
Remarque sur les corrigés

Lire une solution, même partielle, d'un exercice sans avoir essayé plu-

sieurs heures 1 de le résoudre est presque totalement inutile. Faire un
exercice en ayant la solution sous les yeux est beaucoup plus facile, et ne
prépare que très mal à un examen (qui se fait sans solutions).

Par conséquent, la lecture du présent corrigé est déconseillée, et se fait
à vos risques et périls.

1. (même parfois plusieurs jours)
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Analyse I Corrigé 6
EPFL � Sections SIE/GC/SC

Solution 1.

Soit ε > 0. Comme an → a, il existe N tel que pour tout n ≥ N , on a |an − a| ≤ ε.
Comme nk est strictement croissante et à valeurs dans N, nk ≥ N dès que k ≥ N .
Ainsi, pour tout k ≥ N , on a |ank

− a| ≤ ε (car nk ≥ N), donc comme ε était
arbitraire, on a ank

→ a.

La première limite vaut e (sous-suite de (1 + 1
n
)n) et la seconde

√
e (sous-suite de

((1 + 1
n
)n)1/2).

Solution 2.

(a) Vrai. La suite |an| est décroissante et minorée (par 0) donc elle converge.

(b) Vrai. La suite |an| converge, elle est donc bornée, d'où ||an|| ≤ M ⇔ |an| ≤ M ,
et (an) est donc bornée.

(c) Faux. On peut prendre an = (−1)n(1 + 1
n
).

(d) Faux. Prendre an = 1
n
.

(e) Faux. Prendre an = 1
n
.

(f) Vrai, car elle converge.

(g) Vrai. Si m > n, on a

|am − an| ≤
m−1∑
k=n

|ak+1 − ak| ≤
m−1∑
k=n

10−k = 10−n

m−n−1∑
k=0

10−k = 10−n1−
1

10m−n

1− 1
10

≤ 10−n 1

1− 1
10

=
10

9
· 10−n.

Soit ε > 0. Comme 10
9
· 10−n → 0, il existe N tel que pour tout n ≥ N , on a

10
9
· 10−n ≤ ε. Alors pour m,n ≥ N , on a |am − an| ≤ 10

9
· 10−n ≤ ε, et (an) est

de Cauchy.

(h) Faux. Prendre an =
√
n. Alors an+k−an = n+k−n√

n+k+
√
n
converge vers 0 pour tout

k, mais (an) diverge.

Solution 3.

(a) Si n est un nombre pair, n3−1 est un nombre impair, et donc cos(π
2
(n3−1)) =

cos(π
2
(impair)) = 0. Ainsi, pour nk = 2k, la sous-suite (a2k) est constante = 0

et converge donc vers 0.

(b) Si n est de la forme 4k − 1 (i.e. si n ≡ −1 (mod 4)), on véri�e que n3 − 1 est
de la forme 4m + 2 (i.e. n3 − 1 ≡ 2 (mod 4)). Donc pour nk = 4k − 1, on a
cos(π

2
(n3 − 1)) = cos(π

2
(4m+ 2)) = cos(2πm+ π) = −1 −→ −1. La sous-suite

(a4k−1) converge donc vers −1.
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(c) Pour nk = k2, on a ank
=

√
k2 − ⌊

√
k2⌋ = k − k = 0 −→ 0.

(d) Détermination des nk: On cherche des indices n tels que
√
n ≈ k+ 1

2
, de sorte

que ⌊
√
n⌋ = k et

√
n−⌊

√
n⌋ ≈ 1

2
. On prend le carré de l'équation

√
n = k+ 1

2

pour trouver

n = (k +
1

2
)2 = k2 + k +

1

4
≈ k2 + k.

On pose donc nk = k2 + k.

Calcul de la limite pour nk = k2 + k: On remarque que k2 ≤ k2+k < (k+1)2

pour tous k ≥ 0. En prenant la racine, on trouve

k ≤
√
k2 + k =

√
nk < k + 1 ⇒ ⌊

√
nk⌋ = k.

Ainsi, on calcule

ank
=

√
nk − ⌊

√
nk⌋ =

√
k2 + k − k =

k√
k2 + k + k

=
1√

1 + 1
k
+ 1

−→ 1

2
.

Solution 4.

(a) Les sommes partielles sont

Sn =
n∑

k=0

qk =
1− qn+1

1− q
−→ 1

1− q

car |q| < 1, d'où |q|n+1 → 0 (suite géométrique de raison< 1) et ainsi qn+1 → 0.

Donc
∞∑
k=0

qk = lim
n→∞

Sn =
1

1− q
.

(b) Si |q| ≥ 1, le terme général qn ne tend pas vers zéro, donc la série diverge.

Solution 5.

(a) Si p > 1, on utilise la même astuce que pour le cas p = 2 (vu en cours). Si
Sn dénote la n-ième somme partielle, alors (Sn) est croissante (car Sn+1 =
Sn +

1
(n+1)p

≥ Sn). De plus, en séparant les termes pairs et impairs, on a

Sn ≤ S2n+1 = 1 +
1

2p
+

1

3p
+

1

4p
+

1

5p
+ · · ·+ 1

(2n)p
+

1

(2n+ 1)p

= 1 +
n∑

k=1

1

(2k)p
+

n∑
k=1

1

(2k + 1)p
≤ 1 + 2

n∑
k=1

1

(2k)p
= 1 + 21−p

n∑
k=1

1

kp

≤ 1 + 21−pSn.

d'où (1 − 21−p)Sn ≤ 1. Comme p > 1, on a 21−p < 1 et le facteur (1 − 21−p)
est positif. On trouve donc l'inéquation Sn ≤ 1

1−21−p , et (Sn) est majorée. Elle
converge donc par croissance majorée, et la série aussi.
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(b) Si p ≤ 1, la série diverge par comparaison: on a kp ≤ k et donc 1
kp

≥ 1
k
. Ainsi

ak ≥ 1
k
et la série diverge car

∞∑
k=1

1

k
diverge (série harmonique).

