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Exercice 1. Somme et produit de séries entières.

Soient
∑∞
n=0 anx

n et
∑∞
n=0 bnx

n deux séries entières, de rayon de convergence Ra > 0 et Rb > 0
respectivement, et soit ρ = min{Ra, Rb}. On note S(a) et S(b) leur fonctions somme respectives.

1. Justifier que la série entière
∑∞
n=0(an + bn)xn a pour rayon de convergence R ≥ ρ et montrer

que pour x ∈ ]− ρ, ρ[ sa fonction somme vaut S(a) + S(b). Donner un exemple où R > ρ.

2. Montrer que la série entière
∑∞
k=0 ckx

k où ck =
∑k
i=0 aibk−i, ∀k ∈ N a un rayon de convergence

R′ ≥ ρ et (*) montrer que sa somme pour x ∈ ]− ρ, ρ[ vaut S(a)(x) · S(b)(x).

Exercice 2. Trouver un développement en série de Taylor par la méthode de l’équation différentielle.

On cherche le développement en série entière de f : x 7→ (1 + x)α sur ]− 1, 1[, pour α ∈ R∗.

1. Montrer que f est solution de l’équation différentielle

αf(x)− (1 + x)f ′(x) = 0, et f(0) = 1. (1)

2. Montrer que si g est solution de l’équation (1) sur ]− 1, 1[, alors g = f . On pourra à cette fin
étudier la fonction g/f .

3. Déterminer toutes les solutions de (1) développables en séries entières et leur rayon de convergence.
Conclure en donnant le développement en série entière de f sur ]− 1, 1[.

NB 1: il est bon de retenir ce développement en série entière, utile en particulier pour le cas α = 1
2 .

En le tronquant, on obtient quand x tend vers 0:

√
1 + x = 1 +

1

2
x− 1

8
x2 +O(x3)

NB 2: la question 2. est nécessaire pour conclure cet exercice car a priori il n’est pas garanti que
l’équation différentielle donnée n’admette qu’une seule solution, et donc que x 7→ (1 + x)α coincide
avec la série entière. Vous étudierez plus tard sous quelles conditions générales ce genre d’équations
(dites différentielles) admettent effectivement une unique solution.

Exercice 3. Calcul du terme général de la suite de Fibonacci par la méthode de la série génératrice.

On définit la suite de Fibonacci (ak)k∈N∗ par la récurrence double suivante: a1 = a2 = 1 et
ak = ak−1 + ak−2 pour k ≥ 3.

1. Montrer que pour tout k ∈ N∗, on a ak+1

ak
≤ 2.

2. Montrer que la série entière
∑∞
k=1 akx

k−1 a un rayon de convergence R ≥ 1
2 .

3. Montrer que pour |x| < 1
2 , la somme f(x) =

∑∞
k=1 akx

k−1 de cette série entière satisfait:

f(x) =
−1

x2 + x− 1
.
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4. Décomposer cette fonction rationnelle en éléments simples, c’est à dire (dans ce cas) écrire f
sous la forme α

p + β
q où p et q sont des polynômes de degré 1 tels que p(x)q(x) = x2 + x− 1 et

α, β ∈ R. Développer cette nouvelle somme en séries entières.

5. Conclure, par unicité du développement en série entière, la forme explicite des termes de la suite
de Fibonacci suivante:

ak =
1√
5

(
1 +
√

5

2

)k
− 1√

5

(
1−
√

5

2

)k
.

6. (Juste pour la culture) Calculer ϕ = limk→∞
ak+1

ak
. Ce nombre ϕ est appelé le nombre d’or.

Épilogue 1 (biologie): il y a beaucoup de mythes autour de l’apparition de la suite de Fibonacci et
du “nombre d’or” ϕ = (1 +

√
5)/2 dans la nature; il faut s’en méfier car il s’agit parfois de coincidences.

Mais il y a des situations où cette suite apparait indéniablement. En voici un exemple: le nombre
ak correspond au nombre d’ancêtres de la génération k qui ont contribué génétiquement à votre
chromosome X, si vous n’en avez qu’un; et ce nombre est ak+1 si vous avez deux chromosomes X
(la génération k = 1 est la vôtre, k = 2: celle de vos parents, k = 3 de vos grands-parents, etc).
Cette formule est exacte jusqu’à la génération où les branches généalogiques se recoupent. Voyez-vous
pourquoi?

Épilogue 2 (maths): Cette technique qui consiste à utiliser une suite comme les coefficients d’une
série entière – que l’on appelle alors la série génératrice de la suite – est un outil très puissant pour
étudier les suites définies par récurrence (et même des récurrences d’ordre plus grand que 2).

Exercice 4. (*) L’inégalité de  Lojasiewicz unidimensionelle

Soit I un intervalle ouvert, a ∈ I et f : I → R une fonction analytique au voisinage de a. Montrer
qu’il existe C, δ > 0 et θ ∈ [0, 1[ tels que,

∀x ∈ I,
(

0 < |x− a| < δ =⇒ |f ′(x)| ≥ C|f(x)− f(a)|θ
)
.

NB: la généralisation de cet énoncé au cas des fonctions analytiques à plusieurs variables est un résultat
fondamental d’analyse qui permet notamment de montrer que “la plupart” des systèmes dynamiques
irréversibles convergent vers un état stationnaire (plus précisément, ce résultat s’applique aux systèmes
dont la dérivée en temps suit le gradient d’un potentiel analytique et coercif). Ceci dit, l’hypothèse
d’analyticité n’est pas nécessaire pour obtenir cette conclusion en dimension 1, donc la version de
l’inégalité de  Lojasiewicz que nous venons de montrer présente un intérêt limité (à ma connaissance).
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