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Exercice 1.

1. Soient a, b ∈ R et λ ∈ [0, 1].

• Pour la fonction constante f : x 7→ C ∈ R on a

λf(a) + (1− λ)f(b) = λC + (1− λ)C = C = f(λa+ (1− λ)b)

donc la fonction est convexe (elle est aussi concave).

• Pour la fonction identité f : x 7→ x, on a

f(λa+ (1− λ)b) = λa+ (1− λ)b = λf(a) + (1− λ)f(b)

donc la fonction est convexe (elle est aussi concave).

• Pour la fonction valeur absolue f : x 7→ |x|, on a

f(λa+ (1− λ)b) = |λa+ (1− λ)b| ≤ |λ| · |a|+ |1− λ| · |b| = λf(a) + (1− λ)f(b)

donc la fonction est convexe.

2. Supposons que f, g : I → R sont convexes. Alors pour a, b ∈ I et λ ∈ [0, 1], on a

(αf + βg)(λa+ (1− λ)b) = αf(λa+ (1− λ)b) + βg(λa+ (1− λ)b)

≤ αλf(a) + α(1− λ)f(b) + βλg(a) + β(1− λ)g(b)

= λ(αf + βg)(a) + (1− λ)(αf + βg)(b)

donc αf + βg est convexe. Remarquez que l’on a besoin que α et β soient positifs ou nuls
pour que l’inégalité ne change pas de sens. Ce type particulier de combinaisons linéaires avec
coefficients positifs s’appelle une combinaison conique.

Exercice 2.

1. Remarquons que c = λa + (1 − λ)b ⇐⇒ λ = b−c
b−a (et donc 1 − λ = c−a

b−a ). Reformulons la
première inéqualité sous la forme de l’inégalité de convexité:

p(AC) ≤ p(CB) ⇐⇒ f(c)− f(a)

c− a
≤ f(b)− f(c)

b− c
⇐⇒ (b− c)(f(c)− f(a)) ≤ (c− a)(f(b)− f(c))

⇐⇒ (b− a)f(c) ≤ (b− c)f(a) + (c− a)f(b)

⇐⇒ f(c) ≤ λf(a) + (1− λ)f(b).

La dernière ligne est l’inégalité de convexité car on a posé c = λa+ (1− λ)b. Les deux autres
équivalences s’obtiennent avec des manipulations similaires.

2. [ =⇒ ] Soit a, x, y ∈ I distincts tels que x < y. Si f est convexe, alors en utilisant les inégalités
de la question précédente on a:

• Si a < x < y alors τa(x) ≤ τa(y) (par l’inégalité (ii))
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• Si x < a < y alors τa(x) ≤ τa(y) (par l’inégalité (i))

• Si x < y < a alors τa(x) ≤ τa(y) (par l’inégalité (iii))

Dans tous les cas, on a donc τa(x) ≤ τa(y) ce qui montre que τa est une fonction croissante.
[⇐= ] Soient a, b ∈ I et λ ∈ [0, 1] et soit c = λa+ (1− λ)b. On peut supposer a < b et λ ∈ ]0, 1[
(les cas a = b et λ ∈ {0, 1} étant triviaux). Si τc est croissante alors τc(a) ≤ τc(b), c’est à dire
p(AC) ≤ p(CB) ce qui, d’après la question précédente, est équivalent à f(λa + (1 − λ)b) ≤
λf(a) + (1− λ)f(b). Ceci montre l’implication réciproque.

3. Puisque f est convexe, pour tout b ∈ I̊ (I̊ represente l’intérieur de l’intervalle I, c’est à dire le
plus grand intervalle ouvert inclus dans I) la fonction τb : I \ {b} définie à la question précédente
est croissante. Soit u ∈ [a, b[. On a

∀v ∈]b, c[, τb(a) ≤ τb(u) ≤ τb(v) ≤ τb(c).

Ainsi τb est croissante sur [b, c[ et minorée par τb(u). Donc par un théorème du cours, τb admet
une limite à droite en b, et donc f est dérivable à droite en b et

τb(a) ≤ τb(u) ≤ f ′d(b) ≤ τb(c).

Mais alors τb est croissante sur [a, b[ et majorée par f ′d(b) donc admet une limite à gauche en b,
et donc f est dérivable à gauche en b et

τb(a) ≤ f ′g(b) ≤ f ′d(b) ≤ τb(c).

4. Soit b ∈ I̊. Comme f est dérivable à droite, resp. à gauche, en b on a nécessairement
limx→b+ f(x) = f(b), resp. limx→b− f(x) = f(b). Ainsi limx→b f(x) = f(b) et donc f est
continue en b.
Remarque: Attention, la continuité n’est garantie que dans l’intérieur du domaine: il se peut
que f soit convexe et pourtant discontinue sur le bord de son domaine. Par exemple, la fonction
f : [0, 1]→ R définie par f(x) = 0 si x ∈ ]0, 1[ et f(0) = f(1) = 1 est convexe.

