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Corrigé Série de Noël

2. (a) On décompose ∫ ∞
0

yx−1e−y dy =

∫ 1

0
yx−1e−y dy +

∫ ∞
1

yx−1e−y dy.

Pour tout x > 0 et 0 < y < 1, on a 0 < yx−1e−y < yx−1. Comme la fonction y 7→ yx−1 est intégrable sur
(0, 1) pour tout x > 0, on conclut que

∫ 1
0 y

x−1e−y dy converge pour tout x > 0.
Pour l’intégrale sur (1,∞), on distingue les cas. Pour tout 0 < x ≤ 1 et y > 1, on a 0 < yx−1e−y < e−y.

Comme y 7→ e−y est intégrable sur (1,∞), on conclut que
∫∞
1 yx−1e−y dy converge pour tout 0 < x ≤ 1.

Supposons maintenant x > 1. On applique la forme limite du critère de comparaison avec f(y) = yx−1e−y

et g(y) = e−y/2. On a

lim
y→∞

f(y)

g(y)
= lim

y→∞
yx−1e−y/2 = 0

et g est intégrable sur (1,∞), donc
∫∞
1 yx−1e−y dy converge pour tout x > 1.

(b) En intégrant par partie, on a

Γ(x+ 1) =

∫ ∞
0

yxe−y dy = −yxe−y
∣∣∣∞
0

+

∫ ∞
0

xyx−1e−y dy = xΓ(x).

(c) En itérant l’identité obtenue au point (b) avec x = n ∈ N, on obtient bien

Γ(n+ 1) = nΓ(n) = n(n− 1)Γ(n− 2) = · · · = n(n− 1)(n− 2) · · · · · 2 · 1 · Γ(1) = n!

car Γ(1) = 1.

4. (a) En faisant le changement de variable s = xt, on a

d

dx
(f(x) + g(x)) = f ′(x) + g′(x) = 2

(∫ x

0
e−t

2
dt

)
e−x

2
+

∫ 1

0
(−2x)e−x

2(t2+1) dt

= 2e−x
2

(∫ x

0
e−t

2
dt−

∫ 1

0
xe−x

2t2 dt

)
= 2e−x

2

(∫ x

0
e−t

2
dt

∫ 1

0
e−(xt)

2
d(xt)

)
= 2e−x

2

(∫ x

0
e−t

2
dt−

∫ x

0
e−s

2
ds

)
= 0, ∀x ∈ R.

Ainsi, la fonction f + g est constante sur R, donc f(x) + g(x) = f(0) + g(0) = π/4.

(b) On remarque que

lim
x→∞

e−x
2(t2+1)

t2 + 1
= 0, ∀t ∈ [0, 1].

En échangeant limite et intégrale, 1 on obtient alors lim
x→∞

g(x) = 0 et l’on déduit du point (a) que

π

4
= lim

x→∞
(f(x) + g(x)) =

(∫ ∞
0

e−t
2

dt

)2

,

d’où le résultat.

5. (a) En intégrant par parties, on obtient facilement que

In =
n− 1

n
In−2, ∀n ≥ 2. (1)

1. Puisque e−x2(t2+1)

t2+1
6 e−x2

pour tout t ∈ [0, 1], on a que e−x2(t2+1)

t2+1
→ 0 uniformément en t ∈ [0, 1] lorsque x → ∞. Ceci

permet de justifier l’échange de la limite et de l’intégrale, en suivant la preuve du théorème 8.5.1. La dérivée par rapport à x
sous l’intégrale dans le calcul de g′(x) au point (a) est plus délicate à justifier dans le cadre de l’intégrale de Riemann...
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Par ailleurs,
I0 =

π

2
, I1 = 1.

On en déduit que

I2k =
(2k − 1) · (2k − 3) · · · 3 · 1

(2k) · (2k − 2) · · · 4 · 2
I0 =

(2k) · (2k − 1) · (2k − 2) · (2k − 3) · · · 3 · 2 · 1
((2k) · (2k − 2) · · · 2)2

π

2
=

(2k)!

(2kk!)2
π

2

et

I2k+1 =
(2k) · (2k − 2) · · · 4 · 2

(2k + 1) · (2k − 1) · · · 3 · 1
I1 =

((2k) · (2k − 2) · · · 2)2

(2k + 1) · (2k) · (2k − 1) · (2k − 2) · · · 3 · 2 · 1
=

(2kk!)2

(2k + 1)!
.

