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Corrigé 3

1. Soit ε ∈ (0, 1). On cherche un N = N(ε) ∈ N tel que n ≥ N ⇒ |xn − 1| < ε. On part de cette inégalité et
on travaille par équivalences. Observant que 1− ε < (1 + 1

n)
k est vrai pour tout n ≥ 1, on a

|(1 + 1
n)
k − 1| < ε ⇐⇒ 1− ε < (1 + 1

n)
k < 1 + ε ⇐⇒ 1

n < (1 + ε)
1
k − 1 ⇐⇒ n > 1

(1+ε)1/k−1 .

Il suffit donc de choisir un entier N ≥ 1
(1+ε)1/k−1 .

2. (a) Ces limites se calculent en simplifiant la fraction par la plus haute puissance de n :

• lim
n→∞

√
a2n+ 1 + 2√
n+ 3 + 4

= lim
n→∞

√
a2 + n−1 + 2n−1/2√
1 + 3n−1 + 4n−1/2

=
√
a2 = |a|

• si b 6= 0 on a lim
n→∞

3
√
an6 + n2 + 2− 2n2

bn2 + 1
= lim

n→∞

3
√
a+ n−4 + 2n−6 − 2

b+ n−2
=

3
√
a− 2

b

(b) Ces limites se calculent en “amplifiant par le conjugué” :

• lim
n→∞

√
n2 + an+ b− n = lim

n→∞
(
√
n2 + an+ b− n)

√
n2 + an+ b+ n√
n2 + an+ b+ n

= lim
n→∞

n2 + an+ b− n2√
n2 + an+ b+ n

= lim
n→∞

n2 + an+ b− n2√
n2 + an+ b+ n

= lim
n→∞

an+ b√
n2 + an+ b+ n

= lim
n→∞

a+ bn−1√
1 + an−1 + bn−2 + 1

=
a

2

• lim
n→∞

√
a2n2 + 1−

√
b2n2 + 2 = lim

n→∞

a2n2 + 1− (b2n2 + 2)√
a2n2 + 1 +

√
b2n2 + 2

= lim
n→∞

(a2 − b2)n2 − 1√
a2n2 + 1 +

√
b2n2 + 2

=

lim
n→∞

(a2 − b2)n− n−1√
a2 + n−2 +

√
b2 + 2n−2

=


−∞ si |a| < |b|
0 si |a| = |b| 6= 0

1−
√
2 si |a| = |b| = 0

+∞ si |a| > |b|

• lim
n→∞

3
√
n3 + an2 + bn+ c− n = lim

n→∞

n3 + an2 + bn+ c− n3

(n3 + an2 + bn+ c)2/3 + (n3 + an2 + bn+ c)1/3n+ n2
=

lim
n→∞

a+ bn−1 + cn−2

(1 + an−1 + bn−2 + cn−3)2/3 + (1 + an−1 + bn−2 + cn−3)1/3 + 1
=
a

3

(c) Utilisant le fait que la fonction sin est 2π-périodique, il vient

lim
n→∞

sin
(
π
√

4n2 + n
)
= lim

n→∞
sin
(
π
(√

4n2 + n− 2n
))
.

Or,

lim
n→∞

√
4n2 + n− 2n = lim

n→∞

n√
4n2 + n+ 2n

=
1

4
.

Ainsi,

lim
n→∞

sin
(
π
√

4n2 + n
)
= sin

π

4
=

√
2

2
.

Attention : A la dernière étape, nous avons utilisé une propriété importante de la fonction sin qui n’a pas
encore été abordée au cours, quelle est-elle ?

3. (a) Nous avons

−1 ≤ sin(n) ≤ 1 =⇒ − 1

n
≤ sin(n)

n
≤ 1

n
=⇒ lim

n→∞

sin(n)

n
= 0.

Pour la deuxième suite, nous avons, pour tout n ≥ 2,

n− 1 ≤ n+ cos
(nπ

2

)
≤ n+ 1 =⇒ n+ 2

n+ 1
≤ n+ 2

n+ cos(nπ2 )
≤ n+ 2

n− 1
=⇒ lim

n→∞

n+ 2

n+ cos(nπ2 )
= 1.



