
Remarque sur les corrigés

Lire une solution, même partielle, d'un exercice sans avoir essayé plu-

sieurs heures 1 de le résoudre est presque totalement inutile. Faire un
exercice en ayant la solution sous les yeux est beaucoup plus facile, et ne
prépare que très mal à un examen (qui se fait sans solutions).

Par conséquent, la lecture du présent corrigé est déconseillée, et se fait
à vos risques et périls.

1. (même parfois plusieurs jours)
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Analyse I Corrigé 5
EPFL � Sections SIE/GC/SC

Solution 1.

On montre le cas du sup (le cas du inf est similaire). Supposons que x = supA. Alors
x est le plus petit majorant, il existe donc, pour tout n ∈ N∗ un élément an ∈ A tel
que x − 1

n
< an ≤ x. Par le théorème des deux gendarmes, la suite (an) converge

vers x.

A l'inverse, supposons que x est un majorant et (an) ⊆ A une suite qui converge
vers x. Il faut montrer que x est le plus petit majorant. Soit donc y < x, et posons
ε = x−y

100
. Comme an → x, on a |an−a| ≤ ε pour n assez grand (disons n ≥ N). D'où

an ∈ [x− ε, x+ ε], et ainsi y < an par choix de ε. Donc y n'est pas un majorant, et
x est bien le sup.

Pour l'exercice 3, série 2: Au (d), on a supA = maxA = 1, puisque 1 ∈ A ; de plus,
0 est un minorant et la suite an = 1

n
converge vers 0: c'est donc inf A. Pour le (e)

et le (f), on trouve les min et max directement. Pour le (g), on trouve minA = 0
et la suite écrite converge vers 1 qui est un majorant, c'est donc le sup. Et pour le
(i), on trouve une suite de rationnels du type 1, 1.4, 1.41, 1.414, . . . qui converge vers√
2 par en dessous. Cela montre que supA =

√
2, et en prenant (−1)· cette suite,

on montre que inf A = −
√
2.

Solution 2.

Soit ε > 0. Si a = 0, il existe N ∈ N tel que an ≤ ε2 pour tout n ≥ N . En prenant
les racines, on trouve 0 ≤ √

an ≤ ε. Si a > 0, on a

|
√
an −

√
a| = |

√
an −

√
a|
√
an +

√
a

√
an +

√
a
=

|an − a|
√
an +

√
a
≤ |an − a|√

a
.

Comme an → a, il existe N ∈ N tel que |an − a| ≤ ε
√
a pour tout n ≥ N . Ainsi,

pour tout n ≥ N , on a |√an −
√
a| ≤ ε

√
a√
a

= ε.

Dans les deux cas, comme ε est arbitraire, on conclut que
√
an −→

√
a.

Solution 3.

(a) On a n2 ≤ n2 + 2 ≤ n2 + 2n+ 4 = (n+ 2)2. En prenant les racines, on trouve
n ≤

√
n2 + 2 ≤ n+ 2, et donc

n

2n
≤

√
n2 + 2

2n
≤ n+ 2

2n
.

Les suites à gauche et à droite convergent vers 1
2
, donc celle du milieu aussi

grâce au théorème des deux gendarmes.

(b) La suite an = n2

2n
converge vers 0 par le critère de d'Alembert:

lim
n→∞

|an+1|
|an|

= lim
n→∞

(
n+ 1

n

)2
1

2
= lim

n→∞

(
1 +

1

n

)2
1

2
=

1

2
< 1.
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Un autre manière est d'estimer 2n. Le plus rapide est d'utiliser l'exercice 3c de
la série 4: 2n =

∑n
k=0

(
n
k

)
. Donc pour n ≥ 3, on trouve 2n ≥

(
n
3

)
= n(n−1)(n−2)

6
.

Ainsi

0 ≤ n2

2n
≤ 6

n2

n(n− 1)(n− 2)
.

Les suites à gauche et à droite convergent vers 0, donc celle du milieu aussi
grâce au théorème des deux gendarmes.

(c) On a

0 ≤ n!

nn
=

1 · 2 · 3 · · ·n
n · n · n · · ·n

≤ 1

n
· 1 =

1

n
,

d'où lim
n→∞

n!

nn
= 0 par le théorème des deux gendarmes.

(d) On multiplie par
√
n2+2+

√
n2+3√

n2+2+
√
n2+3

pour trouver

lim
n→∞

√
n2 + 2 +

√
n2 + 3 = lim

n→∞

−1√
n2 + 2 +

√
n2 + 3

= 0

car le dénominateur tend vers +∞.

(e) On multiplie par
√
n2−1+(n−1)√
n2−1+(n−1)

pour trouver

lim
n→∞

n2 − 1− (n− 1)2√
n2 − 1 + n− 1

= lim
n→∞

n(2− 2
n
)

n
(√

1− 1
n2 + 1− 1

n

) =
(2− 0)

(
√
1− 0 + 1− 0)

= 1.

