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CORRIGE SERIE DE NOEL
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Pour tout > 0et 0 <y < 1,ona0 < y* le ¥ < y* 1. Comme la fonction y — y*~
(0,1) pour tout = > 0, on conclut que fol y*le ¥ dy converge pour tout z > 0.

Pour I'intégrale sur (1,00), on distingue les cas. Pour tout 0 <z < lety>1,ona0 <y eV <e V.
Comme y +— e~ ¥ est intégrable sur (1,00), on conclut que floo y*~te~¥dy converge pour tout 0 < z < 1.
Supposons maintenant x > 1. On applique la forme limite du critére de comparaison avec f(y) = y* te™¥
et g(y) =e %2 Ona

2. (a) On décompose

I est intégrable sur
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et g est intégrable sur (1, 00), donc floo Y ~Ydy converge pour tout x > 1.

(b) En intégrant par partie, on a
o0 00 o0
MNzx+1)= / yre YVdy = —y“e*y‘o —|—/ ry® e Vdy = 2l(x).
0 0
(¢) En itérant l'identité obtenue au point (b) avec 2 = n € N, on obtient bien
'n+1l)=nl'(n)=n(n—1)I'h-2)=---=nn-1)(n-2)-----2-1-T(1) =n!
car I'(1) = 1.
4. (a) En faisant le changement de variable s = zt, on a

(@) gl@) = (@) + o (2) = 2(/w—ﬂa)-?+éi—%mf*“+”w

< et dt - /0 lxe_IQtht>
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/ dt—/ 652d3>:0, vz € R.
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_|_

g9(x) = f(0) +9(0) = m/4.

Ainsi, la fonction f + g est constante sur R, donc f(z

(b) On remarque que
—x2(t241)
En échangeant limite et intégrale,ﬂ on obtient alors lim g(x) = 0 et 'on déduit du point (a) que
T—r 00

%) ) 2
i </ et dt> ,

T= lm (f(0) +9(a))

d’ou le résultat.

5. (a) En intégrant par parties, on obtient facilement que

n—1

I, = Lo, Yn>2. (1)
n

2,2 2,2
. —22 (12 +41) a2 —22(12+41) . ) .
1. Puisque “—z5— < e pour tout ¢ € [0,1], on a que “—77— — 0 uniformément en ¢ € [0, 1] lorsque z — oco. Ceci

permet de justifier ’échange de la limite et de I'intégrale, en suivant la preuve du théoréme 8.5.1. La dérivée par rapport & =
sous l'intégrale dans le calcul de g’(z) au point (a) est plus délicate a justifier dans le cadre de I'intégrale de Riemann...



EPFL, Automne 2024 Analyse avancée I (PH) Frangois Genoud, SMA

Par ailleurs,
T
I(] == 5, Il =1.
On en déduit que

o 2k—1) (2k—3) 31 (2k) (2k-1) (2k—2) (2k-3)- 3217 _ (2k)! 7
kT 2k) - (2k—2) 42 0T ((2k) - (2k — 2)---2)2 2 (2FkNZ2
et
(2k) - (2k —2)---4-2 ((2k) - (2k —2)---2)? (2FK!)?
IQk—i-l: I = —

(2k+1)-(2k—1)---3-1 (2k+1)-(2k)-(2k—1)-(2k—2)---3-2-1  (2k+ 1)

(b) Pour tout 0 < z < 7/2, on a 0 < sin(z) < 1. Ainsi,
sin” H(z) > sin™(z) >0, VYn>1, Vz € [0,7/2],
ce qui entraine sin”_l(x) > sin™(z) > 0, d’ou I,—1 > I, > 0, pour tout n > 1. Par , on a alors
n—1 _ I, < I,
n I,_2 n—1

<1, Vn>2

Il suit donc du principe des deux gendarmes que lim =1.

n—oo n—1

(c) Par les points (a) et (b), on a que

2
g e o [2040 (2K —2) - (2K) L2
1-3 % +1m  kooo| 1-3---(2k—1)

2-4-.-(2k—2)-(2k)]2 1

k—o0 IQk k—o0 e (2]{} — 1) H7
2-4---(2k—-2)-(2 2k L
d’ot la formule de Wallis : kli)n;o % [ 13 ( k@k z 1() k)] = 7, qui s’écrit également 11)120 Z ((( ;;3)2 =

[
Par les formules établies au point (a), on en déduit que I, ~ o lorsque n — oo.
n

n\n
(d) Finalement, on trouve £~! = /27 en injectant l'estimation n! ~ ¢~1y/n (—) dans les factoriels qui
e

(2k)! 7 T

apparaissent dans la formule Iy, = et en utilisant I'estimation précédente, Iop ~ {/ —

(2FK1)2 2 4k
6. (a) En intégrant par partie, il vient
arcsin( ) dz = arcsin® (x)‘l — *aresin( d — / arcsin(z 1arcsin2 (:c)’l = 12
o Vi-zZ o Jo Vi—a? \/@ 2 0o 8
(b) En utilisant I'indication, on obtient
0 _1\(_3\(_5 1
—3)(=3)(—5 5—(k—1
(1 $2) 1/2 _ 1 +Z ( 2)( 2)( 2) o ( 2 ( ))(—I2)k
k=1 )
—~ (DEE) (5= (k1)) 5
=142 k!
k=1
1-3--(2k— 1) o
=1 -1,1 2
On déduit en intégrant quef]
1-3---(2k — 1) 2?k+1
= -1,1).
arcsin(z) = x+; > A k) AT Ve e (—1,1) (3)

2. Le rayon de convergence de la série entiére dans I’équation est égal a 1 et le théoréme 7.2.9 donne la relation entre (2
et sur lintervalle (—1,1).
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(c) Par les points (a ) nous avons quef]

(b),
/ risil V1—22
Lo

2l<:—1) 1 bog 2kt
—=—d e —
‘7”2 ~(2k) 2k:+1/0 T2

—1—}—21.3.”(216_1) 1 /1 p2k+1 4
& 24 (2k) 2%k+1 )y VI—a? -

Par le changement de variable x = sin(t), nous obtenons

p2k+1 /2 2k) - (2k —2)---4-2
sin%“(t) dt = ng+1 = ( ) ( ) s
m 0 (2k+1)-(2k—1)---3-1
d’ou )
T > 1 > 1
_— 1 =
g T kzzl 2k + 1) kzzo 2k + 1)
Finalement,

n=1 k=0 k=1 k=0 k=1
e 1 & 1 72 1 x?

> — _— = = — = _ =
4;712 kZ_O(Qk—i—l)Q 8 nz:lrﬂ 6

3. L’échange de la somme et de I'intégrale peut étre justifié par le théoréme 8.5.1 du cours ou par le théoréme de convergence
dominée de Lebesgue.
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