Exercice 3.

1. [ =⇒ ] Supposons f convexe et soient a, b ∈ I tels que a < b. D’après l’exercice 2.3, on a

f ′(a) ≤ f(b)− f(a)

b− a
et

f(b)− f(a)

b− a
≤ f ′(b)

d’où f ′(a) ≤ f ′(b).
[ ⇐= ] Réciproquement, supposons f ′ croissante sur I. Soient a, b ∈ I tels que a < b (le cas
a = b sera trivial) et λ ∈ ]0, 1[ (les cas λ = 0, λ = 1 seront triviaux); notons c = λa+ (1− λ)b.
Appliquons le TAF à f sur [a, c] et sur [c, b]: il existe x ∈ ]a, c[ et y ∈ ]c, b[ tels que:

f(c)− f(a) = (c− a)f ′(x) = (1− λ)(b− a)f ′(x)

f(b)− f(c) = (b− c)f ′(y) = λ(b− a)f ′(y).

Puisque f ′ crôıt, f ′(x) ≤ f ′(y) et donc

λ(f(c)− f(a)) ≤ (1− λ)(f(b)− f(c)) =⇒ f(c) ≤ λf(a) + (1− λ)f(b).

On conclut que f est convexe.

2. C’est une conséquence directe du résultat précédent puisque l’on a (par un corollaire du Thm.
des accroissements finis) f ′ croissante sur I ⇐⇒ f ′′ ≥ 0 sur I.

3. Toutes ces fonctions sont deux fois dérivables sur leur intervalle de définition et donc il suffit
d’étudier le signe de leur dérivée seconde sur l’intervalle donné:
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• Pour f : x ∈ R 7→ x2: f ′′(x) = 2 ≥ 0, ∀x ∈ R
• Pour f : x ∈ R∗+ 7→ 1

x : f ′′(x) = 2x−3 ≥ 0, ∀x ∈ R∗+
• Pour f : x ∈ R 7→ exp(x): f ′′(x) = exp(x) ≥ 0, ∀x ∈ R
• Pour f : x ∈ R∗+ 7→

√
x: f ′′(x) = − 1

4x
−3/2 ≤ 0, ∀x ∈ R∗+.

• Pour f : x ∈ R∗+ 7→ log x: f ′′(x) = − 1
x2 ≤ 0, ∀x ∈ R∗+.

Exercice 4.

1. Si f ∈ C2(R) et si x ∈ R, on peut considérer les formules de Taylor-Lagrange à l’ordre 2:

f(x+ h) = f(x) + f ′(x)h+
f ′′(x+ θh)

2!
h2, ∀h ∈ R,

f(x− h) = f(x)− f ′(x)h+
f ′′(x+ θ̃h)

2!
h2, ∀h ∈ R,

où θ et θ̃ sont des fonctions de h telles que |θ| < 1 et |θ̃| < 1. Ainsi on obtient, si h 6= 0:

∣∣∣∣f(x+ h) + f(x− h)− 2f(x)

h2
− f ′′(x)

∣∣∣∣ ≤ 1

2
|f ′′(x+ θh)− f ′′(x)|+ 1

2

∣∣∣f ′′(x+ θ̃h)− f ′′(x)
∣∣∣ .

Puisque f ′′ est continue, pour tout ε > 0 il existe δ > 0 tel que

|f ′′(x+ θh)− f ′′(x)| ≤ ε, si |h| ≤ δ,∣∣∣f ′′(x+ θ̃h)− f ′′(x)
∣∣∣ ≤ ε, si |h| ≤ δ.

On obtient ainsi, si 0 < |h| ≤ δ:∣∣∣∣f(x+ h) + f(x− h)− 2f(x)

h2
− f ′′(x)

∣∣∣∣ ≤ ε,
ce qui prouve que

lim
h→0

f(x+ h) + f(x− h)− 2f(x)

h2
= f ′′(x).

NB: on peut aussi utiliser Taylor-Young (qui est un peu plus pratique ici), mais c’est un Thm.
que nous n’avions pas encore vu quand la série a été libérée.

2. Soit f ∈ C2(R) convexe. Alors pour tout x, h ∈ R, h 6= 0, on a, en prenant a = x− h, b = x+ h,
et λ = 1/2 dans l’inégalité de convexité:

f(x) ≤ 1

2
f(x− h) +

1

2
f(x+ h).

Ceci implique f(x+h)+f(x−h)−2f(x)
h2 ≥ 0 et on obtient l’inégalité voulue en prenant la limite

h→ 0.
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