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Corrigé 5

1. On raisonne par l’absurde. La négation de |yn| → ∞ est : il existe une sous-suite de (yn) qui est bornée. En
appliquant le théorème de Bolzano–Weierstrass à cette sous-suite, nous pouvons en extraire une nouvelle sous-
suite qui converge. Notons cette sous-suite (ynk

) et sa limite y. On montre alors que ynk
∈ Z∗ ∀k ⇒ y ∈ Z∗.

On extrait maintenant de (xn) la sous-suite correspondante (xnk
). Par hypothèse, on a alors

` = lim
k→∞

xnk

ynk

=⇒ x = `y.

Or x ∈ Z, mais `y ∈ R \Q. Cette contradiction montre que |yn| → ∞.

2. (a) Pour n,m ≥ 1, l’inégalité triangulaire donne simplement

|xn − xm| =
∣∣∣(−1)n−1

n
− (−1)m−1

m

∣∣∣ ≤ 1

n
+

1

m
,

ce qui montre que (xn) est une suite de Cauchy. En effet, pour ε > 0 donné, prenons N = N(ε) ∈ N tel que
N > 2/ε. Alors,

|xn − xm| ≤
1

n
+

1

m
<
ε

2
+
ε

2
= ε, ∀n,m ≥ N.

(b) Montrons que (xn) n’est pas de Cauchy, i.e. : ∃ε > 0 tel que ∀N ∈ N, ∃n,m ≥ N tels que |xn−xm| ≥ ε.
Puisque |xn − xn+1| = 2 ∀n ≥ 1, il suffit de prendre ε = 1 et n = N , m = N + 1, quel que soit N ∈ N.
(c) Puisque xn > 0 ∀n ≥ 0 (récurrence triviale), nous avons que

|xn+1 − xn| =
∣∣∣ xn − xn−1
(xn + 2)(xn−1 + 2)

∣∣∣ < 1

2
|xn − xn−1| <

1

2n
|x1 − x0|, ∀n ≥ 1.

Ainsi,

|xn+k − xn| < |xn+k − xn+k−1|+ |xn+k−1 − xn+k−2|+ · · ·+ |xn+1 − xn|

<
( 1

2k−1
+

1

2k−2
+ · · ·+ 1

)
︸ ︷︷ ︸

<2

|xn+1 − xn| <
1

2n−1
|x1 − x0|, ∀n, k ≥ 1,

ce qui montre que (xn) est de Cauchy. Par conséquent, elle est convergente et sa limite ` ≥ 0 satisfait
l’équation x = (x+ 1)/(x+ 2) =⇒ ` = 1

2(−1 +
√
5).

3. (a)
1

k(k + 1)
=

1

k
− 1

k + 1
=⇒

n∑
k=1

1

k(k + 1)
=

n∑
k=1

1

k
−

n∑
k=1

1

k + 1
=

n∑
k=1

1

k
−

n+1∑
k′=2

1

k′
= 1− 1

n+ 1
→ 1

(b)
1

k(k + 3)
=

1

3

(1
k
− 1

k + 3

)
=⇒

n∑
k=1

1

k(k + 3)
=

1

3

n∑
k=1

1

k
− 1

3

n∑
k=1

1

k + 3
=

n∑
k=1

1

k
−

n+3∑
k′=4

1

k′

=
1

3

(
1 +

1

2
+

1

3
− 1

n+ 1
− 1

n+ 2
− 1

n+ 3

)
→ 1

3

(
1 +

1

2
+

1

3

)
=

11

18

(c)
2k − 1

k2(k − 1)2
=

1

(k − 1)2
− 1

k2
=⇒

n∑
k=2

2k − 1

k2(k − 1)2
=

n∑
k=2

1

(k − 1)2
−

n∑
k=2

1

k2
= 1− 1

n2
→ 1

(d) Notant sn :=

n∑
k=1

kak, on a

{
sn = a+ 2a2 + 3a3 + · · ·+ nan

asn = a2 + 2a3 · · ·+ (n− 1)an + nan+1
=⇒ (1− a)sn = a+ a2 + a3 + · · ·+ an − nan+1.

Or, a + a2 + a3 + · · · + an = a(1 + a + a2 + · · · + an−1) = a1−an
1−a par la formule de la somme géométrique.

Ainsi, comme a ∈ (−1, 1), on obtient

sn =
a1−an

1−a − na
n+1

1− a
=
a− an+1 − nan+1 + nan+2

(1− a)2
→ a

(1− a)2
.
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4. (a) On considère une série
∑∞

n=1 xn avec xn ≥ 0 pour tout n ≥ 1. On note sm :=
∑m

n=1 xn, m ≥ 1,
le terme général de la suite des sommes partielles. Supposons que (sm) est bornée supérieurement. Comme
xn ≥ 0 pour tout n ≥ 1, (sm) est aussi croissante, donc convergente. Inversement, supposons que (sm) est
convergente. Alors elle est bornée, en particulier bornée supérieurement. �

(b) Si α ≤ 0, on a

nαan ≤ an ∀n ≥ 1 =⇒
m∑
n=1

nαan ≤
m∑
n=1

an ≤ a

1− a
∀m ≥ 1 =⇒

∞∑
n=1

nαan converge.

