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Corrigé 7

1. On remarque tout d’abord que f(x) + 1/f(x) ≥ 2 pour tout x ∈ (−1, 1) \ {0}. Par hypothèse, pour ε > 0
donné, il existe δ > 0 tel que

0 ≤ f(x) + 1

f(x)
− 2 < ε, si |x| < δ,

ce qui équivaut à

0 ≤
(
f(x)− 1

)
+
( 1

f(x)
− 1
)
< ε, ou encore 0 ≤

(
f(x)− 1

)(
1− 1

f(x)

)
< ε, si |x| < δ.

En élevant au carré, on obtient

0 ≤ (f(x)− 1)2 +
( 1

f(x)
− 1
)2
− 2
(
f(x)− 1

)(
1− 1

f(x)

)
< ε2

d’où (f(x)− 1)2 < ε2 + 2ε si |x| < δ. �

2. Il suffit de remarquer que

lim
x→0

1− cosx

x2
= lim

x→0

cos2 x
2 + sin2 x

2 −
(
cos2 x

2 − sin2 x
2

)
x2

= lim
x→0

2 sin2 x
2

x2
=

1

2

(
lim
x→0

sin x
2

x
2

)2

=
1

2
,

et de poser f̂(x) = f(x) pour tout x ∈ R∗ et f̂(0) = 1/2.

3. (a) Puisque lim
x→0−

f(x) = lim
x→0−

−1
x+ 1

= −1 et lim
x→0+

f(x) = lim
x→0+

x+ 2

x(x+ 1)
= +∞, la fonction f n’est pas

prolongeable par continuité en x = 0. On remarque aussi qu’elle a une asymptote verticale en x = −1, avec
lim

x→−1±
f(x) = ∓∞ (mais ces limites sont immédiates, il n’y pas de forme indéterminée en x = −1).

(b) En utilisant les résultats limx→0
sinx
x = 1 et limx→0

1−cosx
x2/2

= 1 vus au cours et ci-dessus, on a que

lim
x→0

f(x) = lim
x→0

x
√
(1− cosx)(3− cosx)

|x| sinx
= lim

x→0

x
√

x2

2 (3− cosx)

|x|x
= lim

x→0

√
3− cosx

2
= 1.

Donc f est prolongeable par continuité en x = 0 et son prolongement est la fonction f̂ : (−π, π)→ R définie
par f̂(x) = f(x) pour tout x ∈ (−π, π) \ {0} et f̂(0) = 1.

4. Soit a ∈ R \Q et posons ε = 1/2. Par densité de Q dans R, pour tout δ > 0 il existe x ∈ Q tel que

|x− a| < δ mais |f(x)− f(a)| = |1− 0| = 1 > ε.

Donc f est discontinue en tout point a ∈ R \Q. Le même argument, utilisant cette fois la densité de R \Q
dans R, montre que f est discontinue en tout point a ∈ Q.

5. Soit a ∈ R et (xn) ⊂ Q, (yn) ⊂ R \ Q des suites qui convergent vers a. On a alors, par la continuité des
fonctions puissance,

f(xn) = x3n + 1→ a3 + 1 et f(yn) = y2n + yn → a2 + a.

On obtient donc une condition nécessaire pour que f soit continue en a : a3 + 1 = a2 + a. Cette équation
s’écrit (a+ 1)(a− 1)2 = 0, d’où les solutions a = ±1. Donc f est discontinue en tout point de R \ {±1}.

Nous prouvons maintenant que f est continue en a = ±1. Pour a = −1, f(a) = 0 et on a x3 + 1→ 0
(Q 3 x→ −1) et x2 + x→ 0 (R \Q 3 x→ −1). En a = 1, f(a) = 2, et on bien x3 + 1→ 2 (Q 3 x→ 1) et
x2 + x→ 2 (R \Q 3 x→ 1). En résumé, a = ±1 sont les seuls points de continuité de f .

6. Notons ` = limx→∞ f(x) et fixons ε > 0. Il existe alors b > a tel que |f(x)− `| < ε pour tout x ≥ b, d’où
|f(x)| ≤ `+ ε pour tout x ≥ b. Par ailleurs, par le théorème du min-max, il existe M ≥ 0 tel que |f(x)| ≤M
pour tout x ∈ [a, b]. On a ainsi que |f(x)| ≤ max{M, `+ ε} pour tout x ∈ [a,∞). �

7. Prendre, par exemple, f : [0, 1]→ R définie par f(x) =

{
2x− 1 si x ∈ (0, 1),

0 si x ∈ {0, 1}.