EPFL, Automne 2024 Analyse avancée I (PH) François Genoud, SMA

(b) On commence par récrire le terme général de la suite :

xn =
(n+ 1)nn!

n2n
=

(n+ 1)n

nn
n!

nn
=

(
1 +

1

n

)n n!
nn
.

On observe alors que
n!

nn
=

1 · 2 · 3 . . . n
n · n · n . . . n

≤ 1

n
.

Par conséquent,

0 ≤ (n+ 1)nn!

n2n
≤
(
1 +

1

n

)n 1

n
.

Nous avons ainsi encadré (xn) par les suites (yn) et (zn) de termes généraux yn ≡ 0 et zn =
(
1 + 1

n

)n 1
n .

Puisque

lim
n→∞

zn = lim
n→∞

(
1 +

1

n

)n 1

n
= lim

n→∞

(
1 +

1

n

)n
· lim
n→∞

1

n
= e · 0 = 0,

il suit du théorème des deux gendarmes que lim
n→∞

xn = 0.

(c) On cherche yn et zn qui tendent vers la même limite et tels que yn ≤ xn ≤ zn. Pour la borne inférieure,
on observe que chaque numérateur est ≥ n2 et chaque dénominateur est ≤ n3+5n. Comme il y a 2n termes,
on obtient

xn ≥ 2n
n2

n3 + 5n
=: yn.

Inversement, pour la borne supérieure, on majore chaque terme de la somme en utilisant le plus grand des
numérateurs et le plus petit des dénominateurs :

xn ≤ 2n
n2 + 2n− 1

n3 + 3n+ 1
=: zn.

Puisque lim
n→∞

yn = lim
n→∞

zn = 2, on conclut que lim
n→∞

xn = 2.

4. (a) Soit M > 0. On cherche N = N(M) ∈ N tel que n ≥ N ⇒ xn ≥M . Puisque
√
n ≥M ⇔ n ≥M2, on

voit que n’importe quel N ≥M2 fait l’affaire. Donc on a bien lim
n→∞

√
n = +∞.

Soit P (x) = akx
k + ak−1x

k−1 + · · ·+ a1x+ a0 un polynôme de degré k ≥ 1, tel que ak > 0. On a que√
P (n) =

√
aknk + ak−1nk−1 + · · ·+ a1n+ a0 =

√
nk
√
ak + ak−1n−1 + · · ·+ a1n−k+1 + a0n−k,

où
lim
n→∞

√
ak + ak−1n−1 + · · ·+ a1n−k+1 + a0n−k =

√
ak > 0

et
lim
n→∞

√
nk =

(√
n
)k

= +∞

par la première partie de l’exercice. Donc lim
n→∞

√
P (n) = +∞.

(b) Soit ε > 0. On cherche N > 0 tel que
np

an
< ε pour tout n ≥ N . On travaille par équivalences :

np

an
< ε ⇐⇒ np < εan ⇐⇒ n < ε1/pan/p ⇐⇒ n < ε1/p(a1/p)n.

On pose alors b := a1/p > 1 et on développe le membre de droite en utilisant le binôme de Newton :
np

an
< ε ⇐⇒ n < ε1/p

(
1 + (b− 1)

)n
= ε1/p

(
1 + n(b− 1) +

n(n− 1)

2
(b− 1)2 + . . .

)
.

On remarque alors que n ≤ ε1/p
n(n− 1)

2
(b− 1)2 ⇐⇒ n ≥ 1 +

2

ε1/p(b− 1)2
. Ainsi, puisque tous les termes

du développement ci-dessus sont positifs, on obtient que

n ≥ 1+
2

ε1/p(b− 1)2
⇒ n ≤ ε1/pn(n− 1)

2
(b−1)2 ⇒ n < ε1/p

(
1+n(b−1)+n(n− 1)

2
(b−1)2+. . .

)
⇒ np

an
< ε.