Si α > 0, on écrit nαan = nα(
√
a)n(
√
a)n, où nα(

√
a)n → 0 lorsque n→∞ car a ∈ (0, 1) (cf. exercice 5 (b),

série 3). Donc il existe M > 0 tel que nα(
√
a)n ≤M pour tout n ≥ 1. On a alors

m∑
n=1

nαan ≤
m∑
n=1

M(
√
a)n ≤M

√
a

1−
√
a
∀m ≥ 1 =⇒

∞∑
n=1

nαan converge.

5. (a) Grâce à l’inégalité e < (1+ 1
n)
n+1 (qui sera démontrée plus tard) on a xn+1−xn = 1

n+1− ln(1+ 1
n) < 0,

donc (xn) est décroissante. Par ailleurs, yn := xn − 1
n satisfait yn+1 − yn = 1

n − ln(1 + 1
n) > 0 grâce à

l’inégalité (1+ 1
n)
n < e. Ainsi, xn > yn > y1 = 0 pour tout n ≥ 1. La suite (xn) étant décroissante et bornée

inférieurement par 0, il existe ` ≥ 0 tel que xn → ` lorsque n→∞.

(b) Notant sn :=
∑n

k=1
(−1)k−1

k , le point (a) implique, lorsque n→∞,

s2n = 1 +
1

3
+

1

5
+

1

7
+ · · ·+ 1

2n− 1
−
(1
2
+

1

4
+ · · ·+ 1

2n

)
= 1 +

1

2
+

1

3
+

1

4
+ · · ·+ 1

2n
− 2
(1
2
+

1

4
+ · · ·+ 1

2n

)
=

2n∑
k=1

1

k
−

n∑
k=1

1

k
=
( 2n∑
k=1

1

k
− ln(2n)

)
−
( n∑
k=1

1

k
− ln(n)

)
+ ln(2)→ `− `+ ln(2) = ln(2).

On conclut que sn → ln(2) en remarquant que s2n+1 = s2n+
1

2n+1 d’où limn→∞ s2n+1 = limn→∞ s2n = ln(2).

6. Notant xn =
2 + (−1)n

2n
, on obtient que

∣∣∣xn+1

xn

∣∣∣ = 1

2

∣∣∣2 + (−1)n+1

2 + (−1)n
∣∣∣, et donc lim

n→∞

∣∣∣xn+1

xn

∣∣∣ n’existe pas.

En revanche, limn→∞
n
√
|xn| = 1

2 limn→∞
n
√
2 + (−1)n = 1

2 , donc la série est convergente. Cet exemple
montre qu’il existe des suites (xn) telles que limn→∞

n
√
|xn| existe, alors que limn→∞ |xn+1

xn
| n’existe pas. En

revanche, nous savons par l’exercice 4 (a) de la série 4 que si limn→∞ |xn+1

xn
|, alors limn→∞

n
√
|xn| existe et les

limites sont égales. Donc le critère de la racine est strictement plus fort que celui du quotient (d’Alembert).

7. La procédure pour réarranger les termes est la suivante. On remarque que a+n = |an| si an > 0, a+n = 0
si an ≤ 0, alors que a−n = −|an| si an < 0, a−n = 0 si an ≥ 0. Ainsi, pour tout n ∈ N, on obtient∑n

k=0 ak =
∑n

k=0 a
+
k −

∑n
k=0 a

−
k et

∑n
k=0 |ak| =

∑n
k=0 a

+
k +

∑n
k=0 a

−
k . On se convainc alors que l’hypothèse

de convergence conditionnelle implique
∑∞

k=0 a
+
k =

∑∞
k=0 a

−
k = +∞.

Supposons s.p.d.g. ` > 0. On somme alors, dans l’ordre, les premiers termes positifs (ou nuls), a+0 + a+1 + . . .
jusqu’au terme a+p tel que a+0 + · · · + a+p−1 ≤ ` et a+0 + · · · + a+p > `. (On est assuré qu’un tel p existe par∑∞

k=0 a
+
k = +∞.) On ajoute ensuite, dans l’ordre, les premiers termes négatifs (ou nuls), −a−0 − a

−
1 − . . .

jusqu’au terme a−q qui fait repasser la somme à gauche de `, i.e. tel que a+0 + · · ·+ a+p − a−0 − · · · − a
−
q−1 ≥ `

et a+0 + · · · + a+p − a−0 − · · · − a−q < `. (De nouveau, un tel q existe grâce à
∑∞

k=0 a
−
k = +∞.) On construit

ainsi récursivement une permutation σ et une suite de sommes partielles
∑n

k=0 aσ(k) en zigzag autour de `.

Il reste à se convaincre qu’elle converge vers `. C’est bien le cas car, par exemple, au premier passage à
droite de `, on a |` −

∑n
k=0 aσ(k)| ≤ a+p , au premier retour à gauche de `, |` −

∑n
k=0 aσ(k)| ≤ a−q , etc. Donc

à chaque étape du parcours en zigzag, |`−
∑n

k=0 aσ(k)| est majoré par le dernier terme ajouté ou soustrait.
Or la convergence de

∑
an assure que a±n → 0 lorsque n→∞, donc |`−

∑n
k=0 aσ(k)| → 0. �


