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The definition of Riemann’s integral involves a redundant requirement.

1. Introduction

The purpose of this note is to suggest that the definition of Riemann’s integral
involves an unnecessary requirement. Let us recall the history.

In 1854, Riemann gave a precise definition of the integral Lbf(x) dx, which set a
firm foundation for integration theory. For nearly one and a half centuries, there
were numerous investigations by several generations of mathematicians, but there
are some things still worth discussing. The definitions of a partition of an interval
and of Riemann’s integral of a function are as follows.

Definition 1. A partition P of the interval [a,b] is a finite set of numbers:
P={a=xy<x <..<x,=b}. The norm of the partition P is given by
IP|| = max{x;, — x_q : 1 < k< n}.

Definition 2. A function f(x) defined on the interval [a,b] is said to be
Riemann integrable if there is a number [ such that for arbitrarily small € > 0,
there is a § > 0, such that for any partition P with ||P|| < §, and any choice of the
numbers ¢, € [x_1 %) (R =1,2,...,m), [ > )| flex)(xp — xpmq) — I| <e.

There are two ‘any’s in Definition 2. It is easily understood that ‘any choice of
the numbers ¢;, € [xp, x;_1]" is necessary by a simple example: f(x) = 1 for rational
x and f(x) = 0 for irrational x. For this function, Y ,_; f(cx)(xx — xx_1) is 0 if the
¢ps are all irrational and is 1 if the ¢;s are all rational. Naturally we may ask the
question why ‘any partition P with ||P|| < §’ is necessary. We need an example of a
function f(x) defined on [a,b] such that the sum Y, f(cx)(xx — x4_1) approaches
two different values according to two different kinds of partitions P, Q, for
instance P is an equal partition while QO is not.

Before stating our result, we recall a necessary and sufficient condition for
Riemann integrability due to Darboux in 1875.

Theorem 1. Let f(x) be a bounded function defined on the interval [a, b]. For
any partition P of [a,b], P={a=x) < x1 < ... < x, = b}, let

w(f, [xr—1,x2]) = sup{f(x) : x € [xp_1, %]} — Inf{f(x) : x € [wp_1,x%]}.
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Then f(x) is Riemann integrable if and only if for arbitrarily small € > 0, there
is a 6 > 0 such that |3, | w(f, [xp_1xk])(xx — x21)| < € whenever [[P|| < é.
The following two properties of w(f, [a, b]) are obvious.

(1) w(f,la,b]) < w(f, [c,d]) if [a,b] C [c,d];

(2) w(f,la,b]) Sw(f, la,c]) +w(f,[c,b]) if a<e<b.

In the sequel, if the function f(x) is the only given function in the context, we
will simply write w([a, b]) instead of w(f, [a,d]).

2. Main Result
Now we give the main result.

Theorem 2. Let f(x) be a function defined on the interval [a, b]. If there is a
number I such that for arbitrarily small € > 0, there is a natural number N, such
that whenever n > N and ¢, are arbitrarily chosen from the interval

[H(kn(ba) +k(ba)]’

we have

k=1
then f(x) is Riemann integrable.

Remark 1. In the definition above, no partition P of [a,b] is explicitly
mentioned. Actually the numbers

k(b —
{aJru:kO,l,Z,...,n}

n
form an equal partition.

Proof of Theorem 2. 'The proof consists of two steps.
(1) We first prove that for arbitrarily small ¢ > 0, there is a natural number N
such that n > N implies

z":w(f, [aJr(kl)(ba),aJrk(ba)Dba _

k=1

For notational simplicity, let

k(b —
a0
n

Then for any £ > 0, there are numbers ¢ dj, € [tp_1, t;] such that
5
4(b—a)
5
4(b—a)

0 < sup{f(x):tpy Kx <t} —fler) <
0 < f(dp) —inf{f(x) : 1 Sx <1} <

For this ¢, there are two natural numbers Ny, N, such that n > Nyimplies
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" b—a €
> fler) —I<z
k=1

and n = N, implies
" b—a €
f(dy) -1 <7
k=1 4

Therefore letting N = max{N{, N;}, we have n > N implies the following two

inequalities
a - € b—a ¢
< (St
<k1 4(ba)> n 4

" b " b
> sup{f(x)  t < v <t} = 3" fle)
k=1

k=1
- b—a < b—a| ¢
> f(de) inf{f(x) : tr1 <x <t} <3
k=1 k=1
Hence
" b € € ¢
Zsup{f(x):tk,1<x<tk} —Il<=4=-==
— 4 4 2
= b—a €
Zlnf{f(x):tk:1 < x < 1y} Il <=
— n 2

Now we have

<e€

bfa
Z -1, 1))
n

k—

(2) Let e > 0 be given. By the discussion (1), pick a natural number N such that
n = N implies

" b—a| ¢
Zw(f, tr-1,t2]) <3
k=1
We specially pick n = N, and have
N c
w(lte—1, ) (1 — 1) | <%
k=1 3

Here we write w([t_1, #z]) instead of w(f, [¢x—_1, tz])-
Suppose P={a=x) < x1 < ... < x, = b} is a partition of the interval [a, ]
with ||P|| < 8, where § = (b — a)/(3N). Since

b —

tkft,H:T“ forall k=1,....N

ey
we know that for any interval [t,_1,], there is at least one number x;, in the
partition P such that x,k € [tr_1,tz]. Hence the two groups of numbers
{tx : 0 < k< N} and {x; : 0 < i < m} are related as follows:
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a=1ty=x0 <x1 <...<x, <O Kx01<x42<...<%,<1D
SX4 < oo <xg, < S Xy < e
<Xy <IN S Xy 1 <Xy 12 <. <X, =IN=0b
For each interval [x;, x;11], there are two possible cases:
(1) There is a k such that [x;, x;.1] C [tr, tra1]. Then w([x;, x;01] < w([tr, trr1]).
(i1) The interval [x;, x;11] does not fall completely in an interval [#g, t41]. Hence

¢ must be an ¢ such that #,_; < x; <1, < xj,41 < tpy1. The following
inequalities are immediate

w(loeis i 1] < W{te—1,s ter1]) < W[t ta]) + w({te, trr1])

Now we divide the addends in the expression > "  jw([x; X;+1])(x;41 — &;) into
two parts according to the case (i) or (ii).