8. Prendre, par exemple, f : [0, 1]→ R définie par f(x) =

{
sin(1/x) si x ∈ (0, 1],

0 si x = 0.
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9. Si f est continue sur [a, b], alors pour tout ε > 0 il existe δ > 0 tel que

x, y ∈ [a, b], |x− y| < δ =⇒
∣∣|f(x)| − |f(y)|∣∣ ≤ |f(x)− f(y)| < ε,

ce qui montre que |f | est aussi continue. Un contre-exemple à la réciproque est donné par la fonction

f : [−1, 1]→ R, f(x) =

{
−1 si x ∈ [−1, 0],
1 si x ∈ (0, 1].

10. (a) La fonction f : (0,∞) → R, f(x) = x2 − 1/x − 1 est continue comme composée de fonctions
continues. Par ailleurs, limx→0+ f(x) = −∞ et limx→∞ f(x) = +∞. On peut donc trouver a, b ∈ (0,∞) tels
que f(a) < 0 et f(b) > 0, et le théorème de la valeur intermédiaire donne alors un x ∈ (a, b) tel que f(x) = 0.

(b) La fonction f : [0, 2] → R, f(x) = ex − x − 2, est continue comme composée de fonctions continues, et
on a f(0) = −1 < 0 et f(2) = e2 − 4 > 0, donc il existe x ∈ (0, 2) tel que f(x) = 0.

(c) La fonction f : (0,∞) → R, f(x) = x + ex + ln(x) + sin(x), est continue comme composée de fonctions
continues, et satisfait limx→0+ f(x) = −∞ et limx→∞ f(x) = +∞. Donc il existe x ∈ (0,∞) tel que f(x) = 0.

11. La fonction F : [a, b] → R, F (x) = f(x) − x, est continue comme composée de fonctions continues. Par
ailleurs, F (a) = f(a)− a ≥ 0 et F (b) = f(b)− b ≤ 0, donc il existe x ∈ [a, b] tel que F (x) = 0.

12. Supposons par l’absurde qu’il existe a, b ∈ R, a < b, tels que f(a) 6= f(b). Puisque f est continue, le
théorème de la valeur intermédiaire assure que f prend toutes les valeurs réelles dans l’intervalle entre f(a)
et f(b), ce qui contredit l’hypothèse que f(x) ∈ R \Q pour tout x ∈ R.

13. Soit x ∈ R. Par densité de Q dans R, il existe une suite (xn) ⊂ Q telle que xn → x. Alors f(xn)→ f(x)
et g(xn)→ g(x) par la continuité des fonctions f et g. Par passage à la limite, la relation f(xn) ≥ g(xn) pour
tout n ∈ N implique donc f(x) ≥ g(x), ce qui prouve (a). Le point (b) se déduit du point (a) en supposant
que f(x) ≤ g(x) et f(x) ≥ g(x) pour tout x ∈ Q.

14. On remarque tout d’abord que f(x) = f(x + 0) = f(x)f(0) pour tout x ∈ R. Comme f n’est pas
constante, il existe au moins un x ∈ R tel que f(x) 6= 0. Alors la relation précédente donne f(0) = 1. Par
suite,

1 = f(0) = f(x− x) = f(x)f(−x) =⇒ f(−x) = f(x)−1 et f(x) 6= 0, ∀x ∈ R.

Nous montrons maintenant que f est continue sur R. Soit x ∈ R et soit (yn) ⊂ R une suite telle que
yn → 0 lorsque n→∞. Nous avons alors, par la continuité de f au point x0,

lim
n→∞

f(x+ yn) = lim
n→∞

f(x− x0 + x0 + yn) = f(x− x0) lim
n→∞

f(x0 + yn)

= f(x− x0)f(x0) = f(x)f(x0)
−1f(x0) = f(x),

ce qui montre que f est continue au point x. Comme x ∈ R est quelconque, f est bien continue sur R.
Une conséquence importante des points précédents est que f > 0 sur R. En effet, supposons par l’absurde

qu’il existe x1 ∈ R tel que f(x1) < 0. Comme f(0) = 1, le théorème de la valeur intermédiaire implique
l’existence d’un x dans l’intervalle d’extrémités x1 et 0, tel que f(x) = 0  

On observe maintenant que, pour n ∈ N et t ∈ R,
f(nt) = f(t+ · · ·+ t︸ ︷︷ ︸

n fois

) = f(t) . . . f(t)︸ ︷︷ ︸
n fois

= f(t)n.

Un argument similaire montre que f(−nt) = f(t)−n pour n ∈ N et t ∈ R. On a donc f(kt) = f(t)k, pour
tous k ∈ Z et t ∈ R. Maintenant, pour r ∈ Q, écrivons r = p/q, avec p ∈ Z et q ∈ N∗. On a alors

f(t)p = f(pt) = f(qrt) = f(rt)q =⇒ f(rt) = f(t)r, ∀t ∈ R.
Posant t = 1 et a = f(1) > 0, on a ainsi que f(x) = ax pour tout x ∈ Q. Puisque les fonctions x 7→ f(x) et
x 7→ ax sont continues sur R, il découle de l’exercice 13 (b) que f(x) = ax pour tout x ∈ R. �


