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Exercice 1. Somme et produit de séries entiéres.

Soient > 77 a,z™ et Y- byz" deux séries entieres, de rayon de convergence R, >0 et R, >0
respectivement, et soit p = min{R,, Rp}. On note S (@) et SO® leur fonctions somme respectives.

1. Justifier que la série entiere Z:’:O (an + byp)x™ a pour rayon de convergence R > p et montrer
que pour x € | — p, p[ sa fonction somme vaut S(®) + S Donner un exemple ot R > p.

2. Montrer que la série entiere ZZOZO cpxh ol ¢ = Zi’c:o a;bi_i, Vk € N a un rayon de convergence
R’ > p et (*) montrer que sa somme pour x € | — p, p[ vaut S (z) - S®) ().

Exercice 2. Trouver un développement en série de Taylor par la méthode de I’'équation différentielle.

On cherche le développement en série entiere de f: x — (14 x)® sur | — 1, 1], pour o € R*.

1. Montrer que f est solution de I’équation différentielle
af(x)— (1+z)f'(z) =0, et f(0)=1. (1)

2. Montrer que si g est solution de I’équation (1) sur | — 1,1[, alors g = f. On pourra & cette fin
étudier la fonction g/ f.

3. Déterminer toutes les solutions de (1) développables en séries entiéres et leur rayon de convergence.
Conclure en donnant le développement en série entiere de f sur | —1,1].

NB 1: il est bon de retenir ce développement en série entiere, utile en particulier pour le cas o = %
En le tronquant, on obtient quand x tend vers 0:
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NB 2: la question 2. est nécessaire pour conclure cet exercice car a priori il n’est pas garanti que
Iéquation différentielle donnée n’admette qu'une seule solution, et donc que x — (1 4+ z)® coincide
avec la série entiere. Vous étudierez plus tard sous quelles conditions générales ce genre d’équations
(dites différentielles) admettent effectivement une unique solution.

Exercice 3. Calcul du terme général de la suite de Fibonacci par la méthode de la série génératrice.

On définit la suite de Fibonacci (ag)gen+ par la récurrence double suivante: a1 = as = 1 et
ar = ax_1 + ax_o pour k > 3.

1. Montrer que pour tout k € N*, on a % <2
k

1

2. Montrer que la série entiere >, ; axz*~! a un rayon de convergence R >

1
2.
3. Montrer que pour |z| < 1, la somme f(z) =Y ;7 arz®~! de cette série entiere satisfait:
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o) =t



4. Décomposer cette fonction rationnelle en éléments simples, c’est & dire (dans ce cas) écrire f

sous la forme 2 + 2 ol p et ¢ sont des polynomes de degré 1 tels que p(x)g(x) =22+ —1et

a, B € R. Développer cette nouvelle somme en séries entieres.

5. Conclure, par unicité du développement en série entiere, la forme explicite des termes de la suite

de Fibonacci suivante:
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6. (Juste pour la culture) Calculer ¢ = limy_, azzl. Ce nombre ¢ est appelé le nombre d’or.

Epilogue 1 (biologie): il y a beaucoup de mythes autour de I'apparition de la suite de Fibonacci et
du “nombre d’or” ¢ = (1++/5)/2 dans la nature; il faut s’en méfier car il s’agit parfois de coincidences.
Mais il y a des situations ou cette suite apparait indéniablement. En voici un exemple: le nombre
ay, correspond au nombre d’ancétres de la génération k qui ont contribué génétiquement a votre
chromosome X, si vous n’en avez qu’un; et ce nombre est ax41 si vous avez deux chromosomes X
(la génération k = 1 est la votre, k = 2: celle de vos parents, k = 3 de vos grands-parents, etc).
Cette formule est exacte jusqu’a la génération ou les branches généalogiques se recoupent. Voyez-vous
pourquoi?

Epilogue 2 (maths): Cette technique qui consiste & utiliser une suite comme les coefficients d’une
série entiere — que 'on appelle alors la série génératrice de la suite — est un outil trés puissant pour
étudier les suites définies par récurrence (et méme des récurrences d’ordre plus grand que 2).

Exercice 4. (*) L’inégalité de Lojasiewicz unidimensionelle

Soit I un intervalle ouvert, a € I et f: I — R une fonction analytique au voisinage de a. Montrer
qu’il existe C,6 > 0 et 0 € [0, 1] tels que,

Vrel, (0<|x—a|<6 = |f’(x)|20|f(x)—f(a)|9>.

NB: la généralisation de cet énoncé au cas des fonctions analytiques & plusieurs variables est un résultat
fondamental d’analyse qui permet notamment de montrer que “la plupart” des systémes dynamiques
irréversibles convergent vers un état stationnaire (plus précisément, ce résultat s’applique aux systémes
dont la dérivée en temps suit le gradient d’un potentiel analytique et coercif). Ceci dit, ’hypothese
d’analyticité n’est pas nécessaire pour obtenir cette conclusion en dimension 1, donc la version de
l'inégalité de Lojasiewicz que nous venons de montrer présente un intérét limité (a4 ma connaissance).



