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Exercice 1.

Si 0 6= x ∈ [−1, 1], on a

f ′(x) = 3x2 sin

(
1

x

)
− x cos

(
1

x

)
.

Ainsi limx→0 f
′(x) = 0.

D’autre part,

f ′(0) = lim
x→0

f(x)− f(0)

x− 0
= lim
x→0

x3 sin
(

1
x

)
x

= 0.

De plus, il n’y a pas de “problème” aux points x = 1 et x = −1 (la dérivée se prolonge continûment
en ces points). Ainsi, f ′ ∈ C0([−1, 1]) et donc f ∈ C1([−1, 1]).

Si 0 6= x ∈ [−1, 1], on a

f ′′(x) = 6x sin

(
1

x

)
− 4 cos

(
1

x

)
− 1

x
sin

(
1

x

)
et ainsi limx→0 f

′′(x) n’existe pas. La fonction f n’est donc pas dans C2([−1, 1]). En effet, sans même
se demander si f ′ a une dérivée en x = 0, on voit que f ′′ ne peut pas être continue en ce point.

En conclusion, f ∈ C0([−1, 1]) et f ∈ C1([−1, 1]), mais f /∈ Cm([−1, 1]) si m ≥ 2 (en effet, pour
m > 2, on a Cm([−1, 1]) ⊂ C2([−1, 1]) donc f /∈ C2([−1, 1]) =⇒ f /∈ Cm([−1, 1])).

Exercice 2.

Par hypothèse, il existe x0,1, . . . , x0,k ∈ I tels que x0,1 < · · · < x0,k et f(x0,i) = 0 pour tout
i ∈ {1, . . . , k}.

En appliquant le Thm. de Rolle à f sur les intervalles [x0,1, x0,2], [x0,2, x0,3], . . . , [x0,k−1, x0,k],
on obtient l’existence de x1,1, . . . , x1,k−1 ∈ I tels que x1,1 < · · · < x1,k−1 et f ′(x1,i) = 0 pour tout
i ∈ {1, . . . , k − 1}.

En réitérant cette construction, à l’étape `, on aura construit (k−`) points distincts x`,1, . . . , x`,k−` ∈
I tels que f (`)(x`,i) = 0 pour tout i ∈ {1, . . . , k − `}.

Exercice 3.

Puisque f est dérivable sur ]a, b[, elle est continue sur ]a, b[.
On commence par noter une valeur arbitraire v de f , i.e. on choisit z ∈]a, b[ quelconque et on pose

v = f(z).
À présent, puisque limx→a+ f(x) = limx→b− f(x) = +∞, il existe δ > 0, δ < b−a

4 tel que f(x) > v,
∀x ∈]a, a+ δ] ∪ [b− δ, b[. En particulier, z appartient à l’intervalle ouvert ]a+ δ, b− δ[.

Par continuité de f sur [a+ δ, b− δ], il existe un minimum sur cet intervalle, donc c ∈ [a+ δ, b− δ]
avec f(c) minimal pour cet intervalle. Notez que c doit appartenir à l’intervalle ouvert ]a+ δ, b− δ[
puisque f(c) ≤ f(z) = v et v < f(a + δ) et v < f(b − δ). Il suit donc que c est un point critique:
f ′(c) = 0.

Ceci montre l’exercice si p = 0. Dans le cas général, on applique l’argument précédent à la fonction
g(x) = f(x)− px après avoir vérifié que cette dernière conserve toutes les hypothèses faites sur f .

Exercice 4.
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=⇒ Supposons f strictement croissante sur I. D’après le Thm. du cours (corollaire du TAF) on a
déjà f ′(x) ≥ 0 pour tout x ∈ I. Pour montrer la deuxième propriété, raisonnons par l’absurde:
supposons qu’il existe c, d ∈ I tel que c < d et

]c, d[⊂ {x ∈ I ; f ′(x) = 0}.

Ceci signifie que ∀x ∈]c, d[, f ′(x) = 0 et donc, d’après le corollaire du TAF, f est constante sur
[c, d], donc pas strictement croissante, ce qui contredit notre hypothèse. On conclut donc que si J
est un intervalle et J ⊂ {x ∈ I ; f ′(x) = 0} alors J est un singleton.

⇐= Supposons maintenant:{
∀x ∈ I, f ′(x) ≥ 0

Si J est un intervalle et J ⊂ {x ∈ I ; f ′(x) = 0} alors J est un singleton.

D’après le corollaire du TAF, on sait que f est croissante sur I. Raisonnons par l’absurde et
supposons que f n’est pas strictement croissante sur I. Il existe donc x1, x2 ∈ I tels que x1 < x2 et
f(x1) = f(x2). Comme f est croissante sur I, on a alors

∀x ∈ [x1, x2], f(x) = f(x1),

et donc ]x1, x2[⊂ {x ∈ I ; f ′(x) = 0}, ce qui contredit l’hypothèse. Donc f est strictement croissante
sur I.

Exercice 5.

1. • Puisque f est dérivable, elle est continue.

• Puisque limx→+∞ f ′(x) = ` > 0, il existe M > 0 tel que f ′(x) ≥ `
2 > 0, ∀x ≥M . Ainsi f est

croissante sur ]M,+∞[.

• Ab absurdo, si limx→+∞ f(x) 6= +∞, alors f est bornée sur [M,+∞[ (puisqu’elle est croissante
!) et on a donc limx→+∞ f(x) = α où α ∈ R.

• Pour tout x ∈ [M,+∞[, par le théorème des accroissements finis, il existe alors ξ = ξ(x) ∈
]x, x+ 1[ tel que

f(x+ 1)− f(x)

1
= f ′(ξ).

• En faisant tendre x vers +∞, on obtient 0 = α−α
1 = `, ce qui est contradictoire avec l’hypothèse

` > 0.

2. Revenons à la définition des limites.

Soit ε > 0 fixé. Puisque f ′ −−−−−→
x→+∞

l, il existe A ∈]0; +∞[ tel que :

∀t ∈]0; +∞[, t ≥ A⇒ |f ′(t)− l| ≤ ε

2
.

Soit x ∈]A,+∞[; le théorème des accroissements finis, appliqué à f sur l’intervalle [A, x], montre
l’existence de cx ∈]A, x[ tel que :

f(x)− f(A)

x−A
= f ′(cx).

Essayons maintenant de rattacher l’étude de f(x)
x à celle de

f(x)− f(A)

x−A
.
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Comme, pour tout x ∈]A; +∞[ :

f(x)

x
=
f(x)− f(A)

x−A

(
1− A

x

)
+
f(A)

x
,

on déduit : ∣∣∣∣f(x)

x
− l
∣∣∣∣ ≤ ∣∣∣∣f(x)− f(A)

x−A
− l
∣∣∣∣+

∣∣∣∣f(x)− f(A)

x−A
A

x

∣∣∣∣+
|f(A)|
x

≤ ε

2
+

1

x

(
(|l|+ ε

2
)A+ |f(A)|

)
Comme

1

x

(
(|l|+ ε

2
)A+ |f(A)|

)
−−−−−→
x→+∞

0,

il existe B ∈]A; +∞[ tel que :

∀x ∈]0; +∞[, x > B ⇒ 1

x

(
(|l|+ ε

2
)A+ |f(A)|

)
≤ ε

2
.

D’où : ∀x ∈]0; +∞[, (x > B ⇒
∣∣∣ f(x)
x − l

∣∣∣ ≤ ε).
Ainsi : f(x)

x −−−−−→
x→+∞

l.
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