(f) On multiplie par
√
n4+6n−3+n2

√
n4+6n−3+n2 pour trouver que la limite vaut

lim
n→∞

n(6n− 3)√
n4 + 6n− 3 + n2

= lim
n→∞

n2(6− 3
n
)

n2
(√

1 + 6
n3 − 3

n4 + 1
) =

6

1 + 1
= 3.

(g) La suite an = n23n2−3n = n2
(
3
8

)n
converge vers 0 par le critère de d'Alembert:

lim
n→∞

|an+1|
|an|

= lim
n→∞

(
n+ 1

n

)2
3

8
= lim

n→∞

(
1 +

1

n

)2
3

8
=

3

8
< 1.

(h) La suite est majorée par 3n+8
n2+2n+6

et minorée par − 3n+8
n2+2n+6

. Ces deux suites
convergeant vers 0, on conclut par le théorème des deux gendarmes que la
suite originale aussi.

(i) La suite est majorée par 1
2n+1

et minorée par − 1
2n+1

. Ces deux suites conver-
geant vers 0, on conclut par le théorème des deux gendarmes que la suite
originale aussi.

(j) Soit ε > 0, et considérons la suite bn =
n

(1 + ε)n
. On a

lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ = lim
n→∞

n+ 1

n

1

1 + ε
=

1

1 + ε
< 1.
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Par le critère de d'Alembert, (bn) converge vers 0, d'où bn ≤ 1 ⇔ n ≤ (1+ ε)n

pour n assez grand, disons n ≥ N . Ainsi, pour n ≥ N , on a 1 ≤ n ≤ (1+ε)n. En
prenant des racines n-ièmes, on trouve que pour n ≥ N , on a 1 ≤ n

√
n ≤ 1+ ε,

d'où | n
√
n − 1| ≤ ε pour n ≥ N . Comme ε est arbitraire, cela montre que

lim
n→∞

n
√
n = 1.

Solution 4.

(a) On écrit 1 +
2

n
=

n+ 2

n
=

n+ 1

n

n+ 2

n+ 1
=

(
1 +

1

n

)(
1 +

1

n+ 1

)
, d'où

lim
n→∞

(
1 +

2

n

)n

= lim
n→∞

(
1 +

1

n

)n

·
(
1 +

1

n+ 1

)n+1

· 1

1 + 1
n+1

= e · e · 1 = e2.

(b) On écrit 1− 1

n
=

n− 1

n
=

(
n

n− 1

)−1

=

(
1 +

1

n− 1

)−1

, d'où

lim
n→∞

(
1− 1

n

)n

= lim
n→∞

((
1 +

1

n− 1

)n)−1

=
1

lim
n→∞

(
1 +

1

n− 1

)n−1(
1 +

1

n− 1

) =
1

e · 1
=

1

e
.

(c) On écrit 1− 1

n2
=

(
1 +

1

n

)(
1− 1

n

)
, d'où

lim
n→∞

(
1 +

1

n2

)n

= lim
n→∞

(
1 +

1

n

)n

·
(
1− 1

n

)n

= e · 1
e
= 1.

Solution 5.

(a) La suite converge vers 0, donc lim inf
n→∞

an = lim sup
n→∞

an = 0.

(b) On calcule quelques valeurs de la suite: (an) = (1,−1
2
,−1

2
, 1,−1

2
,−1

2
, . . . ).

Ainsi, {a≥n} = {1,−1
2
} ⇒ sup{a≥n} = 1 et inf{a≥n} = −1

2
d'où lim inf

n→∞
an =

−1

2
et lim sup

n→∞
an = 1.

(c) Pour nk = 2k, on a ank
=

(
1 + 1

2k

)2k −→ e (car c'est une sous-suite de
(
1 + 1

n

)n
qui converge vers e, cf cours). Pour nk = 2k+1, on a ank

=
(
1− 1

2k+1

)2k+1 → 1
e

(car c'est une sous-suite de
(
1− 1

n

)n
qui converge vers 1

e
, cf exercice précédent).

On se convainc que ces limites sont les plus grandes/les plus petites possibles
(toute autre sous-suite est une sous-suite de ces sous-suites !). On trouve donc

lim inf
n→∞

an =
1

e
et lim sup

n→∞
an = e.

