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The de®nition of Riemann’s integral involves a redundant requirement.

1. Introduction

The purpose of this note is to suggest that the de®nition of Riemann’s integral
involves an unnecessary requirement. Let us recall the history.

In 1854, Riemann gave a precise de®nition of the integral
b

a
f…x† dx, which set a

®rm foundation for integration theory. For nearly one and a half centuries, there
were numerous investigations by several generations of mathematicians, but there
are some things still worth discussing. The de®nitions of a partition of an interval
and of Riemann’s integral of a function are as follows.

De®nition 1. A partition P of the interval ‰a; bŠ is a ®nite set of numbers:
P ˆ fa ˆ x0 < x1 < ::: < xn ˆ bg: The norm of the partition P is given by
Pk k ˆ maxfxk ¡ xk¡1 : 1 4 k 4 ng:

De®nition 2. A function f…x† de®ned on the interval ‰a; bŠ is said to be
Riemann integrable if there is a number I such that for arbitrarily small " > 0;
there is a ¯ > 0; such that for any partition P with Pk k < ¯, and any choice of the
numbers ck 2 ‰xk¡1;xkŠ …k ˆ 1; 2; :::; n†; j n

kˆ1 f…ck†…xk ¡ xk¡1† ¡ Ij < ":

There are two `any’s in De®nition 2. It is easily understood that `any choice of
the numbers ck 2 ‰xk; xk¡1Š’ is necessary by a simple example: f…x† ˆ 1 for rational
x and f …x† ˆ 0 for irrational x. For this function, n

kˆ1 f …ck†…xk ¡ xk¡1† is 0 if the
c 0

ks are all irrational and is 1 if the c 0
ks are all rational. Naturally we may ask the

question why `any partition P with Pk k < ¯’ is necessary. We need an example of a
function f…x† de®ned on ‰a; bŠ such that the sum n

kˆ1 f …ck†…xk ¡ xk¡1† approaches
two di� erent values according to two di� erent kinds of partitions P, Q, for
instance P is an equal partition while Q is not.

Before stating our result, we recall a necessary and su� cient condition for
Riemann integrability due to Darboux in 1875.

Theorem 1. Let f …x† be a bounded function de®ned on the interval ‰a; bŠ: For
any partition P of ‰a; bŠ; P ˆ fa ˆ x0 < x1 < . . . < xn ˆ bg; let

!… f ; ‰xk¡1; xkŠ† ˆ supff …x† : x 2 ‰xk¡1; xkŠg ¡ infff…x† : x 2 ‰xk¡1; xkŠg:
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Then f…x† is Riemann integrable if and only if for arbitrarily small " > 0; there
is a ¯ > 0 such that j n

kˆ1 !… f ; ‰xk¡1;xkŠ†…xk ¡ xk¡1†j < " whenever Pk k < ¯:
The following two properties of !…f ; ‰a; bŠ† are obvious.

(1) !… f ; ‰a; bŠ† 4 !… f ; ‰c; dŠ† if ‰a; bŠ » ‰c; dŠ;
(2) !… f ; ‰a; bŠ† 4 !… f ; ‰a; cŠ† ‡ !… f ; ‰c; bŠ† if a < c < b:

In the sequel, if the function f…x† is the only given function in the context, we
will simply write !…‰a; bŠ† instead of !… f ; ‰a; bŠ†:

2. Main Result

Now we give the main result.

Theorem 2. Let f…x† be a function de®ned on the interval ‰a; bŠ: If there is a
number I such that for arbitrarily small " > 0; there is a natural number N; such
that whenever n 5 N and ck are arbitrarily chosen from the interval

a ‡ …k ¡ 1†…b ¡ a†
n

; a ‡ k…b ¡ a†
n

;

we have

n

kˆ1

f …ck† b ¡ a

n
¡ I < ";

then f…x† is Riemann integrable.

Remark 1. In the de®nition above, no partition P of ‰a; bŠ is explicitly
mentioned. Actually the numbers

a ‡ k…b ¡ a†
n

: k ˆ 0; 1; 2; . . . ; n

form an equal partition.

Proof of Theorem 2. The proof consists of two steps.
(1) We ®rst prove that for arbitrarily small " > 0; there is a natural number N

such that n 5 N implies

n

kˆ1

! f ; a ‡ …k ¡ 1†…b ¡ a†
n

; a ‡ k…b ¡ a†
n

b ¡ a

n
< ":

For notational simplicity, let

tk ˆ a ‡ k…b ¡ a†
n

for k ˆ 0; 1; . . . ; n

Then for any " > 0; there are numbers ck;dk 2 ‰tk¡1; tkŠ such that

0 4 supff …x† : tk¡1 4 x 4 tkg ¡ f …ck† <
"

4…b ¡ a†

0 4 f …dk† ¡ infff …x† : tk¡1 4 x 4 tkg <
"

4…b ¡ a†

For this "; there are two natural numbers N1; N2 such that n 5 N1implies
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n

kˆ1

f …ck† b ¡ a

n
¡ I <

"

