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Question 1:

Soit f : [0,+∞[ → R, définie par f(x) := x e−x/5. Montrer qu’il existe x∗ > 0 tel que f(x∗) = 1. On donnera
une justification complète. Si des résultats du cours sont utilisés, on les énoncera.

Solution : Soit f : [0,+∞[ → R, définie par f(x) := x e−x/5. Montrons qu’il existe x∗ > 0 tel que
f(x∗) = 1.
Rappelons d’abord le théorème de la valeur intermédiaire:
Theorème: Soient a < b et f ∈ C0([a, b]). Alors pour tout y compris entre f(a) et f(b), il existe x ∈ [a, b]

tel que f(x) = y.

Pour montrer l’existence de x∗, on va vérifier que f satisfait les conditions du théorème avec deux valeurs a

et b telles que f(a) < 1 < f(b). La fonction f vaut 0 en 0 et f(5) = 5e−1 > 1 en 5. De plus, f ∈ C0([a, b]).
Posons a = 0, b = 5 et y = 1 ∈ [0, 5]. On a bien f(0) < 1 < f(5). On peut donc appliquer le théorème pour
montrer qu’il existe x∗ ∈ [0, 5] tel que f(x∗) = 1. De plus, x∗ ̸= 0 car f(0) = 0, donc x∗ ̸= 0. On a donc
bien trouvé une valeur x∗ > 0 telle que f(x∗) = 1.
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Question 2:

Soit f : R → R une fonction C∞ telle que f (0) = f (1) = f ′ (0) = f ′ (1) = 0.

(a) Montrez, en utilisant un ou des résultats du cours, que l’équation f ′′(x) = 0 a au moins deux solutions
sur ]0, 1[ .

(b) Donnez un exemple explicite d’une fonction f satisfaisant les propriétés ci-dessus où l’équation f ′′ (x) =

0 a exactement deux solutions sur ]0, 1[ .

Solution : Soit f : R → R une fonction C∞ telle que f (0) = f (1) = f ′ (0) = f ′ (1) = 0.

(a) Montrons que l’équation f ′′(x) = 0 a au moins deux solutions sur ]0, 1[ . Rappelons d’abord le théorème
de Rolle:
Theorème: Soient a < b, f une fonction continue sur [a, b] et dérivable sur ]a, b[ telle que f(a) = f(b).
Alors, il existe un c ∈]a, b[ tel que f ′(c) = 0.

Comme f est C∞ et puisque f(0) = f(1) = 0, on peut appliquer le théorème de Rolle pour montrer
qu’il existe c ∈]0, 1[ tel que f(c) = 0. On applique à nouveau le théorème de Rolle à la fonction f ′ (qui
est aussi C∞) sur les deux tronçons [0, c] et [c, 1]. Puisque f ′(0) = f ′(c) = 0, il existe a ∈]0, c[ tel que
f ′′(a) = 0. De même, comme f ′(c) = f ′(1) = 0, il existe b ∈]c, 1[ tel que f ′′(b) = 0. Comme a < c < b,
on a bien trouvé a ̸= b sur ]0, 1[ avec f ′′(a) = f ′′(b) = 0.

(b) Pour donner un exemple explicite d’une fonction f satisfaisant les propriétés ci-dessus et où l’équation
f ′′ (x) = 0 a exactement deux solutions sur ]0, 1[ , on cherche une fonction qui a deux minimums locaux
(respectivement maximum locaux) en 0 et 1 et un maximum local (respectivement minimum local) entre
les deux.

Par exemple, la fonction f(x) = sin(2πx− π
2 ) + 1 satisfait ces conditions.
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La deuxième dérivée de sin(2πx− π
2 )+1 est 4 cos(2πx), qui vaut 0 lorsque x = n

2 −
1
4 , n ∈ Z. Sur [0, 1],

on a exactement deux zéros, 1
4 et 3

4 .
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Question 2:

(a) Calculer le développement limité d’ordre 2 de f(x) = arctan
(
1
x

)
autour de x0 = 1.

(b) Déterminer si la série ∑
n≥1

{
arctan

(
1

1 + 1
n

)
− π

4
+

1

2n

}
converge ou diverge, en justifiant rigoureusement votre réponse.

Solution :

(a) Calculons le développement limité d’ordre 2 de f(x) = arctan
(
1
x

)
autour de x0 = 1. Calculons d’abord

ses dérivées première et deuxième:

f ′(x) = − 1

x2 + 1

f ′′(x) =
2x

(x2 + 1)2

Rappelons que le développement limité d’ordre 2 de f en x0 est

f(x) =

2∑
k=0

f (k)(x0)

k!
(x− x0)

k + o(|x− x0|n).

Cela implique également que

f(x) =

2∑
k=0

f (k)(x0)

k!
(x− x0)

k +O(|x− x0|n).

Autrement dit, on peut écrire

f(x) =

2∑
k=0

f (k)(x0)

k!
(x− x0)

k +R(x),

où R est une fonction définie dans un voisinage de x0 = 1 et il existe deux constantes δ > 0 et C > 0

telles que R(x) ≤ C(x− x0)
2 pour tout x tel que |x− x0| < δ (on utilisera cela au point 2).

Calculons ce développement limité pour fx) = arctan( 1x ):

f(x) =

2∑
k=0

f (k)(1)

k!
(x− 1)k +R(x)

= arctan(1)− 1

2
(x− 1) +

1

4
(x− 1)2 +R(x)

=
π

4
− 1

2
(x− 1) +

1

4
(x− 1)2 +R(x),

où R(x) = O(|(x− 1)2|).

Dans le graphique ci-dessous, on peut voir f en noir et le polynôme de Taylor de degré 2 en 1,
arctan(1)− 1

2 (x− 1) + 1
4 (x− 1)2, en bleu.
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(b) Pour déterminer si la série ∑
n≥1

{
arctan

(
1

1 + 1
n

)
− π

4
+

1

2n

}
converge ou diverge, on va calculer arctan( 1

1+ 1
n

) et observer son comportement quand n → ∞. Rem-

plaçons x par 1 + 1
n au point 1.

arctan(
1

1 + 1
n

) =
π

4
− 1

2n
(x− 1) +

1

4n2
+R(1 +

1

n
).

Ecrivons donc le terme de la somme comme

arctan(
1

1 + 1
n

)− π

4
+

1

2n
=

π

4
− 1

2n
(x− 1) +

1

4n2
+R(1 +

1

n
)

=
1

4n2
+R(1 +

1

n
).

Par le point 1, il existe δ > 0 et C > 0 tels que R(x) ≤ C(x − 1)2 pour tout x tel que |x − x0| < δ.
Ainsi, si n ≥ 1

δ , |1+
1
n −1| ≤ δ, et donc R(1+ 1

n ) ≤ C 1
n2 . Le terme de la somme est donc borné quand

n ≥ 1
δ :

arctan(
1

1 + 1
n

)− π

4
+

1

2n
≤ 1

4n2
+ C

1

n2
= C ′ 1

n2
.

Comme la série
∑

n≥1
1
n2 converge, par le critère de comparaison, on déduit que

∑
n≥1

arctan(
1

1 + 1
n

)− π

4
+

1

2n

converge aussi.
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