(d) On remarque que cos(πn) = (−1)n et cos(πn
2
) vaut (−1)m si n = 2m est pair,

et 0 si n est impair. Donc, an prend les valeurs suivantes:

n 0 1 2 3 4 5 6 7 8 9 . . .
an

1
1
2
+1

= 2
3

−1
1
2

= −2 1
1
2
−1

= −2 −1
1
2

= −2 2
3

−2 −2 −2 2
3

−2 . . .
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Il suit que {a≥n} = {−2, 2
3
}, et donc

lim inf
n→∞

an = lim
n→∞

inf{a≥n} = −2 et lim sup
n→∞

an = lim
n→∞

sup{a≥n} =
2

3
.

(e) Par dé�nition de ⌊x⌋, 0 ≤ x− ⌊x⌋ ≤ 1, donc 0 ≤ an ≤ 1. Pour nk = k2, on a
ank

= k − k = 0 −→ 0, d'où lim inf
n→∞

an = lim
k→∞

ak2 = 0. Et pour nk = k2 − 1,

on remarque que ⌊
√
k2 − 1⌋ = k − 1, et donc ank

=
√
k2 − 1− (k − 1). Cette

suite converge vers 1 (cf exercice 3(e)), et donc lim inf
n→∞

an = lim
k→∞

ak2−1 = 1.

Solution 6.

(a) Vrai. On a |an − 0| = ||an| − 0|, et donc |an − 0| ≤ ε si et seulement si
||an| − 0| ≤ ε. En contemplant la dé�nition de �converger vers 0�, on conclut
que an → 0 si et seulement si |an| → 0.

(b) Faux. Prendre an = 1 pour tout n

(c) Faux. Prendre an = n.

(d) Vrai. lim
n→∞

|an − a| = 0 ⇔ ∀ε > 0 ∃N ∈ N ∀n ≥ N ||an − a| − 0| ≤ ε. Comme

||an − a| − 0| = |an − a|, c'est vrai si et seulement si ∀ε > 0 ∃N ∈ N ∀n ≥
N |an − a| ≤ ε ⇔ lim

n→∞
an = a.

(e) Faux. Prendre par exemple an = (n− 10)2.

(f) Faux. Prendre an = 2n et bn = n.

(g) Faux. Prendre an = n et bn = 0.

(h) Vrai. Posons lim
n→∞

anbn = ℓ2. Pour n assez grand, bn ̸= 0 et donc an =
anbn
bn

,

d'où

lim
n→∞

an = lim
n→∞

anbn
bn

=
lim
n→∞

anbn

lim
n→∞

bn
=

ℓ2
ℓ
.

(i) Vrai. On a
0 ≤ |an| ≤ sup{|a≥n|}.

La suite à droite converge vers 0 (dé�nition de lim sup) et donc |an| → 0 par
le théorème des deux gendarmes.

(j) Faux. Prendre an = 1 + (−1)n. La suite vaut alors 0, 2, 0, 2, 0, 2, . . . , donc
lim inf
n→∞

|an| = 0, mais (an) diverge (car (−1)n diverge).

Solution 7.

(a) C'est une récurrence linéaire: an+1 = qan+b où q = 1
4
et b = 3

4
. Comme |q| < 1,

la suite an converge vers 3/4
1−1/4

= 1.

(b) C'est une récurrence linéaire: an+1 = qan + b où q = −3
2
et b = 1. Comme

|q| > 1 et a0 ̸= ℓ la suite diverge.
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(c) Si une limite existe, elle doit être solution de x = g(x), où g(x) = 7
3
− 1

1+x
. On

obtient une équation du second degré, dont les solutions sont x = −2
3
et x = 2.

On montre alors par récurrence que an ≥ 0, donc la seule limite possible est
ℓ = 2. On continue en remarquant que

|an+1 − 2| =
∣∣∣∣73 − 1

1 + an
− 2

∣∣∣∣ = ∣∣∣∣13 − 1

1 + an

∣∣∣∣ = 1

3

|an − 2|
1 + an

≤ 1

3
|an − 2|.

On transforme cela en une preuve par récurrence que |an−2| ≤ 1
3n
|a0−2| = 1

3n
.

Comme 1
3n

−→ 0, cela montre que |an − 2| −→ 0.

(d) Si une limite existe, elle doit être solution de x = g(x), où g(x) = x2+6
5

.
On obtient une équation du second degré, dont les solutions sont x = 2 et
x = 3. On calcule quelques termes, et on s'aperçoit que 0 ≤ an ≤ 5

2
, ce qu'on

s'empresse de montrer par récurrence. Ainsi la seule limite possible est ℓ = 2.
On calcule alors

|an+1 − 2| =
∣∣∣∣a2n + 6

5
− 2

∣∣∣∣ = |an + 2|
5

|an − 2| ≤
5
2
+ 2

5
|an − 2| = 9

10
|an − 2|.

On transforme cela en preuve par récurrence que |an−2| ≤ ( 9
10
)n|a0−2| −→ 0,

et donc |an − 2| −→ 0, i.e., an −→ 2.
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