In the first part, since the total length of all the adjacent intervals [x;, x;.1]
falling into the interval [tg, 1] is ;,,, — %41 < tey1 — £ and each w([x;, x;41]) <
W([tr, trr1]), we know that the sum of all addends in this part is less than

N

ZW([% 1)) (L1 — ta)

k=0
On the other hand, for the intervals in case (ii),
b—a b—a

AN ° N

Xipr1 — %, <[P < =l — th = bpy1 — b

Hence
w([xir1, 23, ]) (i1 — x3,) < wlteor, t]) (2r — tr1) + W([try trs1]) (Ter1 — te)

The sum of all addends this part cannot exceed 22}?7:0 W([try trrr]) (Err1 — tr)-
Therefore

" N
ZW([xi,xm])(xm —x;) < 32”([% teet )t = 1) < 3(%) =c
i=0 k=0

The proof of Theorem 2 is completed.

3. Discussion
Theorem 2 reveals that there is a redundant condition in Riemann’s definition
of integral. The requirement ‘any partition of the interval [a, b] with ||P|| < § ’ can
be relaxed. As matter of fact, rewriting

n

if(ck)bia as (bfa)M
=1

we may give Riemann’s integral a statistical definition since

22:1 f(cr)

n

is the mean of the sequence of the samples taken from the space
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Sy = {f(x):aJrW <x<a+@}

Definition 3. Let f(x) be a function defined on [a,b]. Then le f(x)dx =
m(b — a) if and only if

m = lim
n—oQ

L fler)

exists, where

n n

fler) € {f(x) ;a+w§x§a+k(1)a)}.

Theorem 2 asserts that for Riemann’s integrable function we need only
consider the equal partitions of the the interval [a,b]. If we make some minor
verbal revision we can prove that whether a function is Riemann integrable only
depends one sequence of partitions with norm approaches to 0.

Theorem 3. Let f(x) be a function defined on [a,b]. Let P; = {a = x,(i) <
x1(i) < ... < x,)(i) = b} be a sequence of partitions of the interval [a,b] and

hmHOOHP || =0.If Iis a real number and for any € > 0, there is a natural number
N such thati > N implies |Zk i )(xk( ) — xp— 1( ) — 1| < 6 where ¢, are taken
arbitrarily from the interval [x,_{(7), xx(7)], then f f(x)dx =

Riemann’s integral has a long hlstory It is 1ncred1b1e that such a very basic
property has been neglected for a long time. It even escaped the notice of many
great mathematical analysts. In most of the textbooks in calculus, the Riemann
integral of a function is defined as the limit limyp|_o Y 5, f(cr)(xx — xp—1) if it
exists. This limit process on partitions is not the same limit process on the set of
real numbers. The textbooks confuse the two limits as one. We know that the set of
real numbers has very rich structures in both algebra and topology, while the set of
partitions of an interval has very poor structure. Many properties of the limit
process on the set of real numbers cannot be tranferred to the new limit process on
partitions. Most of people think a counterexample can be found because in the
limit process involving real numbers, it is common sense that the convergence of a
subsequence never guarantee the convergence of the sequence. The author was a
victim of this wrong belief.

All the knowledge we need in this paper is elementary and self-contained in the
classical theory of calculus founded by Cauchy. The readers can find all the
preliminaries in an undergraduate course ‘Advanced Calculus’. No concepts like
topology or measure are needed.
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In this note we give an elementary derivation for the power series
expansions for the sine and the cosine function.

The functions sin and cos have derivatives satisfying (sinx)’ = cosx and
(cosx)’ = —sinx. It is not hard to come up with pairs of polynomials whose
derivatives are related in almost the same way: the functions C, and S,, defined by

2 2n P 2t
Cn(x):172—!+...+(71)"(2n)! and Sn(x):x73—!+...+(71)"m,
clearly satisfy

S/ =C,(x) and C)(x)=—S,_1(x). (%)

Consider the functions f, and g, defined by
fulx) = Cy(x) cosx + S,(x)sinx and g,(x) = C,(x)sinx — S, (x) cos x.
Using (x) it is elementary to verify that

x2n+l x2n+l

fl(x) = (=1)"cos xm and g/ (x) = (—1)"sin xm

Applying the Mean Value Theorem to each of the functions f, and g, we get the
following system of equations
Cy(x)cosx+S,(x)sinx =1+ xf/(c) and C,(x)sinx —S,(x)cosx =0+ xg,(c),

for ¢ and ¢ between x and 0. Clearly |xf/(c)| < x*"*2/(2n+ 1)! and |xg/(c)| <
%242 /(2n + 1)!. Using that #*"*2/(2n+ 1)! — 0, we obtain

C,(x)cosx + S,(x)sinx -1 and C,(x)sinx —.S,(x)cosx — 0
as n — oo. It follows that
C,(x) ={C,(x) cosx+ S, (x) sinx} cosx + {C,(x) sinx — S, (x) cosx} sin x — cosx

and