4

and n 5 N2 implies

n

kˆ1

f …dk† b ¡ a

n
¡ I <

"

4

Therefore letting N ˆ maxfN1; N2g, we have n 5 N implies the following two
inequalities

n

kˆ1

supff …x† : tk¡1 4 x 4 tkg b ¡ a

n
¡

n

kˆ1

f…ck† b ¡ a

n
<

n

kˆ1

"

4…b ¡ a†
b ¡ a

n
ˆ "

4

n

kˆ1

f…dk† b ¡ a

n
¡

n

kˆ1

infff…x† : tk¡1 4 x 4 tkg b ¡ a

n
<

"

4

Hence

n

kˆ1

supff …x† : tk¡1 4 x 4 tkg b ¡ a

n
¡ I <

"

4
‡ "

4
ˆ "

2

n

kˆ1

infff …x† : tkˆ1 4 x 4 tkg b ¡ a

n
¡ I <

"

2

Now we have

n

k¡1

!… f ; ‰tk¡1; tkŠ† b ¡ a

n
< "

(2) Let " > 0 be given. By the discussion (1), pick a natural number N such that
n 5 N implies

n

kˆ1

!… f ; ‰tk¡1; tkŠ†
b ¡ a

n
<

"

3

We specially pick n ˆ N, and have

N

kˆ1

!…‰tk¡1; tkŠ†…tk¡1 ¡ tk† <
"

3

Here we write !…‰tk¡1; tkŠ† instead of !… f ; ‰tk¡1; tkŠ†:
Suppose P ˆ fa ˆ x0 < x1 < . . . < xm ˆ bg is a partition of the interval ‰a; bŠ

with Pk k < ¯; where ¯ ˆ …b ¡ a†=…3N†: Since

tk ¡ tk¡1 ˆ b ¡ a

N
for all k ˆ 1; . . . ; N

we know that for any interval ‰tk¡1; tkŠ; there is at least one number xik in the
partition P such that xik 2 ‰tk¡1; tkŠ: Hence the two groups of numbers
ftk : 0 4 k 4 Ng and fxi : 0 4 i 4 mg are related as follows:
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a ˆ t0 ˆ x0 < x1 < . . . < xi1 < t1 4 xi1‡1 < xi1‡2 < . . . < xi2 < t2

4 xi2‡1 < . . . < xik < tk 4 xik‡1 < . . .

< xiN¡1
< tN¡1 4 xiN¡1‡1 < xiN¡1‡2 < . . . < xm ˆ tN ˆ b

For each interval ‰xi; xi‡1Š, there are two possible cases:

(i) There is a k such that ‰xi; xi‡1Š » ‰tk; tk‡1Š: Then !…‰xi; xi‡1Š 4 !…‰tk; tk‡1Š†:
(ii) The interval ‰xi; xi‡1Š does not fall completely in an interval ‰tk; tk‡1Š: Hence

i must be an ik such that tk¡1 < xik < tk 4 xik‡1 < tk‡1: The following
inequalities are immediate

!…‰xik ; xik‡1Š 4 !…‰tk¡1; tk‡1Š† 4 !…‰tk¡1; tkŠ† ‡ !…‰tk; tk‡1Š†

Now we divide the addends in the expression m
iˆ0 !…‰xi;xi‡1Š†…xi‡1 ¡ xi† into

two parts according to the case (i) or (ii).
In the ®rst part, since the total length of all the adjacent intervals ‰xi; xi‡1Š

falling into the interval ‰tk; tk‡1Š is xik‡1
¡ xik‡1 < tk‡1 ¡ tk and each !…‰xi; xi‡1Š†4

!…‰tk; tk‡1Š†, we know that the sum of all addends in this part is less than

N

kˆ0

!…‰tk; tk‡1Š†…tk‡1 ¡ tk†

On the other hand, for the intervals in case (ii),

xik‡1 ¡ xik 4 Pk k 4
b ¡ a

3N
<

b ¡ a

N
ˆ tk ¡ tk¡1 ˆ tk‡1 ¡ tk

Hence

!…‰xik‡1; xik Š†…xik‡1 ¡ xik † 4 !…‰tk¡1; tkŠ†…tk ¡ tk¡1† ‡ !…‰tk; tk‡1Š†…tk‡1 ¡ tk†

The sum of all addends this part cannot exceed 2 N
kˆ0 !…‰tk; tk‡1Š†…tk‡1 ¡ tk†:

Therefore

m

iˆ0

!…‰xi; xi‡1Š†…xi‡1 ¡ xi† < 3
N

kˆ0

!…‰tk; tk‡1Š†…tk‡1 ¡ tk† < 3
"

3
ˆ "

The proof of Theorem 2 is completed.