Solution 6.

(a) La série converge par comparaison. En e�et, 0 ≤ 1

k + 2k
≤ 1

2k
, donc la série

converge car
∞∑
k=0

1

2k
converge (série géométrique avec |q| = 1

2
< 1).

(b) La série converge par le critère de Cauchy:

lim
n→∞

n
√

|an| = lim
n→∞

3n+ 2

4n+ 5
=

3

4
< 1.

(c) La série converge par le critère de d'Alembert:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(n+ 1)43n

3n+1n4
=

1

3
lim
n→∞

(n+ 1)4

n4
=

1

3
< 1.

(d) La série converge par le critère de Leibniz (séries alternées). En e�et, an est
alternée et |an| est décroissante (dès que n ≥ 2), et on véri�e facilement que
lim
n→∞

|an| = 0, donc on a aussi lim
n→∞

an = 0.

(e) La série diverge. En e�et, si elle convergeait (et valait, disons a), alors la série
harmonique

∞∑
n=1

1

n
=

∞∑
n=1

(
1

n
− 1

n2
+

1

n2

)
=

∞∑
n=1

(
1

n
− 1

n2

)
+

∞∑
n=1

1

n2
= a+

π2

6

convergerait aussi. (Pourquoi a-t-on le droit de séparer les sommes in�nies en
deux ?)

(f) Le terme général vaut an = 1
n2 , donc la série converge (et vaut π2

6
).

(g) Si an dénote le terme général, on a l'estimation suivante dès que n ≥ 2:

an =
√
n2 + 7− n =

7√
n2 + 7 + n

≥ 7√
(n+ 7)2 + n

=
7

2n+ 7
≥ 7

7n
=

1

n
.

Donc la série diverge par comparaison, car an ≥ 1

n
(pour n ≥ 2) et

∞∑
n=1

1

n

diverge (série harmonique).

(h) La série converge par le critère de Cauchy:

lim
n→∞

n
√
|an| = lim

n→∞

(
1− 2

n

)n
= e−2 < 1.

(i) Cette série diverge car son terme général an ne tend pas vers 0:

lim
n→∞

n(n+ 4)(n− 3)

7n3 + n+ 2
=

1

7
̸= 0
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(j) La série converge par comparaison. On a

an =

√
n+ 4−

√
n

n
=

4

n(
√
n+ 4 +

√
n)

≤ 2

n3/2
.

Donc la série converge, car 0 ≤ an ≤ 2
n3/2 et

∞∑
n=1

2

n3/2
= 2

∞∑
n=1

1

n3/2
converge

(série de terme 1
np avec p = 3

2
> 1).

Solution 7.

(a) On peut soit utiliser l'exercice 3(c) de la série 4, pour trouver:

Sn =
n∑

k=1

1

k(k + 1)
=

n

n+ 1
−→ 1 ⇒

∞∑
k=1

1

k(k + 1)
= 1.

Ou alors, on réécrit le terme ak comme:

ak =
1

k(k + 1)
=

1

k
− 1

k + 1
.

Les sommes partielles sont donc

Sn = − 1

n+ 1
+

1

n
− 1

n
+

1

n− 1
− 1

n− 1
± · · ·+ 1

2
− 1

2
+ 1 = − 1

n+ 1
+ 1.

Donc lim
n→∞

Sn = 1 et la série vaut 1.

(b) On remarque que, si ak =
1

k(k+1)
, on a dès que k ≥ 2,

ak =
1

k(k + 1)
≤ 1

k2
≤ 1

(k − 1)k
= ak−1.

Ainsi, en prenant les sommes partielles

n∑
k=1

ak ≤
n∑

k=1

1

k2
≤ 1 +

n∑
k=2

ak−1 = 1 +
n−1∑
k=1

ak,

et donc dans la limite lorsque n → ∞:

1 =
∞∑
k=1

ak ≤
∞∑
k=1

1

k2
≤ 1 +

∞∑
k=1

ak = 2.

Solution 8.

(a) C'est une série géométrique avec q = e−1. Sa valeur est donc 1
1−e−1 = e

e−1
.

(b) Les sommes partielles sont

Sn =
1√
n
− 1√

n− 1
+

1√
n− 1

− 1√
n− 2

± · · · − 1√
2
+

1√
2
− 1 =

1√
n
− 1.

Donc lim
n→∞

Sn = −1 et la série vaut −1.
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(c) Le terme ak s'écrit

ak =
1

k(k + 3)
=

1

3

(
1

k
− 1

k + 3

)
Donc comme au (b), tous les termes dans les sommes partielles se compensent,
sauf les 3 premiers et les 3 derniers:

Sn =
1

3

(
− 1

n+ 3
− 1

n+ 2
− 1

n+ 1
+ 0 +

1

3
+

1

2
+ 1

)

et donc
∞∑
k=1

1

k(k + 3)
= lim

n→∞
Sn =

1

3

(
1

3
+

1

2
+ 1

)
=

11

18
.
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