—21':0 N e?ix 1+ 24 e—?im
B —4 4
__62i;v 49— 6—22':13 4 e?i:c + 24+ 6—2i:5 _
= 1 = 1.

Passons a la deuxiéme. On a
el _ eIt Y | o~y T eIt Y oY
27 2 2 2

1 L o s s
:I (ezxezy 4T _ Ty _ o—iT, zy)
1)

sin(z) cos(y) + cos(z) sin(y) =

1 T 1Y T —iy —ix 1Y —ix —1iy
—i-zi(ee—ee +e e’ —e e )
_ 1 i(xz+y) —i(z+y)
—E (26 — 2e )

ei(m'i'y) — e_i(l'_"y) .
= 5 = sin(z + y).

Passons par la troisieme. On a

e’LZL‘ + 6—11‘ eZy + e—’Ly elil) _ e—’LCL' ely _ e—ly

cos(z) cos(y) — sin(z) sin(y) = 5 5 + 5 5
:i (ei:peiy + eimefiy + efi:peiy + efi:pefiy)
o LQ <€i:p6iy o eize—iy o e—i:peiy + e—i:pe—iy)
44
1 (269 4 2e=i(o0)
4

ei(x"l‘y) + e_i(x"!‘y)

= 5 = cos(z + ).




Finisson par la quatriéeme. On a

Tty _jEty Ty iy
T —Yy e 2 —He 2 e 2 —e 2
2cos | — | si =2 -
2 21
1 STty sT—y cTty cx—y _szty -y _grty _sz—y
:—'(67’2612—622622—}—612612—@7‘2622>
21
1 T Y —iy —iT
=—(e"—eY+e e ")
21
el _ oIt eW _ =

= — = sin(x) — sin(y).
Exercice 12.
Le but de cet exercice est de se familiariser avec la "régle de grammaire" mentionnée dans le cours et
comment ’appliquer dans I’écriture des mathématiques.
Soit f: R% — R définie par f(z) = I—IQ On a alors que la propriété

Ve >0, IM > 0 tel que Vo > M, |f(z)| < e.

est vraie.
Ci-dessous, deux démonstration du résultat. Dans 'une d’elles, nous avons glissé deux erreurs.
Laquelle de ces deux démonstrations est correcte et ou sont les problemes ?

Remarque.

la propriété ci-dessus sera étudiée dans le chapitre 4, c’est-a-dire, vous n’étes pas sensé - e comprendre
ce que la propriété veut dire. Les problemes dans la démonstration ne sont pas dis a ce que la
démonstration raconte, mais plutét, dans la grammaire employée dans la démonstration.

Démonstration. On doit montrer qu’on peut Démonstration. On  doit  montrer que
trouver M > 0 tel que dés que x > M, quelque soit £ > 0, on peut trouver M > 0
|f(z)] = # < e, quelque soit € > 0. tel que des que =z > M, |f(z)| = :%2 <e.
Posons M := ﬁ > 0 et considérons x > M Soit € > 0 quelconque. Posons M := % >0
quelconque. Alors, et considérons x > M quelconque. Alors,
1 z2M 1 m=1//c 1 1 z2M 1 m=1/e 1
f@)l=2% < g = - f@l=5'< 35 = e =e
() ()
€ étant quelconque, on a le résultat voulu. [ € étant quelconque, on a le résultat voulu. [

Solution :
Les deux problemes dans la démonstration de gauche sont les suivants :

— Dans la reformulation de ce qu’il y a a montrer, "il existe M > 0 tel que des que > M,
|f(x)| = m% < & quelque soit € > 0" vu que € > 0 est mentionné apres M, la grammaire
mathématique nous indique que M ne dépend pas de € tandis que € peut a priori dépendre de
M. Alors que dans ’énoncé de la propriété "Ve > 0, IM > 0 tel que Vo > M, [f(z)| < e, c'est
I'inverse.

— Lorsqu’on pose M := = vu que ¢ n’a pas été mentionné avant, on ne sait pas si on est en train
Ve
de définir M ou .

Morale de I’histoire : Dans ’examen vous aurez une démonstration du cours a redonner. Il est
important, lorsque vous redonnez la démonstration que vous respectiez l'ordre dans lequel les choses
sont écrites.