(b) Pour tout 0 ≤ x ≤ π/2, on a 0 ≤ sin(x) ≤ 1. Ainsi,

sinn−1(x) ≥ sinn(x) ≥ 0, ∀n ≥ 1, ∀x ∈ [0, π/2],

ce qui entraîne sinn−1(x) ≥ sinn(x) ≥ 0, d’où In−1 ≥ In > 0, pour tout n ≥ 1. Par (1), on a alors
n− 1

n
=

In
In−2

≤ In
In−1

≤ 1, ∀n ≥ 2.

Il suit donc du principe des deux gendarmes que lim
n→∞

In
In−1

= 1.

(c) Par les points (a) et (b), on a que

1 = lim
k→∞

I2k+1

I2k
= lim

k→∞

[
2 · 4 · · · (2k − 2) · (2k)

1 · 3 · · · (2k − 1)

]2 1

2k + 1

2

π
= lim

k→∞

[
2 · 4 · · · (2k − 2) · (2k)

1 · 3 · · · (2k − 1)

]2 1

kπ
,

d’où la formule de Wallis : lim
k→∞

1

k

[
2 · 4 · · · (2k − 2) · (2k)

1 · 3 · · · (2k − 1)

]2
= π, qui s’écrit également lim

k→∞

1

k

(2kk!)4

((2k)!)2
= π.

Par les formules établies au point (a), on en déduit que In ∼
√

π

2n
lorsque n→∞.

(d) Finalement, on trouve `−1 =
√

2π en injectant l’estimation n! ∼ `−1
√
n
(n
e

)n
dans les factoriels qui

apparaissent dans la formule I2k =
(2k)!

(2kk!)2
π

2
et en utilisant l’estimation précédente, I2k ∼

√
π

4k
.

6. (a) En intégrant par partie, il vient∫ 1

0

arcsin(x)√
1− x2

dx = arcsin2(x)
∣∣∣1
0
−
∫ 1

0

arcsin(x)√
1− x2

dx =⇒
∫ 1

0

arcsin(x)√
1− x2

dx =
1

2
arcsin2(x)

∣∣∣1
0

=
π2

8
.

(b) En utilisant l’indication, on obtient

(1− x2)−1/2 = 1 +

∞∑
k=1

(−1
2)(−3

2)(−5
2) · · · (−1

2 − (k − 1))

k!
(−x2)k

= 1 +

∞∑
k=1

(12)(32)(52) · · · (−1
2 − (k − 1))

k!
x2k

= 1 +

∞∑
k=1

1 · 3 · · · (2k − 1)

2 · 4 · · · (2k)
x2k, ∀x ∈ (−1, 1). (2)

On déduit en intégrant que 2

arcsin(x) = x+

∞∑
k=1

1 · 3 · · · (2k − 1)

2 · 4 · · · (2k)

x2k+1

2k + 1
, ∀x ∈ (−1, 1). (3)

2. Le rayon de convergence de la série entière dans l’équation (2) est égal à 1 et le théorème 7.2.9 donne la relation entre (2)
et (3) sur l’intervalle (−1, 1).
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(c) Par les points (a) et (b), nous avons que 3

π2

8
=

∫ 1

0

arcsin(x)√
1− x2

dx

=

∫ 1

0

x√
1− x2

dx+

∞∑
k=1

1 · 3 · · · (2k − 1)

2 · 4 · · · (2k)

1

2k + 1

∫ 1

0

x2k+1

√
1− x2

dx

= 1 +

∞∑
k=1

1 · 3 · · · (2k − 1)

2 · 4 · · · (2k)

1

2k + 1

∫ 1

0

x2k+1

√
1− x2

dx.

Par le changement de variable x = sin(t), nous obtenons∫ 1

0

x2k+1

√
1− x2

dx =

∫ π/2

0
sin2k+1(t) dt = I2k+1 =

(2k) · (2k − 2) · · · 4 · 2
(2k + 1) · (2k − 1) · · · 3 · 1

,

d’où
π2

8
= 1 +

∞∑
k=1

1

(2k + 1)2
=

∞∑
k=0

1

(2k + 1)2
.

Finalement,
∞∑
n=1

1

n2
=
∞∑
k=0

1

(2k + 1)2
+
∞∑
k=1

1

(2k)2
=
∞∑
k=0

1

(2k + 1)2
+

1

4

∞∑
k=1

1

k2

=⇒ 3

4

∞∑
n=1

1

n2
=
∞∑
k=0

1

(2k + 1)2
=
π2

8
=⇒

∞∑
n=1

1

n2
=
π2

6
.

3. L’échange de la somme et de l’intégrale peut être justifié par le théorème 8.5.1 du cours ou par le théorème de convergence
dominée de Lebesgue.
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