3. Discussion

Theorem 2 reveals that there is a redundant condition in Riemann’s de®nition
of integral. The requirement `any partition of the interval ‰a; bŠ with Pk k < ¯ ’ can
be relaxed. As matter of fact, rewriting

n

kˆ1

f…ck† b ¡ a

n
as …b ¡ a†

n
kˆ1 f …ck†

n

we may give Riemann’s integral a statistical de®nition since

n
kˆ1 f …ck†

n

is the mean of the sequence of the samples taken from the space
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Sk ˆ f …x† : a ‡
…k ¡ 1†…b ¡ a†

n
4 x 4 a ‡

k…b ¡ a†
n

De®nition 3. Let f …x† be a function de®ned on ‰a; bŠ: Then
b

a
f…x† dx ˆ

m…b ¡ a† if and only if

m ˆ lim
n!1

n
kˆ1 f …ck†

n

exists; where

f …ck† 2 f…x† : a ‡ …k ¡ 1†…b ¡ a†
n

µ x µ a ‡ k…b ¡ a†
n

:

Theorem 2 asserts that for Riemann’s integrable function we need only
consider the equal partitions of the the interval ‰a; bŠ: If we make some minor
verbal revision we can prove that whether a function is Riemann integrable only
depends one sequence of partitions with norm approaches to 0.

Theorem 3. Let f …x† be a function de®ned on ‰a; bŠ: Let Pi ˆ fa ˆ x0…i† <
x1…i† < . . . < xn…i†…i† ˆ bg be a sequence of partitions of the interval ‰a; bŠ and
limi!1 Pik k ˆ 0: If I is a real number and for any " > 0; there is a natural number
N such that i 5 N implies j n…i†

kˆ1 f…ck†…xk…i† ¡ xk¡1…i†† ¡ Ij < "; where ck are taken
arbitrarily from the interval ‰xk¡1…i†; xk…i†Š; then

b

a
f…x† dx ˆ I:

Riemann’s integral has a long history. It is incredible that such a very basic
property has been neglected for a long time. It even escaped the notice of many
great mathematical analysts. In most of the textbooks in calculus, the Riemann
integral of a function is de®ned as the limit lim Pk k!0

n
kˆ1 f …ck†…xk ¡ xk¡1† if it

exists. This limit process on partitions is not the same limit process on the set of
real numbers. The textbooks confuse the two limits as one. We know that the set of
real numbers has very rich structures in both algebra and topology, while the set of
partitions of an interval has very poor structure. Many properties of the limit
process on the set of real numbers cannot be tranferred to the new limit process on
partitions. Most of people think a counterexample can be found because in the
limit process involving real numbers, it is common sense that the convergence of a
subsequence never guarantee the convergence of the sequence. The author was a
victim of this wrong belief.

All the knowledge we need in this paper is elementary and self-contained in the
classical theory of calculus founded by Cauchy. The readers can ®nd all the
preliminaries in an undergraduate course `Advanced Calculus’. No concepts like
topology or measure are needed.
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On the power series expansions for the sine and cosine
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In this note we give an elementary derivation for the power series
expansions for the sine and the cosine function.

The functions sin and cos have derivatives satisfying …sin x† 0 ˆ cos x and
…cos x† 0 ˆ ¡ sin x. It is not hard to come up with pairs of polynomials whose
derivatives are related in almost the same way: the functions Cn and Sn de®ned by

Cn…x† ˆ 1 ¡ x2

2!
‡ . . . ‡ …¡1†n x2n

…2n†!
and Sn…x† ˆ x ¡ x3

3!
‡ . . . ‡ …¡1†n x2n‡1

…2n ‡ 1†! ;

clearly satisfy

S 0
n ˆ Cn…x† and C 0

n…x† ˆ ¡Sn¡1…x†: …¤†

Consider the functions fn and gn de®ned by

fn…x† ˆ Cn…x† cos x ‡ Sn…x† sin x and gn…x† ˆ Cn…x† sin x ¡ Sn…x† cos x:

Using (¤) it is elementary to verify that

f 0
n…x† ˆ …¡1†n cos x

x2n‡1

…2n ‡ 1†!
and g 0

n…x† ˆ …¡1†n sin x
x2n‡1

…2n ‡ 1†!
:

Applying the Mean Value Theorem to each of the functions fn and gn we get the
following system of equations

Cn…x† cos x ‡ Sn…x† sin x ˆ 1 ‡ xf 0
n…c† and Cn…x† sin x ¡ Sn…x† cos x ˆ 0 ‡ xg 0

n…·cc†;

for c and ·cc between x and 0. Clearly jxf 0
n…c†j 4 x2n‡2=…2n ‡ 1†! and jxg 0

n…·cc†j 4
x2n‡2=…2n ‡ 1†!. Using that x2n‡2=…2n ‡ 1†! ! 0, we obtain

Cn…x† cos x ‡ Sn…x† sin x ! 1 and Cn…x† sin x ¡ Sn…x† cos x ! 0

as n ! 1. It follows that

Cn…x† ˆ fCn…x† cos x ‡ Sn…x† sin xg cos x ‡ fCn…x† sin x ¡ Sn…x† cos xg sin x ! cos x

and
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